首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Analysis of L-type amino acid transport expression of hepatocellular carcinoma cells (HCCs) of the dog was performed. The leucine transport activity of canine HCCs was 0.628 ± 0.018 nmol/mg protein/min. The inhibitor of LAT 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH) reduced 90% of the activity at 1 mM. The deduced amino acid sequences of canine LAT2, LAT3 and LAT4 were well conserved in mammalians, exhibiting 89, 88 and 77% homology, respectively. RT-PCR revealed distinct LAT1 expression compared with normal hepatocytes. Western blotting analysis confirmed the potent LAT1 expression in canine HCCs but not hepatocytes, and real-time RT-PCR analysis indicated that canine HCCs possessed 28 times higher LAT1 expression than hepatocytes. These results indicated that the leucine transport activity of canine HCCs was due to LAT1.  相似文献   

2.
牛乳腺上皮细胞SNAT2对氨基酸调节乳合成的影响   总被引:1,自引:1,他引:0  
试验旨在研究氨基酸转运体钠离子依赖的中性氨基酸转运蛋白(the sodium-dependent neutral amino acid transporter 2,SNAT2)在牛乳腺上皮细胞(bovine mammary epithelial cell,BMEC)中对氨基酸调节乳合成的影响。利用组织块法成功培养原代BMEC,添加不同氨基酸(蛋氨酸(Met)、赖氨酸(Lys)和亮氨酸(Leu)刺激BMEC后,通过实时荧光定量PCR、Western blotting技术和甘油三酯试剂盒检测SNAT2、酪蛋白(β-casein)基因的表达量和BMEC培养液上清甘油三酯的分泌量;将N-flag-SNAT2真核表达载体及SNAT2 siRNA分别转入细胞中进行SNAT2基因的过表达和敲低试验;通过Western blotting和甘油三酯试剂盒分别检测SNAT2、哺乳动物雷帕霉素靶蛋白(the mammalian target of rapamycin,mTOR)、β-casein蛋白表达量和BMEC培养液上清的甘油三酯含量。结果显示,3种氨基酸(Met、Lys、Leu)均能显著促进BMEC分泌乳蛋白和乳脂,并激活mTOR信号途径,其中Met、Lys还能够显著上调SNAT2基因表达;SNAT2能够正向调节BMEC乳蛋白和乳脂肪的合成,并激活mTOR信号通路,说明氨基酸激活mTOR信号通路是通过SNAT2基因介导完成的,进而调节了BMEC乳蛋白和乳脂肪合成。  相似文献   

3.
本试验旨在研究槲皮素促进猪肠上皮细胞利用蛋白质的作用及机制。猪肠上皮细胞孵育48 h后试验组分别用含0.1、0.2、0.4、0.8和1.6 mg/L槲皮素的二甲基亚砜(DMSO)溶液处理72 h,对照组采用0.2%DMSO处理。采用二喹啉甲酸(BCA)测定受试细胞中蛋白质的含量;采用实时荧光定量PCR(RT-qPCR)法测定氨基酸和小肽转运载体以及哺乳动物雷帕霉素靶蛋白(mTOR)信号通路相关基因的mRNA相对表达量;采用Western blot法测定mTOR信号通路相关基因的蛋白表达。结果表明:与对照组相比,1)0.4和0.8 mg/L槲皮素均极显著增加猪肠上皮细胞中蛋白质的含量(P<0.01)。2)1.6 mg/L槲皮素极显著提高猪肠上皮细胞中兴奋性氨基酸转运载体1(EAAC1)、谷氨酰胺载体2(ASCT2)、氨基酸转运载体A2(ATA2)、L型氨基酸转运载体2(LAT2)、阳离子氨基酸转运载体1(CAT1)、b 0,+系统氨基酸转运载体(rBAT)、y+L系统氨基酸转运载体1(y+LAT1)、y+L系统氨基酸转运载体2(y+LAT2)和寡肽转运载体1(PepT1)mRNA相对表达量(P<0.01)。3)0.4 mg/L槲皮素极显著降低猪肠上皮细胞中结节性硬化复合物1(TSC1)mRNA相对表达量(P<0.01);0.8 mg/L槲皮素极显著增加mTOR和核糖体蛋白S6(RPS6)mRNA相对表达量并极显著降低TSC1 mRNA相对表达量(P<0.01);1.6 mg/L槲皮素极显著增加mTOR、真核起始因子4E结合蛋白1(4E-BP1)、真核细胞翻译起始因子4E(eIF4E)、真核细胞翻译起始因子4B(eIF4B)、真核细胞翻译起始因子4A(eIF4A)和RPS6 mRNA相对表达量(P<0.01)。4)0.1和1.6 mg/L槲皮素极显著提高猪肠上皮细胞中mTOR、eIF4E和eIF4A蛋白表达量并极显著降低4E-BP1蛋白表达量(P<0.01)。由此可见,槲皮素可通过调控氨基酸转运载体、小肽转运载体及mTOR信号通路相关基因的表达来促进猪肠上皮细胞对蛋白质的利用。  相似文献   

4.
Animal protein sources such as fishmeal and plasma powder are excellent and indispensable sources of energy, amino acids, and minerals in animal production. Amino acid imbalance, especially methionine-to-sulfur amino acid (Met:SAA) ratio, caused by an imbalance of animal protein meal leads to growth restriction. This study was conducted to evaluate the effects of imbalanced Met:SAA ratio supplementation of different animal protein source diets on growth performance, plasma amino acid profiles, antioxidant capacity and intestinal morphology in a piglet model. Twenty-four weaned piglets (castrated males; BW = 10.46 ± 0.34 kg), assigned randomly into 3 groups (8 piglets/group), were fed for 28 d. Three experimental diets of equal energy and crude protein levels were as follows: 1) a corn-soybean basal diet with a Met:SAA ratio at 0.51 (BD); 2) a plasma powder diet with a low Met:SAA ratio at 0.41 (L-MR); 3) a fishmeal diet with a high Met:SAA ratio at 0.61 (H-MR). Results revealed that compared to BD, L-MR significantly decreased (P < 0.05) the activities of plasma total antioxidant capacity and glutathione peroxidase, plasma amino acid profiles, and significantly reduced (P < 0.05) villus height and crypt depth in the duodenum and jejunum. Additionally, L-MR significantly reduced (P < 0.05) the mRNA expression level of solute carrier family 7 member 9 (SlC7A9) in the ileum, and significantly increased (P < 0.05) mRNA expression levels of zonula occludens-1 (ZO-1) in the duodenum, and Claudin-1, ZO-1, sodium-coupled neutral amino acid transporters 2 (SNAT2) and SlC7A7 in the jejunum. H-MR significantly increased (P < 0.05) plasma SAA levels, and significantly reduced (P < 0.05) average daily feed intake, villus height, and villus height-to-crypt depth (VH:CD) ratio in the ileum compared to BD. In conclusion, L-MR may result in oxidative stress and villous atrophy but proves beneficial in improving intestinal barrier function and the activity of amino acid transporters for compensatory growth. H-MR may impair intestinal growth and development for weaned piglets. The research provides a guidance on the adequate Met:SAA ratio (0.51) supplementation in diet structure for weaned piglets.  相似文献   

5.
This study evaluated the potential of mulberry leaf powder as an unconventional feed material for finishing pigs by assessing the growth performance, antioxidative properties, fatty acid profile, and lipid metabolism in 180 Xiangcun black pigs. Pigs with an initial body weight (BW) of 71.64 ± 1.46 kg were randomly assigned to 5 treatment groups, including the control diet and 4 experimental diets. The corn, soybean meal, and wheat bran in the control diet were partly replaced by 3%, 6%, 9%, or 12% mulberry leaf powder in experimental diets. There were 6 replicates (pens) of 6 pigs per replicate in each treatment. Blood and muscle samples were collected after the 50-day feed experiment. Compared with the control group, the 3%, 6%, and 9% mulberry diets had no adverse effect (P > 0.05) on the growth performance of pigs. The serum glutathione peroxidase activity and glutathione concentration increased linearly (P < 0.05) with the increase in dietary mulberry inclusion. There was no significant difference in the relative expression levels of antioxidant-related genes in muscle tissue between the control and mulberry groups. Inclusion of dietary mulberry powder increased (P < 0.05) the content of polyunsaturated fatty acids, especially in the longissimus dorsi (LD) muscle, up-regulated (P < 0.05) the relative mRNA expression level of uncoupling protein-3 in muscle tissue, but down-regulated (P < 0.05) the relative mRNA expression levels of hormone-sensitive lipase, acetyl CoA carboxylase α, lipoprotein lipase, and peroxisome proliferator-activated receptor γ in LD in a linear pattern. The nuclear respiratory factor 2 expression level in the LD muscle of pigs fed the 9% mulberry diet was higher (P < 0.01) than that in the other mulberry groups and control group. The inclusion of less than 12% dietary mulberry did not detrimentally affect the growth performance of Xiangcun black pigs, but enhanced the serum antioxidant property, increased the polyunsaturated fatty acid content, and inhibited lipid oxidation by regulating gene expression levels of lipid metabolism and mitochondrial uncoupling protein in muscle tissue. Mulberry leaves can be utilized as a forage crop in the diet of finishing pigs.  相似文献   

6.
The present study was conducted to evaluate the effect of dietary folic acid on the growth performance, intestinal morphology, and intestinal epithelial cells renewal in post-weaning piglets. Twenty-eight piglets (weaned at day 21, initial body weight of 6.73 ± 0.62 kg) were randomly allotted to 4 treatments with 7 pens per diet and 1 piglet per pen. The piglets were fed the same antibiotic-free and zinc oxide-free basal diets supplemented with folic acid at 0, 3, 9, and 18 mg/kg for 14 days. The results showed that dietary supplementation with folic acid increased villus height (VH) (P = 0.003; linear, P = 0.001), VH-to-crypt depth (VH:CD) ratio (P = 0.002; linear, P = 0.001), villus surface area (VSA) (P = 0.026; linear, P = 0.010). The analyzed parameters ADG, serum urea nitrogen (BUN) content, VH, VSA, and serum folate (SF) concentration responded linearly to the dietary folic acid concentration when the dietary folic acid concentration was below 4.42, 5.26, 4.79, 3.47, and 3.53 mg/kg respectively (R2 = 0.995, 0.995, 0.999, 0.999, 0.872, P = 0.09, 0.07, 0.09, 0.09, 0.36, respectively), as assessed by a two-linear broken-line regression. Above these breakpoints, the response of ADG, VH, VSA, and SF plateaued in response to changes in dietary folic acid concentration. Moreover, dietary supplementation with folic acid significantly increased the lactase (P = 0.001; linear, P = 0.001) and sucrase activities (P = 0.021; linear, P = 0.010) in the jejunal mucosa of weaned piglets. The mRNA expression of solute carrier family 6 member 19 (SLC6a19), solute carrier family 1 member 1 (SLC7a1), tumor necrosis factor-α (TNF-α), the number of Ki67 positive cells, and cell shedding rate had a significant linear contrast (P = 0.023, 0.021, 0.038, 0.049, and 0.008, respectively) in dietary folic acid groups. In conclusion, our results indicate that folic acid supplementation can improve the growth performance and intestinal morphology of weaned piglets by maintaining the balance of epithelial cell renewal.  相似文献   

7.
亮氨酸对猪胎盘滋养层细胞增殖及氨基酸转运的影响   总被引:1,自引:0,他引:1  
为研究亮氨酸(Leu)对猪胎盘滋养层细胞(pTr)增殖、凋亡以及氨基酸转运载体表达的影响及其机制,本试验用不同浓度Leu(0、1、10 mmol/L)分别处理pTr细胞24 h和48 h后,使用荧光定量PCR技术检测pTr细胞增殖和凋亡相关基因、氨基酸转运载体以及mTOR信号通路关键蛋白等的mRNA表达水平。结果表明:Leu处理pTr细胞24 h后,1 mmol/L试验组的SNAT1(P<0.01)、4E-BP1 (P<0.05)和eIF4G(P<0.05)的mRNA相对表达量低于对照组;Leu处理pTr细胞48 h后,1 mmol/L试验组LAT1(P<0.05)、4E-BP1(P<0.01)的mRNA相对表达量低于对照组,10 mmol/L试验组CDK4(P<0.05)、4E-BP1 (P <0.01)、SNAT1 (P <0.01)、SNAT2 (P <0.01)、LAT1 (P <0.01)以及rBAT (P <0.05)的mRNA相对表达量也低于对照组;Leu处理pTr细胞24 h和48 h后,10 mmol/L组mTORC1的mRNA相对表达量较对照组和1 mmol/L组均极显著提高(P<0.01)。可见,10 mmol/L Leu会抑制pTr细胞的增殖活力,并可能通过mTOR信号通路的介导,降低了pTr细胞氨基酸转运载体的表达。  相似文献   

8.
The effects of dietary betaine supplementation on growth performance, carcass characteristics, muscle amino acid contents, meat quality, antioxidant capacity, myogenic gene expression and mechanistic target of rapamycin (mTOR) signalling pathway in Cherry Valley ducks were evaluated. A total of 720 1‐day‐old Cherry Valley ducks were randomly distributed into four groups with six replicates of 30 birds for a 42‐day feeding trial. Ducks were fed a basal diet supplemented with 0 (control), 250, 500 or 1,000 mg/kg betaine, respectively. Growth performance was not affected by betaine. Incremental levels of betaine linearly (p < 0.05) increased the breast muscle yield and linearly (p < 0.05) decreased the subcutaneous fat thickness and the abdominal fat yield. The contents of methionine, serine, glycine, glutamate and total non‐essential amino acid in breast muscle were linearly (p < 0.05) increased by betaine supplementation. With increasing betaine levels, the drip loss and the content of malondialdehyde (MDA) were linearly (p < 0.05) decreased, and the redness of meat (linear p < 0.05), the activities of catalase (CAT) (linear p < 0.05) and total superoxide dismutase (T‐SOD) (linear p < 0.05, quadratic p < 0.05) were increased. Moreover, the myogenic differentiation factor 1 (MyoD1) mRNA expression and the mTOR mRNA expression and protein phosporylation were linearly (p < 0.05) up‐regulated, and the myostatin (MSTN) mRNA expression was linearly (p < 0.05) down‐regulated by betaine supplementation. Overall, this study indicated that betaine supplementation did not affect the growth performance of Cherry Valley ducks, but could linearly increase some amino acid contents in breast muscle, especially glycine, and increase muscle antioxidant activity to improve meat quality. Moreover, betaine supplementation could improve the breast muscle yield by increasing MyoD1 mRNA expression, decreasing MSTN mRNA expression and regulating mTOR signalling pathway.  相似文献   

9.
This study was conducted to evaluate the effect of reduced dietary protein level on growth performance, muscle mass weight, free amino acids (FAA) and gene expression profile of selected amino acid transceptors in different fibre type of skeletal muscle tissues (longissimus dorsi, psoas major, biceps femoris) of growing pigs. A total of 18 cross‐bred growing pigs (Large White × Landrace × Duroc) with initial body weight (9.57 ± 0.67 kg) were assigned into three dietary treatments: 20% crude protein (CP) diet (normal recommended, NP), 17% CP diet (low protein, LP) and 14% CP diet (very low protein, VLP). The results indicated improved feed‐to‐gain ratio was obtained for pigs fed LP and NP diets (p < 0.01), while the pigs fed VLP diet showed the worst growth performance (p < 0.01). There was no significant difference in the weights of longissimus dorsi and psoas major muscle between LP and NP groups (p > 0.05). Majority of the determined FAA concentration of LP group were greater than or equal to those of NP group in both longissimus dorsi and psoas major muscle (p < 0.01). Further, the mRNA expression levels of sodium‐coupled neutral amino acid transceptor 2, L‐type amino acid transceptor 1 and proton‐assisted amino acid transceptors 2 were higher in skeletal muscle tissue in LP group compared to those of the pigs fed NP or VLP diet. These results suggested that reduced dietary protein level (3 points of percentage less than recommended level) would upregulate the mRNA expression of amino acid transceptors to enhance the absorption of FAA in skeletal muscle of growing pigs. There seems to be a relationship between response of AA transceptors to the dietary protein level in skeletal muscle tissue of different fibre type. To illustrate the underlying mechanisms will be beneficial to animal nutrition.  相似文献   

10.
l-proline (Pro) is a precursor of ornithine, which is converted into polyamines via ornithine decarboxylase (ODC). Polyamines plays a key role in the proliferation of intestinal epithelial cells. The study investigated the effect of Pro on polyamine metabolism and cell proliferation on porcine enterocytes in vivo and in vitro. Twenty-four Huanjiang mini-pigs were randomly assigned into 1 of 3 groups and fed a basal diet that contained 0.77% alanine (Ala, iso-nitrogenous control), 1% Pro or 1% Pro + 0.0167% α-difluoromethylornithine (DFMO) from d 15 to 70 of gestation. The fetal body weight and number of fetuses per litter were determined, and the small and large intestines were obtained on d 70 ± 1.78 of gestation. The in vitro study was performed in intestinal porcine epithelial (IPEC-J2) cells cultured in Dulbecco''s modified Eagle medium-high glucose (DMEM-H) containing 0 μmol/L Pro, 400 μmol/L Pro, or 400 μmol/L Pro + 10 mmol/L DFMO for 4 d. The results showed that maternal dietary supplementation with 1% Pro increased fetal weight; the protein and DNA concentrations of the fetal small intestine; and mRNA levels for potassium voltage-gated channel, shaker-related subfamily, member 1 (Kv1.1) in the fetal small and large intestines (P < 0.05). Supplementing Pro to either gilts or IPEC-J2 cells increased ODC protein abundances and polyamine concentrations in the fetal intestines and IPEC-J2 cells (P < 0.05). In comparison with the Pro group, the combined administration of Pro and DFMO reduced the expression of ODC protein and spermine concentration in the fetal intestine, as well as the concentrations of putrescine, spermidine and spermine in IPEC-J2 cells (P < 0.05). Meanwhile, the percentage of cells in the S-phase and the mRNA levels of proto-oncogenes c-fos and c-myc were increased in response to Pro supplementation, whereas depletion of cellular polyamines with DFMO increased tumor protein p53 (p53) mRNA levels (P < 0.05). Taken together, dietary supplementation with Pro improved fetal pig growth and intestinal epithelial cell proliferation via enhancing polyamine synthesis.  相似文献   

11.
Necrotic enteritis (NE) is an important enteric disease in poultry and has become a major concern in poultry production in the post-antibiotic era. The infection with NE can damage the intestinal mucosa of the birds leading to impaired health and, thus, productivity. To gain a better understanding of how NE impacts the gut function of infected broilers, global mRNA sequencing (RNA-seq) was performed in the jejunum tissue of NE challenged and non-challenged broilers to identify the pathways and genes affected by this disease. Briefly, to induce NE, birds in the challenge group were inoculated with 1 mL of Eimeria species on day 9 followed by 1 mL of approximately 108 CFU/mL of a NetB producing Clostridium perfringens on days 14 and 15. On day 16, 2 birds in each treatment were randomly selected and euthanized and the whole intestinal tract was evaluated for lesion scores. Duodenum tissue samples from one of the euthanized birds of each replicate (n = 4) was used for histology, and the jejunum tissue for RNA extraction. RNA-seq analysis was performed with an Illumina RNA HiSeq 2000 sequencer. The differentially expressed genes (DEG) were identified and functional analysis was performed in DAVID to find protein–protein interactions (PPI). At a false discovery rate threshold <0.05, a total of 377 DEG (207 upregulated and 170 downregulated) DEG were identified. Pathway enrichment analysis revealed that DEG were considerably enriched in peroxisome proliferator-activated receptors (PPAR) signaling (P < 0.01) and β-oxidation pathways (P < 0.05). The DEG were mostly related to fatty acid metabolism and degradation (cluster of differentiation 36 [CD36], acyl-CoA synthetase bubblegum family member-1 [ACSBG1], fatty acid-binding protein-1 and -2 [FABP1] and [FABP2]; and acyl-coenzyme A synthetase-1 [ACSL1]), bile acid production and transportation (acyl-CoA oxidase-2 [ACOX2], apical sodium–bile acid transporter [ASBT]) and essential genes in the immune system (interferon-, [IFN-γ], LCK proto-oncogene, Src family tyrosine kinase [LCK], zeta chain of T cell receptor associated protein kinase 70 kDa [ZAP70], and aconitate decarboxylase 1 [ACOD1]). Our data revealed that pathways related to fatty acid digestion were significantly compromised which thereby could have affected metabolic and immune responses in NE infected birds.  相似文献   

12.
13.
We conducted 3 independent experiments to demonstrate functional G-coupled protein receptor 43 (GPR43) and GPR120 in bovine intramuscular (i.m.) and subcutaneous (s.c.) adipose tissues. We hypothesized that media volatile fatty acids and long-chain fatty acids would affect cAMP-activated protein kinase-alpha (AMPKα) protein expression and cAMP concentrations differently in i.m. and s.c. adipose tissue. Experiment 1: oleic acid (18:1n-9) decreased phosphorylated AMPKα protein (p-AMPKα) and the p-AMPKα/AMPKα protein ratio in i.m. preadipocytes, increased the p-AMPKα/AMPKα protein ratio in bovine satellite cells, and had no effect in s.c. preadipocytes. Experment 2: ex vivo explants from the 5th to 8th longissimus thoracic rib muscle section of Angus crossbred steers were cultured 48 hr in media containing 0.25 µM ciglitizone, 5 mM glucose, and 5 mM acetate, in the absence or the presence of 100 µM oleic acid. Oleic acid increased acetate incorporation into fatty acids and GPR43 gene expression in i.m. adipose tissue (P < 0.05), but oleic acid had no effect on fatty acid synthesis or GPR43 expression in s.c. adipose tissue. Experiment 3: fresh s.c. and i.m. adipose tissue from the 5th to 8th longissimus thoracic rib muscle section of Angus crossbred steers was transferred immediately to 6-well culture plates containing 3 mL of KHB/Hepes/5 mM glucose. Samples were preincubated with 0.5 mM theophylline plus 10 μM forskolin for 30 min, after which increasing concentrations of acetate or propionate (0, 10−3, 10−2.3, and 10−3 M) in the absence or the presence of 100 μM oleic acid or 100 µM palmitic acid (16:0) were added to the incubation media. Acetate had no effect on forskolin-stimulated cAMP production in s.c. adipose tissue but decreased cAMP in i.m. adipose tissue (P < 0.05); this indicates a functional GPR43 receptor in i.m. adipose tissue. The combination of 10−2 M acetate and oleic acid decrease cAMP production in s.c. adipose tissue, consistent with GPR120 receptor activity, but oleic acid and palmitic acid attenuated the depression of cAMP production caused by acetate in i.m. adipose tissue. Palmitic acid depressed cAMP production in s.c. adipose tissue, and increased cAMP production in i.m. adipose tissue (P < 0.05). Propionate had no effect on cAMP production in s.c. or i.m. adipose tissue. These results provide evidence for functional GPR43 receptors in i.m. adipose tissue and GPR120 receptors in s.c. adipose tissue, both of which would suppress lipolysis.  相似文献   

14.
钠离子依赖性中性氨基酸转运体2(SNAT2)是一种氨基酸转运蛋白,可转运中性氨基酸,广泛分布于多种细胞中。氨基酸既可作为蛋白质合成的底物,也是调节细胞新陈代谢的关键信号分子,但SNAT2是否介导氨基酸调节BMECs增殖和自噬尚未见报道。本研究利用CASY细胞计数和Western blotting技术检测SNAT2过表达和siRNA干扰后牛乳腺上皮细胞(BMECs)增殖情况以及SNAT2对自噬标志蛋白LC3-Ⅰ/Ⅱ表达量的影响,并利用免疫荧光检测细胞自噬斑点(LC3-Ⅱ)变化。结果显示,SNAT2过表达时,p-PI3K、p-mTOR和Cyclin D1表达量增加,反之,p-PI3K、p-mTOR和Cyclin D1表达量下降。SNAT2抑制时,LC3-Ⅱ表达量增加,免疫荧光检测自噬斑点增多。添加自噬增强剂海藻糖(trehalose,Tre)和蛋氨酸(methionine,Met)后,与单一添加Tre组相比,Met+Tre组p-mTOR表达量增加,LC3-Ⅱ表达量降低,胞浆内绿色自噬斑点减少;添加Tre和Met并抑制SNAT2时,p-mTOR表达量下降,LC3-Ⅱ表达量增多,胞浆内绿色自噬斑点增加。以上结果表明,SNAT2可介导Met通过调控PI3K-mTOR/Cyclin D1信号通路调节BMECs的增殖与自噬。  相似文献   

15.
Short chain fatty acids (SCFA) are the main products of indigestible carbohydrates undergoing bacterial fermentation in the hindgut, which are related to some physiological functions. This study was designed to investigate the effects of SCFA infusion by ileum on the carcass traits, meat quality and lipid metabolism of growing pigs. In a 28-day study, 24 growing barrows fitted with a T-cannula in distal ileum were divided into 4 treatments: 1) Control, 2) antibiotics (AB), 3) AB + 300 mL of SCFA1 solution (ABS1), 4) AB + 300 mL of SCFA2 solution (ABS2). The concentrations of acetate, propionate and butyrate in SCFA1 solution were respectively 61.84, 18.62 and 12.55 mmol/L, and in SCFA2 were respectively 40.08, 15.41 and 9.78 mmol/L. The results showed that the SCFA infusion increased the average daily feed intake and average daily gain of pigs (P < 0.05). Meanwhile, the SCFA treatments increased longissimus dorsi area (P < 0.05) and carcass weight (P = 0.058), decreased the drip loss of longissimus dorsi (P = 0.059), and reduced serum concentrations of triglyceride, total cholesterol and urea nitrogen (P < 0.05). Besides, the SCFA administration inhibited the mRNA expressions of fatty acid synthase (FAS) and acetyl-CoA carboxylase in longissimus dorsi (P < 0.05), the mRNA expression of FAS in the liver (P < 0.05), and the mRNA expression of hormone-sensitive lipase in abdominal fat (P < 0.05). Short chain fatty acid infusion also enhanced the mRNA expression of carnitine palmitoyltransferase-1α in the liver (P < 0.05), the mRNA expressions of peroxisome proliferator activated receptor gamma and lipoprotein lipase in abdominal fat (P < 0.05), and the mRNA expressions of free fatty acid receptor 2, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 in the colon (P < 0.05). These results suggested that SCFA administration in the ileum could improve the carcass traits and meat quality of growing pigs, which was possibly due to the fact that SCFA modulated lipid metabolism.  相似文献   

16.
The aim of the present study was to investigate the relationships between serum amino acid profiles in normal and calves with Mycoplasma bronchopneumonia. Serum free amino acid concentrations in serum obtained from 34 calves with or without Mycoplasma bronchopneumonia were determined by high-performance liquid chromatography. The calves with Mycoplasma were characterized by significantly lower total amino acid and total essential amino acid concentrations and molar ratios of branched-chain amino acid (BCAA) to aromatic amino acid (BCAA/AAA) and BCAA to tyrosine (BTR), and by a significantly higher molar ratio of serine phosphorylation (SPR). The proposed diagnostic cutoffs for BCAA/AAA, BTR and SPR in serum based on ROC analysis for detection of catabolic states associated with Mycoplasma bronchopneumonia were set at <1.75, <2.86 and >0.85, respectively. Our results suggest that determining the profiles of amino acids, especially BTR and SPR, could provide useful diagnostic information in terms of predicting protein catabolism in Mycoplasma bronchopneumonia.  相似文献   

17.
The study was to investigate the effect of early-weaning stress and proline (Pro) and putrescine (Put) supplementations on serum biochemical parameters and amino acids (AA) metabolism in suckling and post-weaning pigs. Blood and small intestinal mucosa were harvested from suckling piglets at 1, 7, 14, and 21 d of age and piglets on d 1, 3, 5, and 7 after weaning at 14 d of age, as well as from piglets received oral administration of Pro and Put from 1 to 14 d old. In suckling piglets, the serum glucose, albumin and total cholesterol levels were increased (P < 0.05) with increasing age, whereas the serum globulin, urea nitrogen (BUN), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) levels were lowered (P < 0.05). The concentrations of most serum AA and the AA transporters related gene expressions were highest in 7-d-old piglets (P < 0.05), whereas the phosphorylation status of the mammalian target of the rapamycin (mTOR) signaling pathway in the small intestine increased in piglets from 1 to 21 d old (P < 0.05). Weaning at 14 d old increased (P < 0.05) the BUN and triglycerides levels in serum, as well as jejunal solute carrier family 7 member 6 (SLC7A6), ileal SLC36A1 and SLC1A1 mRNA abundances at d 1 or 3 post-weaning. Weaning also inhibited (P < 0.05) the phosphorylation levels of mTOR and its downstream ribosomal protein S6 kinase 1 (S6K1) and 4E-binding protein-1 (4EBP1) in the small intestine of weanling pigs. Oral administration of Put and Pro decreased (P < 0.05) serum ALP levels and increased (P < 0.05) intestinal SLC36A1 and SLC1A1 mRNA abundances and mTOR pathway phosphorylation levels in post-weaning pigs. Pro but not Put treatment enhanced (P < 0.05) serum Pro, arginine (Arg) and glutamine (Gln) concentrations of weaning-pigs. These findings indicated that early-weaning dramatically altered the biochemical blood metabolites, AA profile and intestinal mTOR pathway activity, and Pro and Put supplementations improved the AA metabolism and transportation as well as activated the intestinal mTOR pathway in weanling-pigs. Our study has an important implication for the broad application of Pro and Put in the weaning transition of piglets.  相似文献   

18.

Background

Many studies have investigated endogenous loss of proteins and amino acids (AAs) at the ileal level in growing pigs. However, only a few studies have researched this subject in piglets. Knowledge regarding AA ileal digestibility in piglets would be helpful during the formulation of diets for weaning piglets, rather than just using coefficients obtained in growing pigs. Therefore, in this study, we sought to estimate endogenous protein and AA ileal losses in piglets. Furthermore, apparent and true ileal digestibility (AID and TID) of protein and AAs from casein were measured.

Results

The average flow of protein was 20.8 g/kg of dry matter intake (DMI). Basal protein loss, as estimated by regression, was 16.9 g/kg DMI. Glutamic acid, arginine, and aspartic acid (2.2, 1.4, and 1.2 g/kg DMI, respectively) were the AAs for which greater losses were seen. The AID of protein and AAs increased as the protein level in the diet increased. A higher increment in AID was observed between diets with 80 and160 g CP/kg of feed; this finding was mainly attributable to increases in glycine and arginine (46.1% and 18%, respectively). The TID of protein was 97.8, and the TID of AAs varied from 93.9 for histidine to 100.2 for phenylalanine.

Conclusions

The basal endogenous protein loss in piglets was 16.9 g/kg DMI. Endogenous protein was rich in glutamic acid, aspartic acid, and arginine, which represented 32.7% of endogenous protein loss in weaning piglets. The TID of casein was high and varied from 93.0 for histidine to 100.2 for phenylalanine.  相似文献   

19.
We hypothesized that maternal nutrition during the first 50 d of gestation would influence the abundance of hexose transporters, SLC2A1, SLC2A3, and SLC2A5, and cationic amino acid transporters, SLC7A1 and SLC7A2, in heifer uteroplacental tissues. Angus-cross heifers (n = 43) were estrus synchronized, bred via artificial insemination, and assigned at breeding to 1 of 2 dietary intake groups (CON = 100% of requirements to achieve 0.45 kg/d of BW gain or RES = 60% of CON intake) and ovariohysterectomized on day 16, 34, or 50 of gestation (n = 6 to 9/d) in a completely randomized design with a 2 × 3 factorial arrangement of treatments. Uterine cross-sections were collected from the horn ipsilateral to the corpus luteum, fixed in 10% neutral buffered formalin, sectioned at 5 µm, and stained via immunofluorescence for transporters. For each image, areas of fetal membrane (FM; chorioallantois), luminal epithelium (ENDO), superficial glands (SG), deep glands (DG), and myometrium (MYO) were analyzed separately for relative intensity of fluorescence as an indicator of transporter abundance. Analysis of FM was only conducted for days 34 and 50. No transporters in target areas were influenced by a day × treatment interaction (P ≥ 0.06). In ENDO, all transporters were differentially abundant from days 16 to 50 of gestation (P ≤ 0.04), and SLC7A2 was greater (P = 0.05) for RES vs. CON. In SG, SLC7A1 and SLC7A2 were greater (P ≤ 0.04) at day 34 vs. day 16. In DG, SLC2A3 and SLC7A1 were greater (P ≤ 0.05) for CON vs. RES heifers; furthermore, SLC7A1 was greater (P < 0.01) at day 50 vs. days 16 and 34 of gestation. In MYO, SLC7A1 was greater (P < 0.01) for CON vs. RES and was greater (P = 0.02) at days 34 and 50 vs. day 16. There were no differences in FM (P ≥ 0.06). Analysis of all uterine tissues at day 16 determined that SLC2A1, SLC2A3, and SLC7A2 were all differentially abundant across uterine tissue type (P < 0.01), and SLC7A1 was greater (P = 0.02) for CON vs. RES. Analysis of all uteroplacental tissues at days 34 and 50 demonstrated that all transporters differed (P < 0.01) across uteroplacental tissues, and SLC7A1 was greater (P < 0.01) for CON vs. RES. These data are interpreted to imply that transporters are differentially affected by day of gestation, and that hexose and cationic amino acid transporters are differentially abundant across utero-placental tissue types, and that SLC7A1 is responsive to maternal nutritional treatment.  相似文献   

20.

Background

Rapeseed cake is a good source of protein for animal feed but its utilization is limited due to the presence of anti-nutritional substances, such as glucosinolates (Gls), phytic acid, tannins etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of degrading glucosinolates and improving the nutritional quality of rapeseed cake (RSC). The effects of medium composition and incubation conditions on the Gls content in fermented rapeseed cake (FRSC) were investigated, and chemical composition and amino acid in vitro digestibility of RSC substrate fermented under optimal conditions were determined.

Results

After 72 h of incubation at 34°C, a 76.89% decrease in Gls of RSC was obtained in solid medium containing 70% RSC, 30% wheat bran at optimal moisture content 60% (w/w). Compared to unfermented RSC, trichloroacetic acid soluble protein (TCA-SP), crude protein and ether extract contents of the FRSC were increased (P < 0.05) 103.71, 23.02 and 23.54%, respectively. As expected, the contents of NDF and phytic acid declined (P < 0.05) by 9.12 and 44.60%, respectively. Total amino acids (TAA) and essential amino acids (EAA) contents as well as AA in vitro digestibility of FRSC were improved significantly (P < 0.05). Moreover, the enzyme activity of endoglucanase, xylanase, acid protease and phytase were increased (P < 0.05) during SSF.

Conclusions

Our results indicate that the solid state fermentation offers an effective approach to improving the quality of proteins sources such as rapeseed cake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号