首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 N2O emissions were measured from three contrasting onion (Allium cepa L.) production systems over an 8.5-month period. One system was established on soil where a clover sward had 3 months earlier been ploughed in (ploughed clover site). This production system followed conventional production management practices. The other two systems were established on soil where a mixed herb ley had 3 months earlier been either ploughed or rotovated. These last two production systems followed the guidelines of the International Federation of Organic Agriculture Movements (IFOAM). Cumulative N2O emissions were significantly greater from the ploughed clover site compared to the ploughed ley site (3.8 and 1.6 kg N2O-N ha–1, respectively), while cumulative N2O emissions from the ploughed ley and rotovated ley sites were not significantly different from each other. Emissions from all sites were dominated by episodes of high N2O flux activity following seedbed preparation and drilling, when soil water suction (SWS) was shown to be the rate-controlling variable. The decline in the N2O fluxes after these peak emissions followed clear exponential relationships of the form F=Ae kt (r≥0.91), where F is the daily flux and A is the y-intercept. First-order decay constants (k) during these periods of declining N2O fluxes (corresponding to half-lives of 2.6–3.0 days) were not significantly different in magnitude from the first-order rate constants that characterised the increasing SWS. Gross differences in cumulative emissions between the clover and ley sites were attributed to the influence of differing soil pHs at the two sites on the N2O:(N2O+N2) ratio in the denitrification products. It also appeared that fertiliser applications to the clover site had both direct and indirect effects on N2O emissions by: (1) enhancing N2O emissions via potential nitrification, (2) increasing the NO3 supply for enhanced N2O emissions via denitrification, and (3) influencing the N2O:(N2O+N2) ratio by lowering soil pH and increasing NO3 concentrations. Onion crop yields were greater at the clover site, mainly due to the higher density of planting made possible under a conventional production philosophy. Expressing the yield on the basis of net N2O emissions, 23 t onions kg–1 N2O-N was obtained from the ploughed clover, which was double that obtained for the two systems based on the ley site. However, when the N2O emissions from the cultivation of the soils prior to the sowing of the onions was included, all three systems produced a similar yield per kilogram of N2O-N emitted, averaging 10 t kg–1. Received: 6 January 1999  相似文献   

2.
In grazed pasture systems, a major source of N2O is nitrogen (N) returned to the soil in animal urine. We report in this paper the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), applied in a fine particle suspension (FPS) to reduce N2O emissions from dairy cow urine patches in two different soils. The soils are Lismore stony silt loam (Udic Haplustept loamy skeletal) and Templeton fine sandy loam (Udic Haplustepts). The pasture on both soils was a mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). Total N2O emissions in the Lismore soil were 23.1–31.0 kg N2O-N ha−1 following the May (autumn) and August (late winter) urine applications, respectively, without DCD. These were reduced to 6.2–8.4 kg N2O-N ha−1 by the application of DCD FPS, equivalent to reductions of 65–73%. All three rates of DCD applied (7.5, 10 and 15 kg ha−1) were effective in reducing N2O emissions. In the Templeton soil, total N2O emissions were reduced from 37.4 kg N2O-N ha−1 without DCD to 14.6–16.3 kg N2O-N ha−1 when DCD was applied either immediately or 10 days after the urine application. These reductions are similar to those in an earlier study where DCD was applied as a solution. Therefore, treating grazed pasture soils with an FPS of DCD is an effective technology to mitigate N2O emissions from cow urine patch areas in grazed pasture soils.  相似文献   

3.
 Soil tillage was studied as a strategy to synchronize N mineralization with plant demand following ploughing of two types of grazed pastures [ryegrass/white clover (Lolium perenne/Trifolium repens) and pure ryegrass]. The swards were either rotovated and ploughed or ploughed only. Soil respiration, as determined by a dynamic chamber method, was related to net N mineralization and to plant N uptake in a subsequent spring barley crop (Hordeum vulgare). Diurnal variations in temperature were important for the CO2 flux and care must be taken that temperatures during measuring periods are representative of the daily mean. Soil tillage increased the CO2 flux considerably compared with untilled soil with total emissions of 2.6 and 1.4 t C ha–1, respectively, from start of April to end of June. Sward type or rotovation did not markedly influence accumulated emissions. Rotovation significantly increased the content of nitrate in the soil until 43 days after rotovation, showing that net N mineralization occurred rapidly during this period, in spite of low soil temperatures (5–10  °C). Rotovation increased barley grain yield by 10–12% and N-uptake by 14%. For both sward types, rotovation caused an extra N-uptake in harvested plant material of about 12 kg ha–1. The availability of soil inorganic N at the early stages of barley was important for the final yield and N-uptake. The results indicated that soil biological activity was not enhanced by rotovation and that the yield effect of rotovation was mainly caused by quicker availability and better synchrony between N mineralization and plant uptake due to earlier start of decomposition. Received: 3 May 2000  相似文献   

4.
Fluxes of N2O were studied in a Norway spruce forest in the southwest of Sweden. Three differently treated catchments were compared: Limed (6 t dolomite ha–1), Nitrex (additional N-deposition corresponding to 35 kg ha–1 year–1, in small doses) and Control (used as control site). The N-retention was still high (95%) after 2years of N-addition at the Nitrex site when the flux measurements were performed. Each catchment contained both well-drained and poorly drained soils (covered with Sphagnum sp.). The emissions of N2O were in general low with both a high spatial and temporal variation for all three sites. The measured emissions were 25, 71 and 96 (gN2O-N ha–1 year–1) for the well-drained Limed, Control and Nitrex sites, respectively. The average emissions of N2O from the wet areas were significantly higher than the well-drained areas within the catchments. For the wet areas the measured emissions were larger: 90, 118 and 254 (g N2O-N ha–1 year–1) for the Limed, Control and Nitrex sites, respectively. Comparison between treatments showed the wet Nitrex site to have a significantly higher emission than all other sites. The increased N-deposition at the Nitrex site increased the N2O emissions by 0.2% of the added N for the well-drained soils and about 1% for the wet areas, compared with the control site. Since the wet areas represented only a small part of the forest, their larger emissions did not contribute significantly to the overall emission of the forest. Neither temperature nor water content of the soil was well correlated with the N2O emissions. Soil gas samples showed that most of the N2O was produced below a 0.3-m depth in the soil. Received: 27 September 1996  相似文献   

5.
 N2O emissions from a transplanted irrigated rice grown on a Typic Ustochrept soil at New Delhi, India, were studied to evaluate the effect of N fertilizers, i.e. urea and (NH4)2SO4, alone and in combination with the nitrification inhibitors dicyandiamide (DCD) and thiosulphate. The addition of urea and (NH4)2SO4 increased N2O emissions considerably when compared to no fertilizer N application (control). N2O measurement in the field was done by a closed-chamber method for a period of 98 days. The application of urea with DCD and thiosulphate reduced N2O fluxes considerably. The highest total N2O-N emission (235 g N2O-N ha–1) was from the (NH4)2SO4 treatment, which was significantly higher than the total N2O-N emission from the urea treatment (160 g N2O-N ha–1). DCD reduced N2O-N emissions by 11% and 26% when applied with urea and(NH4)2SO4, respectively, whereas thiosulphate in combination with urea reduced N2O-N emissions by 9%. Total N2O-N emissions were found to range from 0.08% to 0.14% of applied N. N2O emissions were low during submergence and increased substantially during drainage of standing water. Received: 20 October 1999  相似文献   

6.
 N2O emission rates from a sandy loam soil were measured in a field experiment with 2 years of perennial forage crops (ryegrass, ryegrass-red clover, red clover) and 1 year of spring barley cultivation. Spring barley was sown after the incorporation of the forage crop residues. All spring barley plots received 40 kg N ha–1 N fertiliser. Ryegrass, ryegrass-red clover and red clover plots were fertilised with 350 kg N ha–1, 175 kg N ha–1 and 0 kg N ha–1, respectively. From June 1994 to February 1997, N2O fluxes were continuously estimated using very large, closed soil cover boxes (5.76 m2). In order to compare the growing crops, the 33 months of investigation were separated into three vegetation periods (March–September) and three winter periods (October–February). All agronomic treatments (fertilisation, harvest and tillage) were carried out during the vegetation period. Large temporal changes were found in the N2O emission rates. The data were approximately log-normally distributed. Forty-seven percent of the annual N2O losses were observed to occur during winter, and mainly resulted from N2O production during daily thawing and freezing cycles. No relationship was found between the N2O emissions during the winter and the vegetation period. During the vegetation period, N2O losses and yields were significantly different between the three forage crops. The unfertilised clover plot produced the highest yields and the lowest N2O losses on this soil compared to the highly fertilised ryegrass plot. Total N2O losses from soil under spring barley were higher than those from soil under the forage crops; this was mainly a consequence of N2O emissions after the incorporation of the forage crop residues. Received: 31 October 1997  相似文献   

7.
The period after ploughing of grass–clover leys within a ley‐arable rotation is when nitrogen accumulated during the ley phase is most vulnerable to loss. We investigated how ploughing date and timing of cessation of grazing before ploughing affected nitrous oxide (N2O) losses of the first cereal crop. Ploughing dates were July and October for a winter wheat pilot study and January and March for spring barley in the main experiment. Timings of cessation of grazing (main experiment only) were October, January and March. Spring barley yield, nitrogen uptake and soil mineral nitrogen were also assessed. A separate large‐scale laboratory incubation was made to assess the effect of temperature and rainfall on nitrous oxide emissions and nitrate leaching under controlled conditions. Nitrous oxide emissions in the 1‐ to 2‐month period after autumn or spring ploughing, or sowing were typically between 20 and 150 g N ha?1 day?1 and increased with temperature and rainfall. Tillage for crop establishment stimulated N2O emissions with up to 2.1 kg N ha?1 released in the month after spring tillage. Cumulative nitrous oxide emissions were greatest (~8 kg ha?1 over 17 months) after cessation of grazing in March before March ploughing, and lowest (~5.5 kg ha?1) after cessation of grazing in January before January ploughing. These losses were 1.2–3.9% of the N inputs. In the laboratory study, winter ploughing stimulated nitrate leaching more than nitrous oxide emissions. The optimum time of ploughing appears to be early spring when the cold restricts nitrogen mineralization initially, but sufficient nitrogen becomes available for early crop growth and satisfactory N offtake as temperature increases. Early cessation of grazing is advantageous in leaving an adequate supply of residues of good quality (narrow C:N ratio) for ploughing‐in. Restricting tillage operations to cool, dry conditions, being aware of possible compaction and increasing the use of undersown grass–clover should improve the sustainability of organic farming.  相似文献   

8.
 N2O emissions were periodically measured using the static chamber method over a 1-year period in a cultivated field subjected to different agricultural practices including the type of N fertilizer (NH4NO3, (NH4)2SO4, CO(NH2)2 or KNO3 and the type of crop (rapeseed and winter wheat). N2O emissions exhibited the same seasonal pattern whatever the treatment, with emissions between 1.5 and 15 g N ha–1 day–1 during the autumn, 16–56 g N ha–1 day–1 in winter after a lengthy period of freezing, 0.5–70 g N ha–1 day–1 during the spring and lower emissions during the summer. The type of crop had little impact on the level of N2O emission. These emissions were a little higher under wheat during the autumn in relation to an higher soil NO3 content, but the level of emissions was similar over a 7-month period (2163 and 2093 g N ha–1 for rape and wheat, respectively). The form of N fertilizer affected N2O emissions during the month following fertilizer application, with higher emissions in the case of NH4NO3 and (NH4)2SO4, and a different temporal pattern of emissions after CO(NH2)2 application. The proportion of applied N lost as N2O varied from 0.42% to 0.55% with the form of N applied, suggesting that controlling this agricultural factor would not be an efficient way of limiting N2O emissions under certain climatic and pedological situations. Received: 1 December 1997  相似文献   

9.
 In order to determine the effects of increased soil temperature resulting from global warming on microbiological reactions, a 21-month field experiment was carried out in the Bavarian tertiary hills. The major objective was to focus on N2O releases as either a positive or negative feedback in response to global warming. The soils of a fallow field and a wheat field were heated 3  °C above ambient temperature and N2O fluxes were measured weekly from June 1994 to March 1996. During the experimental period, measured temperature differences between the control plots and the heated plots were 2.9±0.3  °C at a depth of 0.01 m and 1.0–1.8  °C at a depth of 1 m. Soil moisture decreased with the elevated soil temperatures of the heated plots. The mean differences in soil moisture between the treatments were 6.4% (fallow field) and 5.2%DW (wheat field dry weight, DW), respectively. Overall N2O releases during the experimental period from the fallow field were 4.8 kg N2O–N ha–1 in the control plot against 5.0 kg N2O–N ha–1 in the heated plot, and releases from the wheat field were 8.0 N2O–N ha–1 in the control plot and 7.6 N2O–N kg ha–1 in the heated plot. However, on a seasonal basis, cumulated N2O emissions differed between the plots. During the summer months (May–October), releases from the heated fallow plot were 3 times the rates from the control plot. In the winter months, N2O releases increased in both the fallow and wheat fields and were related to the number of freezing and thawing cycles. Received: 1 December 1997  相似文献   

10.
 Nitrous oxide (N2O) emissions were measured from an irrigated sandy-clay loam cropped to maize and wheat, each receiving urea at 100 kg N ha–1. During the maize season (24 August–26 October), N2O emissions ranged between –0.94 and 1.53 g N ha–1 h–1 with peaks during different irrigation cycles (four) ranging between 0.08 and 1.53 g N ha–1 h–1. N2O sink activity during the maize season was recorded on 10 of the 29 sampling occasions and ranged between 0.18 and 0.94 g N ha–1 h–1. N2O emissions during the wheat season (22 November–20 April) varied between –0.85 and 3.27 g N ha–1 h–1, whereas peaks during different irrigation cycles (six) were in the range of 0.05–3.27 g N ha–1 h–1. N2O sink activity was recorded on 14 of the 41 samplings during the wheat season and ranged between 0.01 and 0.87 g N ha–1 h–1. Total N2O emissions were 0.16 and 0.49 kg N ha–1, whereas the total N2O sink activity was 0.04 and 0.06 kg N ha–1 during the maize and wheat seasons, respectively. N2O emissions under maize were significantly correlated with denitrification rate and soil NO3 -N but not with soil NH4 +-N or soil temperature. Under wheat, however, N2O emissions showed a strong correlation with soil NH4 +-N, soil NO3 -N and soil temperature but not with the denitrification rate. Under either crop, N2O emissions did not show a significant relationship with water-filled pore space or soil respiration. Received: 11 June 1997  相似文献   

11.
In this study, we investigated N2O emissions from two fields under minimum tillage, cropped with maize (MT maize) and summer oats (MT oats), and a conventionally tilled field cropped with maize (CT maize). Nitrous oxide losses from the MT maize and MT oats fields (5.27 and 3.64 kg N2O-N ha−1, respectively) were significantly higher than those from the CT maize field (0.27 kg N2O-N ha−1) over a period of 1 year. The lower moisture content in CT maize (43% water-filled pore space [WFPS] compared to 60–65%) probably caused the difference in total N2O emissions. Denitrification was found to be the major source of N2O loss. Emission factors calculated from the MT field data were high (0.04) compared to the CT field (0.001). All data were simulated with the denitrification decomposition model (DNDC). For the CT field, N2O and N2O + N2 emissions were largely overestimated. For the MT fields, there was a better agreement with the total N2O and N2O + N2 emissions, although the N2O emissions from the MT maize field were underestimated. The simulated N2O emissions were particularly influenced by fertilization, but several other measured N2O emission peaks associated with other management practices at higher WFPS were not captured by the model. Several mismatches between simulated and measured \textNH4+ {\text{NH}}_4^ + , \textNO3- {\text{NO}}_3^ - and WFPS for all fields were observed. These mismatches together with the insensitivity of the DNDC model for increased N2O emissions at the management practices different from fertilizer application explain the limited similarity between the simulated and measured N2O emissions pattern from the MT fields.  相似文献   

12.
 In less populated rural areas constructed wetlands with a groundfilter made out of the local soil mixed with peat and planted with common reed (Phragmites australis) are increasingly used to purify waste water. Particularly in the rhizosphere of the reed, nitrification and denitrification processes take place varying locally and temporally, and the question arises to what extent this type of waste-water treatment plant may contribute to the release of N2O. In situ N2O measurements were carried out in the two reed beds of the Friedelhausen dairy farm, Hesse, Germany, irrigated with the waste water from a cheese dairy and 70 local inhabitants (12 m3 waste water or 6 kg BOD5 or 11 kg chemical O2 demand (CODMn) day–1). During November 1995 to March 1996, the release of N2O was measured weekly at 1 m distances using eight open chambers and molecular-sieve traps to collect and absorb the emitted N2O. Simultanously, the N2O trapped in the soil, the soil temperature, as well as the concentrations of NH4 +-N, NO3 -N, NO2 -N, water-soluble C and the pH were determined at depths of 0–20, 20–40 and 40–60 cm. In the waste water from the in- and outflow the concentrations of CODMn, BOD5, NH4 +-N, NO3 -N, NO2 -N, as well as the pH, were determined weekly. Highly varying amounts of N2O were emitted at all measuring dates during the winter. Even at soil temperatures of –1.5  °C in 10 cm depth of soil or 2  °C at a depth of 50 cm, N2O was released. The highest organic matter and N transformation rates were recorded in the upper 20 cm of soil and in the region closest to the outflow of the constructed wetland. Not until a freezing period of several weeks did the N2O emissions drop drastically. During the period of decreasing temperatures less NO3 -N was formed in the soil, but the NH4 +-N concentrations increased. On average the constructed wetlands of Friedelhausen emitted about 15 mg N2O-N inhabitant equivalent–1 day–1 during the winter period. Nitrification-denitrification processes rather than heterotrophic denitrification are assumed to be responsible for the N2O production. Received: 28 October 1998  相似文献   

13.
Nitrous oxide (N2O) emissions, soil microbial community structure, bulk density, total pore volume, total C and N, aggregate mean weight diameter and stability index were determined in arable soils under three different types of tillage: reduced tillage (RT), no tillage (NT) and conventional tillage (CT). Thirty intact soil cores, each in a 25 × 25-m2 grid, were collected to a depth of 10 cm at the seedling stage of winter wheat in February 2008 from Maulde (50°3′ N, 3°43′ W), Belgium. Two additional soil samples adjacent to each soil core were taken to measure the spatial variance in biotic and physicochemical conditions. The microbial community structure was evaluated by means of phospholipid fatty acids analysis. Soil cores were amended with 15 kg NO3-N ha−1, 15 kg NH4+-N ha−1 and 30 kg ha−1 urea-N ha−1 and then brought to 65% water-filled pore space and incubated for 21 days at 15°C, with regular monitoring of N2O emissions. The N2O fluxes showed a log-normal distribution with mean coefficients of variance (CV) of 122%, 78% and 90% in RT, NT and CT, respectively, indicating a high spatial variation. However, this variability of N2O emissions did not show plot scale spatial dependence. The N2O emissions from RT were higher (p < 0.01) than from CT and NT. Multivariate analysis of soil properties showed that PC1 of principal component analysis had highest loadings for aggregate mean weight diameter, total C and fungi/bacteria ratio. Stepwise multiple regression based on soil properties explained 72% (p < 0.01) of the variance of N2O emissions. Spatial distributions of soil properties controlling N2O emissions were different in three different tillages with CV ranked as RT > CT > NT.  相似文献   

14.
The objective of this work was to evaluate the effect of the chemical nature and application frequency of N fertilizers at different moisture contents on soil N2O emissions and N2O/(N2O+N2) ratio. The research was based on five fertilization treatments: unfertilized control, a single application of 80 kg ha−1 N-urea, five split applications of 16 kg ha−1 N-urea, a single application of 80 kg ha−1 N–KNO3, five split applications of 16 kg ha−1 N–KNO3. Cumulative N2O emissions for 22 days were unaffected by fertilization treatments at 32% water-filled pore space (WFPS). At 100% and 120% WFPS, cumulative N2O emissions were highest from soil fertilized with KNO3. The split application of N fertilizers decreased N2O emissions compared to a single initial application only when KNO3 was applied to a saturated soil, at 100% WFPS. Emissions of N2O were very low after the application of urea, similar to those found at unfertilized soil. Average N2O/(N2O+N2) ratio values were significantly affected by moisture levels (p = 0.015), being the lowest at 120% WFPS. The N2O/(N2O+N2) ratio averaged 0.2 in unfertilized soil and 0.5 in fertilized soil, although these differences were not statistically significant.  相似文献   

15.
 In this study an inventory of N2O emissions from agriculture in Belgium was made according to the Intergovernmental Panel on Climate Change (IPCC) guidelines. Three sources of N2O were distinguished between: (1) direct N2O emissions from agricultural soils (N2O-direct), (2) N2O emissions due to animal production systems (N2O-animals), and (3) indirect N2O emissions as a result of N losses from agricultural soils (N2O-indirect). In 1996, the total N2O emission from agriculture in Belgium was 12.8×106 kg N2O-N. N2O-direct, N2O-animals and N2O-indirect contributed 60%, 7% and 33%, respectively, to the total N2O emission. The IPCC methodology tended to give an overestimate of the N2O emission from agriculture by 45% when IPCC default values were used instead of country-specific N-input data. Between 1950 and 1996, the total N2O emission from agriculture in Belgium increased from 8.4×106 kg N2O-N to 12.8×106 kg N2O-N. This was an increase of 53%, or about 0.1×106 kg N2O-N-year–1. Received: 25 May 1999  相似文献   

16.
A laboratory incubation study with clover grass pasture soils of seven different ages (0, 1, 2, 3, 4, 5, and 16 production years) was carried out to determine initial soil carbon (C) and nitrogen (N) stocks and potentials for greenhouse gas emissions (N2O and CO2). Compared with the soil from the recently established pasture, an increase of total soil C and N was observed along with pasture age. Greenhouse gas emissions were low and not significantly different among the soils from younger pastures (0–5 years), but especially N2O emissions increased markedly in the soil from 16-year-old grass–clover. Low emissions might mainly be due to an early C limitation occurring in the soils from younger pastures, which was also corroborated by decreasing levels of cold water-extractable C and early shifts within the microbial community. However, higher emissions from the old pasture soil were offset by its increase in total soil C. A longer ley phase without soil disturbance may therefore be beneficial in terms of overall C sequestration in systems with temporary grass–clover swards.  相似文献   

17.
 In a 2-year field study, denitrification loss was measured from an irrigated sandy-clay loam under cotton receiving urea-N at 158–173 kg ha–1. An acetylene inhibition-soil core method was employed for the direct measurement of denitrification, considering also the N2O entrapped in the soil. Taking into account the N2O evolved from soil cores and that entrapped in the soil, a total of 65.7 kg N ha–1 and 64.4 kg N ha–1 was lost due to denitrification during the 1995 and 1996 cotton-growing seasons, respectively. Most (>70%) of the denitrification loss occurred during June–August, a period characterized by high soil temperatures and heavy monsoon rains. On average, 35% of the denitrification-N2O was found entrapped in the soil and the amount of entrapped N2O was significantly correlated with head space N2O concentration and with water-filled pore space. 15N-balance during the 1996 growing season revealed a loss of 71.8 kg N ha–1. It was concluded that a substantial proportion of the fertilizer-N applied to irrigated cotton is lost under the semiarid subtropical climatic conditions prevailing in the Central Punjab region of Pakistan and that denitrification is the major N loss process under irrigated cotton in this region. Received: 8 March 1999  相似文献   

18.
Impacts of biochar addition on nitrous oxide (N2O) and carbon dioxide (CO2) emissions from paddy soils are not well documented. Here, we have hypothesized that N2O emissions from paddy soils could be depressed by biochar incorporation during the upland crop season without any effect on CO2 emissions. Therefore, we have carried out the 60-day aerobic incubation experiment to investigate the influences of rice husk biochar incorporation (50 t ha−1) into two typical paddy soils with or without nitrogen (N) fertilizer on N2O and CO2 evolution from soil. Biochar addition significantly decreased N2O emissions during the 60-day period by 73.1% as an average value while the inhibition ranged from 51.4% to 93.5% (P < 0.05–0.01) in terms of cumulative emissions. Significant interactions were observed between biochar, N fertilizer, and soil type indicating that the effect of biochar addition on N2O emissions was influenced by soil type. Moreover, biochar addition did not increase CO2 emissions from both paddy soils (P > 0.05) in terms of cumulative emissions. Therefore, biochar can be added to paddy fields during the upland crop growing season to mitigate N2O evolution and thus global warming.  相似文献   

19.
 At two field sites representing northeastern German minerotrophic fens (Rhin-Havelluch, a shallow peat site; Gumnitz, a partially drained peat site) the influence of different factors (N fertilization, groundwater table, temperature) on N2O and CH4 emissions was investigated. The degraded fens were sources or sinks of the radiatively active trace gases investigated. The gas fluxes measured were much higher than those found in other terrestrical ecosystems such as forests. Lowering the groundwater table increased the release of N2O and the oxidation of CH4. High CH4 emission rates occurred when the groundwater tables and soil temperatures were high (>12  °C). N fertilization stimulated the release of N2O only when application rates were very high (480 kg N ha–1). A moderate N supply (60 or 120 kg N ha–1) hardly increased the release of N2O in spite of high soluble soil NO3 contents. Received: 31 October 1997  相似文献   

20.
Nitrous oxide emission (N2O) from applied fertilizer across the different agricultural landscapes especially those of rainfed area is extremely variable (both spatially and temporally), thus posing the greatest challenge to researchers, modelers, and policy makers to accurately predict N2O emissions. Nitrous oxide emissions from a rainfed, maize-planted, black soil (Udic Mollisols) were monitored in the Harbin State Key Agroecological Experimental Station (Harbin, Heilongjiang Province, China). The four treatments were: a bare soil amended with no N (C0) or with 225?kg?N ha?1 (CN), and maize (Zea mays L.)-planted soils fertilized with no N (P0) or with 225?kg?N ha?1 (PN). Nitrous oxide emissions significantly (P?<?0.05) increased from 141?±?5?g N2O-N?ha?1 (C0) to 570?±?33?g N2O-N?ha?1 (CN) in unplanted soil, and from 209?±?29?g N2O-N?ha?1 (P0) to 884?±?45?g N2O-N?ha?1 (PN) in planted soil. Approximately 75?% of N2O emissions were from fertilizer N applied and the emission factor (EF) of applied fertilizer N as N2O in unplanted and planted soils was 0.19 and 0.30?%, respectively. The presence of maize crop significantly (P?<?0.05) increased the N2O emission by 55?% in the N-fertilized soil but not in the N-unfertilized soil. There was a significant (P?<?0.05) interaction effect of fertilization?×?maize on N2O emissions. Nitrous oxide fluxes were significantly affected by soil moisture and soil temperature (P?<?0.05), with the temperature sensitivity of 1.73–2.24, which together explained 62–76?% of seasonal variation in N2O fluxes. Our results demonstrated that N2O emissions from rainfed arable black soils in Northeast China primarily depended on the application of fertilizer N; however, the EF of fertilizer N as N2O was low, probably due to low precipitation and soil moisture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号