首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 In order to determine the effects of increased soil temperature resulting from global warming on microbiological reactions, a 21-month field experiment was carried out in the Bavarian tertiary hills. The major objective was to focus on N2O releases as either a positive or negative feedback in response to global warming. The soils of a fallow field and a wheat field were heated 3  °C above ambient temperature and N2O fluxes were measured weekly from June 1994 to March 1996. During the experimental period, measured temperature differences between the control plots and the heated plots were 2.9±0.3  °C at a depth of 0.01 m and 1.0–1.8  °C at a depth of 1 m. Soil moisture decreased with the elevated soil temperatures of the heated plots. The mean differences in soil moisture between the treatments were 6.4% (fallow field) and 5.2%DW (wheat field dry weight, DW), respectively. Overall N2O releases during the experimental period from the fallow field were 4.8 kg N2O–N ha–1 in the control plot against 5.0 kg N2O–N ha–1 in the heated plot, and releases from the wheat field were 8.0 N2O–N ha–1 in the control plot and 7.6 N2O–N kg ha–1 in the heated plot. However, on a seasonal basis, cumulated N2O emissions differed between the plots. During the summer months (May–October), releases from the heated fallow plot were 3 times the rates from the control plot. In the winter months, N2O releases increased in both the fallow and wheat fields and were related to the number of freezing and thawing cycles. Received: 1 December 1997  相似文献   

2.
Effect of cropping systems on nitrogen mineralization in soils   总被引:3,自引:0,他引:3  
 Understanding the effect of cropping systems on N mineralization in soils is crucial for a better assessment of N fertilizer requirements of crops in order to minimize nitrate contamination of surface and groundwater resources. The effects of crop rotations and N fertilization on N mineralization were studied in soils from two long-term field experiments at the Northeast Research Center and the Clarion-Webster Research Center in Iowa that were initiated in 1979 and 1954, respectively. Surface soil samples were taken in 1996 from plots of corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. N mineralization was studied in leaching columns under aerobic conditions at 30  °C for 24 weeks. The results showed that N mineralization was affected by cover crop at the time of sampling. Continuous soybean decreased, whereas inclusion of meadow increased, the amount of cumulative N mineralized. The mineralizable N pool (N o) varied considerably among the soil samples studied, ranging from 137 mg N kg–1 soil under continuous soybean to >500 mg N kg–1 soil under meadow-based rotations, sampled in meadow. The results suggest that the N o and/or organic N in soils under meadow-based cropping systems contained a higher proportion of active N fractions. Received: 10 February 1999  相似文献   

3.
 In less populated rural areas constructed wetlands with a groundfilter made out of the local soil mixed with peat and planted with common reed (Phragmites australis) are increasingly used to purify waste water. Particularly in the rhizosphere of the reed, nitrification and denitrification processes take place varying locally and temporally, and the question arises to what extent this type of waste-water treatment plant may contribute to the release of N2O. In situ N2O measurements were carried out in the two reed beds of the Friedelhausen dairy farm, Hesse, Germany, irrigated with the waste water from a cheese dairy and 70 local inhabitants (12 m3 waste water or 6 kg BOD5 or 11 kg chemical O2 demand (CODMn) day–1). During November 1995 to March 1996, the release of N2O was measured weekly at 1 m distances using eight open chambers and molecular-sieve traps to collect and absorb the emitted N2O. Simultanously, the N2O trapped in the soil, the soil temperature, as well as the concentrations of NH4 +-N, NO3 -N, NO2 -N, water-soluble C and the pH were determined at depths of 0–20, 20–40 and 40–60 cm. In the waste water from the in- and outflow the concentrations of CODMn, BOD5, NH4 +-N, NO3 -N, NO2 -N, as well as the pH, were determined weekly. Highly varying amounts of N2O were emitted at all measuring dates during the winter. Even at soil temperatures of –1.5  °C in 10 cm depth of soil or 2  °C at a depth of 50 cm, N2O was released. The highest organic matter and N transformation rates were recorded in the upper 20 cm of soil and in the region closest to the outflow of the constructed wetland. Not until a freezing period of several weeks did the N2O emissions drop drastically. During the period of decreasing temperatures less NO3 -N was formed in the soil, but the NH4 +-N concentrations increased. On average the constructed wetlands of Friedelhausen emitted about 15 mg N2O-N inhabitant equivalent–1 day–1 during the winter period. Nitrification-denitrification processes rather than heterotrophic denitrification are assumed to be responsible for the N2O production. Received: 28 October 1998  相似文献   

4.
 N2O emissions were periodically measured using the static chamber method over a 1-year period in a cultivated field subjected to different agricultural practices including the type of N fertilizer (NH4NO3, (NH4)2SO4, CO(NH2)2 or KNO3 and the type of crop (rapeseed and winter wheat). N2O emissions exhibited the same seasonal pattern whatever the treatment, with emissions between 1.5 and 15 g N ha–1 day–1 during the autumn, 16–56 g N ha–1 day–1 in winter after a lengthy period of freezing, 0.5–70 g N ha–1 day–1 during the spring and lower emissions during the summer. The type of crop had little impact on the level of N2O emission. These emissions were a little higher under wheat during the autumn in relation to an higher soil NO3 content, but the level of emissions was similar over a 7-month period (2163 and 2093 g N ha–1 for rape and wheat, respectively). The form of N fertilizer affected N2O emissions during the month following fertilizer application, with higher emissions in the case of NH4NO3 and (NH4)2SO4, and a different temporal pattern of emissions after CO(NH2)2 application. The proportion of applied N lost as N2O varied from 0.42% to 0.55% with the form of N applied, suggesting that controlling this agricultural factor would not be an efficient way of limiting N2O emissions under certain climatic and pedological situations. Received: 1 December 1997  相似文献   

5.
 N2 fixation by leguminous crops is a relatively low-cost alternative to N fertilizer for small-holder farmers in developing countries. N2 fixation in faba bean (Vicia faba L.) as affected by P fertilization (0 and 20 kg P ha–1) and inoculation (uninoculated and inoculated) with Rhizobium leguminosarium biovar viciae (strain S-18) was studied using the 15N isotope dilution method in the southeastern Ethiopian highlands at three sites differing in soil conditions and length of growing period. Nodulation at the late flowering stage was significantly influenced by P and inoculation only at the location exhibiting the lowest soil P and pH levels. The percentage of N derived from the atmosphere ranged from 66 to 74%, 58 to 74% and 62 to 73% with a corresponding total amount of N2 fixed ranging from 169 to 210 kg N ha–1, 139 to 184 kg N ha–1 and 147 to 174 kg N ha–1 at Bekoji, Kulumsa and Asasa, respectively. The total N2 fixed was not significantly affected by P fertilizer or inoculation across all locations, and there was no interaction between the factors. However, at all three locations, N2 fixation was highly positively correlated with the dry matter production and total N yield of faba bean. Soil N balances after faba bean were positive (12–58 kg N ha–1) relative to the highly negative N balances (–9–44 kg N ha–1) following wheat (Triticum aestivum L.), highlighting the importance of rotation with faba bean in the cereal-based cropping systems of Ethiopia. Received: 13 January 2000  相似文献   

6.
The objective of this work was to evaluate the effect of the chemical nature and application frequency of N fertilizers at different moisture contents on soil N2O emissions and N2O/(N2O+N2) ratio. The research was based on five fertilization treatments: unfertilized control, a single application of 80 kg ha−1 N-urea, five split applications of 16 kg ha−1 N-urea, a single application of 80 kg ha−1 N–KNO3, five split applications of 16 kg ha−1 N–KNO3. Cumulative N2O emissions for 22 days were unaffected by fertilization treatments at 32% water-filled pore space (WFPS). At 100% and 120% WFPS, cumulative N2O emissions were highest from soil fertilized with KNO3. The split application of N fertilizers decreased N2O emissions compared to a single initial application only when KNO3 was applied to a saturated soil, at 100% WFPS. Emissions of N2O were very low after the application of urea, similar to those found at unfertilized soil. Average N2O/(N2O+N2) ratio values were significantly affected by moisture levels (p = 0.015), being the lowest at 120% WFPS. The N2O/(N2O+N2) ratio averaged 0.2 in unfertilized soil and 0.5 in fertilized soil, although these differences were not statistically significant.  相似文献   

7.
 In a 2-year field study, denitrification loss was measured from an irrigated sandy-clay loam under cotton receiving urea-N at 158–173 kg ha–1. An acetylene inhibition-soil core method was employed for the direct measurement of denitrification, considering also the N2O entrapped in the soil. Taking into account the N2O evolved from soil cores and that entrapped in the soil, a total of 65.7 kg N ha–1 and 64.4 kg N ha–1 was lost due to denitrification during the 1995 and 1996 cotton-growing seasons, respectively. Most (>70%) of the denitrification loss occurred during June–August, a period characterized by high soil temperatures and heavy monsoon rains. On average, 35% of the denitrification-N2O was found entrapped in the soil and the amount of entrapped N2O was significantly correlated with head space N2O concentration and with water-filled pore space. 15N-balance during the 1996 growing season revealed a loss of 71.8 kg N ha–1. It was concluded that a substantial proportion of the fertilizer-N applied to irrigated cotton is lost under the semiarid subtropical climatic conditions prevailing in the Central Punjab region of Pakistan and that denitrification is the major N loss process under irrigated cotton in this region. Received: 8 March 1999  相似文献   

8.
 Nitrous oxide (N2O) emissions and methane (CH4) consumption were quantified following cultivation of two contrasting 4-year-old pastures. A clover sward was ploughed (to 150–200 mm depth) while a mixed herb ley sward was either ploughed (to 150–200 mm depth) or rotovated (to 50 mm depth). Cumulative N2O emissions were significantly greater following ploughing of the clover sward, with 4.01 kg N2O-N ha–1 being emitted in a 48-day period. Emissions following ploughing and rotovating of the ley sward were much less and were not statistically different from each other, with 0.26 and 0.17 kg N2O-N ha–1 being measured, respectively, over a 55-day period. The large difference in cumulative N2O between the clover and ley sites is presumably due to the initially higher soil NO3 content, greater water filled pore space and lower soil pH at the clover site. Results from a denitrification enzyme assay conducted on soils from both sites showed a strong negative relationship (r=–0.82) between soil pH and the N2O:(N2O+N2) ratio. It is suggested that further research is required to determine if control of soil pH may provide a relatively cheap mitigation option for N2O emissions from these soils. There were no significant differences in CH4 oxidation rates due to sward type or form of cultivation. Received: 1 November 1998  相似文献   

9.
 Nitrous oxide (N2O) emissions were measured from an irrigated sandy-clay loam cropped to maize and wheat, each receiving urea at 100 kg N ha–1. During the maize season (24 August–26 October), N2O emissions ranged between –0.94 and 1.53 g N ha–1 h–1 with peaks during different irrigation cycles (four) ranging between 0.08 and 1.53 g N ha–1 h–1. N2O sink activity during the maize season was recorded on 10 of the 29 sampling occasions and ranged between 0.18 and 0.94 g N ha–1 h–1. N2O emissions during the wheat season (22 November–20 April) varied between –0.85 and 3.27 g N ha–1 h–1, whereas peaks during different irrigation cycles (six) were in the range of 0.05–3.27 g N ha–1 h–1. N2O sink activity was recorded on 14 of the 41 samplings during the wheat season and ranged between 0.01 and 0.87 g N ha–1 h–1. Total N2O emissions were 0.16 and 0.49 kg N ha–1, whereas the total N2O sink activity was 0.04 and 0.06 kg N ha–1 during the maize and wheat seasons, respectively. N2O emissions under maize were significantly correlated with denitrification rate and soil NO3 -N but not with soil NH4 +-N or soil temperature. Under wheat, however, N2O emissions showed a strong correlation with soil NH4 +-N, soil NO3 -N and soil temperature but not with the denitrification rate. Under either crop, N2O emissions did not show a significant relationship with water-filled pore space or soil respiration. Received: 11 June 1997  相似文献   

10.
Soil microbial biomass carbon and nitrogen as affected by cropping systems   总被引:12,自引:0,他引:12  
 The impacts of crop rotations and N fertilization on microbial biomass C (Cmic) and N (Nmic) were studied in soils of two long-term field experiments initiated in 1978 at the Northeast Research Center (NERC) and in 1954 at the Clarion-Webster Research Center (CWRC), both in Iowa. Surface soil samples were taken in 1996 and 1997 from plots of corn (Zea mays L.), soybeans (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. The Cmic and Nmic values were determined by the chloroform-fumigation-extraction method and the chloroform-fumigation-incubation method, respectively. The Cmic and Nmic values were significantly affected (P<0.05) by crop rotation and plant cover at time of sampling, but not by N fertilization. In general, the highest Cmic and Nmic contents were found in the multicropping systems (4-year rotations) taken in oats or meadow plots, and the lowest values were found in continuous corn and soybean systems. On average, Cmic made up about 1.0% of the organic C (Corg), and Nmic contributed about 2.4% of the total N (Ntot) in soils at both sites and years of sampling. The Cmic values were significantly correlated with Corg contents (r≥0.41**), whereas the relationship between Cmic and Ntot was significant (r≤0.53***) only for the samples taken in 1996 at the NERC site. The Cmic : Nmic ratios were, on average, 4.3 and 6.4 in 1996, and 7.6 and 11.4 in 1997 at the NERC and CWRC sites, respectively. Crop rotation significantly (P<0.05) affected this ratio only at the NERC site, and N fertilization showed no effect at either site. In general, multicropping systems resulted in greater Cmic : Corg (1.1%) and Nmic : Ntot (2.6%) ratios than monocropping systems (0.8% and 2.1%, respectively). Received: 9 February 1999  相似文献   

11.
 The release of SO4 2–-S, K+, Ca2+ and Mg2+ from soil amended with spent mushroom compost (SMC), a byproduct of mushroom production, was measured in leachate from field lysimeters for 30 weeks. Rates of application were 0 and 80 t ha–1 moist SMC. The SMC contained 1.7% K, 6.5% Ca, 0.4% Mg and 1.2% S (of which 87% is SO4 2–-S), and has a C : S ratio of 26. The break-through curves of ion leaching were polymodal indicating the preservation of soil structure in the lysimeters and its influence on leaching. SO4 2–-S release from SMC was rapid (first-order exponential) and was very similar to the release from a laboratory incubation. The release of K+, Ca2+ and Mg2+ was described using first/zero-order models which were also used to describe their release in the laboratory. The rate and amount of Ca2+ release was similar in the field and laboratory, but the amount of K+ (and to a lesser extent Mg2+) release was less in the field than in the laboratory. Recoveries of SMC applied nutrients in leachate were 80% of S (263 kg ha–1), 3% of K (14 kg ha–1), 16% of Ca (284 kg ha–1) and 37% of Mg (40 kg ha–1). Little if any S was mineralised. Using SMC could provide plants with S, K, Ca and Mg but there is potential for SO4 2–-S losses via leaching. Received: 7 April 1999  相似文献   

12.
 Potential effects of earthworms (Lumbricus terrestris L.) inoculated into soil on fluxes of CO2, CH4 and N2O were investigated for an untreated and a limed soil under beech in open topsoil columns under field conditions for 120 days. Gas fluxes from L. terrestris, beech litter and mineral soil from soil columns were measured separately in jars at 17  °C. The inoculation with L. terrestris and the application of lime had no effect on cumulative CO2 emissions from soil. During the first 3–4 weeks earthworms significantly (P<0.05) increased CO2 emissions by 16% to 28%. In contrast, significantly lower (P<0.05) CO2 emission rates were measured after 11 weeks. The data suggest that earthworm activity was high during the first weeks due to the creation of burrows and incorporation of beech litter into the mineral soil. Low cumulative CH4 oxidation rates were found in all soil columns as a result of CH4 production and oxidation processes. L. terrestris with fresh feces and the beech litter produced CH4 during the laboratory incubation, whereas the mineral soil oxidised atmospheric CH4. Inoculation with L. terrestris led to a significant reduction (P<0.02) in the CH4 oxidation rate of soil, i.e. 53% reduction. Liming had no effect on cumulative CH4 oxidation rates of soil columns and on CH4 fluxes during the laboratory incubation. L. terrestris significantly increased (P<0.001) cumulative N2O emissions of unlimed soil columns by 57%. The separate incubation of L. terrestris with fresh feces resulted in rather high N2O emissions, but the rate strongly decreased from 54 to 2 μg N kg–1 (dry weight) h–1 during the 100 h of incubation. Liming had a marked effect on N2O formation and significantly (P<0.001) reduced cumulative N2O emissions by 34%. Although the interaction of liming and L. terrestris was not significant, N2O emissions of limed soil columns with L. terrestris were 8% lower than those of the control. Received: 2 September 1999  相似文献   

13.
Efforts to restore productivity of pastures often employ agricultural management regimes involving either tillage or no-tillage options combined with various combinations of fertilizer application, herbicide use and the planting of a cash crop prior to the planting of forage grasses. Here we report on the emissions of CO2, N2O and NO from the initial phases (first 6 months) of three treatments in central Rondônia. The treatments were (1) control; (2) conventional tillage followed by planting of forage grass (Brachiaria brizantha) and fertilizer additions; (3) no-tillage/herbicide treatment followed by two plantings, the first being a cash crop of rice followed by forage grass. In treatment 3, the rice was fertilized. Relative to the control, tillage increased CO2 emission by 37% over the first 2 months, while the no-tillage/herbicide regime decreased CO2 emissions by 7% over the same period. The cumulative N2O emissions over the first 2 months from the tillage regime (0.94 kg N ha–1) were much higher than the N2O releases from either the no-tillage/herbicide regime (0.64 kg N ha–1) or the control treatment (0.04 kg N ha–1). The highest levels of N2O fluxes from both management regimes were observed following N fertilizations. The cumulative NO releases over the first 2 months were largest in the tillage treatment (0.98 kg N ha–1), intermediate in the no-tillage treatment (0.72 kg N ha–1), and smallest in the control treatment (0.12 kg N ha–1). For the first week following fertilization the percentage of fertilizer N lost as N2O plus NO was 1.0% for the tillage treatment and 3.0% for the no-tillage treatment.  相似文献   

14.
 Rates of methane uptake were measured in incubation studies with intact cores from adjacent fenland peats that have been under arable management and woodland management for at least the past 30 years. On two separate occasions the woodland peat showed greater rates of uptake than the arable peat. These rates ranged from 23.1 to 223.3 μg CH4 m–2 day–1 for the woodland peat and from 29.6 to 157.6 μg CH4 m–2 day–1 for the arable peat. When the peats were artificially flooded there was a decrease in the rate of methane oxidation, but neither site showed any net efflux of methane. 15N isotopic dilution was used to characterise nitrogen cycling within the two peats. Both showed similar rates of gross nitrogen mineralisation (3.58 mg N kg–1 day–1, arable peat; 3.54 N kg–1 day–1, woodland peat) and ammonium consumption (4.19 arable peat and 4.70 mg N kg–1 day–1 woodland peat). There were significant differences in their inorganic ammonium and nitrate pool sizes, and the rate of gross nitrification was significantly higher in the woodland peat (4.90 mg N kg–1 day–1) compared to the arable peat (1.90 mg N kg–1 day–1). These results are discussed in the light of high atmospheric nitrogen deposition. Received: 1 December 1997  相似文献   

15.
Denitrification plays an important role in N-cycling. However, information on the rates of denitrification from horticultural growing media is rare in literature. In this study, the effects of pH, N, C, and moisture contents on denitrification were investigated using four moderately decomposed peat types (oligotrophic, mesotrophic, eutrophic, and transitional). Basal and potential denitrification rates (20°C, 18 h) from the unlimed peat samples varied widely from 2.0 to 21.8 and from 118.9 to 306.6 μg (N2O + N2)–N L−1 dry peat h−1, respectively, with the highest rates from the eutrophic peat and the lowest from the transitional one. Both basal and potential denitrification rates were substantially increased by 3.6–14- and 1.4–2.3-fold, respectively, when the initial pH (4.3–4.8) was raised to 5.9–6.5 units. Emissions of (N2O + N2)–N from oligotrophic, mesotrophic, and transitional peats were markedly increased by the addition of 0.15 g NO3–N L−1 dry peat but further additions had no effect. Denitrification rates were increased by increasing glucose concentration suggesting that the activity of denitrifiers in all peat types was limited by the low availability of easily decomposable C source. Increasing moisture contents of all peats from 40 to 50% water-filled pore space (WFPS) did not significantly (p > 0.05) increase (N2O + N2)–N emissions. However, a positive effect was observed when the moisture contents were increased from 60% to 70% WFPS in the eutrophic peat, from 70% to 80% in the transitional, from 80% to 90% in the oligotrophic and from 70% to 90% in the mesotrophic peat. It can be concluded that liming, N-fertilization, availability of easily decomposable C, and moist condition above 60% WFPS could encourage denitrification from peats although the rates are greatly influenced by the peat-forming environments (eutrophic > mesotrophic > oligotrophic > transitional types).  相似文献   

16.
 Under normal conditions, CH4, one of the most important greenhouse gases, is subject to biological oxidation in forest soils. However, this process can be negatively affected by N amendment. The reported experiment was conducted in order to study the short- and long-term effects of N amendment on CH4 oxidation in pine (Pinus sylvestris L.) forest soils. Soil samples were taken from three experimental sites, two of which had been amended with N once, over 20 years earlier, while the third had been amended 3 weeks earlier. The soil samples were incubated fresh at 15  °C at ambient CH4 concentrations (ca. 1.8 ppmv CH4). The variation in CH4-turnover rates was high within the treatments: CH4 was produced [up to 22.6 pmol CH4 g dry wt. soil–1 h–1] in samples from the recently amended site, whereas it was consumed at high rates (up to 431 pmol CH4 g dry wt. soil–1 h–1) in samples from the plot that had received the highest N amendment 27 years before sampling. Although no significant differences were found between N treatments, in the oldest plots there was a correlation between consumption of atmospheric CH4 and the total C content at a depth of 7.5–15 cm in the mineral soil (r 2=0.74). This indicates that in the long-term, increased C retention in forest soils following N amendment could lead to increased CH4 oxidation. Received: 3 September 1997  相似文献   

17.
 Two versions of the acetylene inhibition (AI)/soil core method were compared for the measurement of denitrification loss from an irrigated wheat field receiving urea-N at a rate of 100 kg ha–1. With AI/soil core method A, the denitrification rate was measured by analysing the headspace N2O, followed by estimation of N2O dissolved in the solution phase using Bunsen absorption coefficients. With AI/soil core method B, N2O entrapped in the soil was measured in addition to that released from soil cores into the headspace of incubation vessels. In addition, the two methods were also compared for measurement of the soil respiration rate. Of the total N2O produced, 6–77% (average 40%) remained entrapped in the soil, whereas for CO2, the corresponding figures ranged from 12–65% (average 44%). The amount of the entrapped N2O was significantly correlated with the water-filled pore space (WFPS) and with the N2O concentration in the headspace, whereas CO2 entrapment was dependent on the headspace CO2 concentration but not on the WFPS. Due to the entrapment of N2O and CO2 in soil, the denitrification rate on several (18 of the 41) sampling dates, and soil respiration rate on almost all (27 of the 30) sampling dates were significantly higher with method B compared to method A. Averaged across sampling dates, the denitrification rate measured with method B (0.30 kg N ha–1 day–1) was twice the rate measured with method A, whereas the soil respiration rate measured with method B (34.9 kg C ha–1 day–1) was 1.6 times the rate measured with method A. Results of this study suggest that the N2O and CO2 entrapped in soil should also be measured to ensure the recovery of the gaseous products of denitrification by the soil core method. Received: 12 May 1998  相似文献   

18.
Emission of N2O from rye grass (Lolium perenne L.)   总被引:6,自引:0,他引:6  
 The possibility of an additional N2O emission pathway via plants was investigated in a soil-rye-grass (Lolium perenne L.) system. The N2O emission rate of the system varied between 0.8 and 13.3 mg N2O-N m–2 day–1. Comparing the N2O emission rate of the system before and immediately after cutting the rye grass allowed us to calculate the contribution of the rye grass to the N2O emission from the soil-plant system. It was found that, depending on the type of fertilization and the growing period of the plants, the N2O released from the rye grass varied between 0 and 2.8 mg N2O-N m–2 day–1. N 2 O emission mediated by the rye grass increased towards the end of the growing period. An exponential correlation [R2=0.93, y=(8×10–6x 2 )–(2×10–5x)+0.21] was observed between the N2O emission (y) from the rye grass and its NO3 –N content (x). However, it was not clear whether N2O was produced by the plants themselves or whether the rye grass served as a conduit for N2O produced in the soil. Received: 18 March 1998  相似文献   

19.
Fluxes of N2O were studied in a Norway spruce forest in the southwest of Sweden. Three differently treated catchments were compared: Limed (6 t dolomite ha–1), Nitrex (additional N-deposition corresponding to 35 kg ha–1 year–1, in small doses) and Control (used as control site). The N-retention was still high (95%) after 2years of N-addition at the Nitrex site when the flux measurements were performed. Each catchment contained both well-drained and poorly drained soils (covered with Sphagnum sp.). The emissions of N2O were in general low with both a high spatial and temporal variation for all three sites. The measured emissions were 25, 71 and 96 (gN2O-N ha–1 year–1) for the well-drained Limed, Control and Nitrex sites, respectively. The average emissions of N2O from the wet areas were significantly higher than the well-drained areas within the catchments. For the wet areas the measured emissions were larger: 90, 118 and 254 (g N2O-N ha–1 year–1) for the Limed, Control and Nitrex sites, respectively. Comparison between treatments showed the wet Nitrex site to have a significantly higher emission than all other sites. The increased N-deposition at the Nitrex site increased the N2O emissions by 0.2% of the added N for the well-drained soils and about 1% for the wet areas, compared with the control site. Since the wet areas represented only a small part of the forest, their larger emissions did not contribute significantly to the overall emission of the forest. Neither temperature nor water content of the soil was well correlated with the N2O emissions. Soil gas samples showed that most of the N2O was produced below a 0.3-m depth in the soil. Received: 27 September 1996  相似文献   

20.
 A study of the effects of different qualities (fresh and composted) and rates (equivalent to 120, 240, and 360 kg N ha–1) of mustard meal application on wheat yields on humid tropical vertisol was started in 1990 at Ginchi Research Station in Ethiopia. After continuous wheat cropping for 7 years and without any further fertilisation, soil microbial parameters (basal respiration, microbial biomass-C and N, organic-C, and ecophysiological quotients) were studied during one growth period. After 7 years of application, mustard meal still exerted a significant positive effect on microbial biomass, basal respiration, organic-C, Cmic : Nmic ratio, and metabolic quotient (qCO2). Organic-C, qCO2 and Cmic : Nmic ratios were higher for the compost-amended plots than plots amended with fresh mustard meal. Basal respiration, Cmic, and Cmic : Nmic ratio showed a clear seasonality, but only in manured plots. The data indicate shifts in microbial community structure (from bacteria to fungi and from r to K strategists) and suggest positive medium-term effects of mustard meal on humid tropical vertisol biological qualities. Received: 25 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号