首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 994 毫秒
1.
生物质炭是一种具有前景的土壤改良剂,目前针对铁改性油菜秸秆生物质炭对茶园土壤养分淋失的研究相对较少。通过向茶园土壤中添加改性、未改性油菜秸秆生物质炭(炭土质量比分别为1 %、3 %和5 %)后开展土柱淋溶及土壤培养实验,研究铁改性或未改性油菜秸秆生物质炭作用于土壤养分淋失及酶活性(蔗糖酶、酸性磷酸酶、脲酶和过氧化氢酶)的变化规律,旨在分析和比较铁改性及未改性生物质炭对茶园土壤微生物活性及养分循环的影响。结果表明,添加生物质炭可增加茶园土壤的保水能力, 土壤水分累积淋溶量随生物质炭添加量的增加显著减少, 添加5 %的改性生物质炭(g3)及未改性生物质炭(w3)分别较未添加生物质炭的土壤(CK)减小7.70 %和16.98 %。g3处理对土壤硝态氮和磷酸盐的固持作用最为显著,淋失量较CK处理分别减少31.82 %和60.56 %。生物质炭对茶园土壤酶活性存在一定促进作用,但添加改性或未改性生物炭对土壤酶活性的影响存在明显差异。其中, w3中土壤脲酶、蔗糖酶分别显著高于其他处理14.85 %~25.10 %和19.00 %~48.98 %,添加3 %未改性生物质炭(w2)后,土壤过氧化氢酶活性高出其他处理2.14~29.33 μmol·h-1·g-1;g3处理对酸性磷酸酶促进作用最强。总的来说,未改性生物炭在增强茶园土壤持水能力及促进土壤酶活性方面要优于铁改性生物炭,而改性生物质炭对土壤氮磷养分的固持作用更为显著。因此,为改善茶园土壤质量,提高土壤肥力,应适量选取铁改性生物质炭。  相似文献   

2.
尿素和生物质炭对茶园土壤pH值及CO2和CH4排放的影响   总被引:3,自引:0,他引:3  
为明确生物质炭对酸化茶园土壤改良及温室气体排放的影响,利用室内培养试验,研究了在施氮(N1)和不施氮(N0)条件下,不同小麦秸秆生物质炭添加量(B1,10 g·kg~(-1);B2,30 g·kg~(-1);B3,50 g·kg~(-1))对茶园土壤pH值、CO_2和CH_4排放的影响。结果表明,添加生物质炭显著提高了茶园土壤pH值(P0.05),生物质炭施加比例越高,土壤pH值提高幅度越大,处理组N0B1、N0B2和N0B3土壤平均pH较对照组CK(氮和生物质炭都不施)分别提高了0.18、0.53、1.06个单位,生物质炭添加量为3%(B2)时,短期内可达到提高土壤pH值、改良酸化土壤的效果;CO_2和CH_4的累积排放量随着生物质炭添加比例的升高而增大,且显著高于对照组CK(P0.05)。施加尿素短期内显著提高了土壤pH值(P0.05),并促进了CO_2的排放,但对CH_4的排放无显著影响。与单施生物质炭相比,生物质炭与尿素共施时土壤pH提高幅度更大,CO_2累积排放量提高程度也更为显著,而CH_4的排放得到抑制,但仍显著高于对照组CK(P0.05)。生物质炭的添加在提高土壤pH值的同时也会增加CO_2和CH_4的排放量,增大环境风险,但当土壤酸化程度较轻时,可适当施加低量生物质炭,在缓解土壤酸化状况的同时尽可能地减少温室气体的排放量。  相似文献   

3.
【目的】探究不同原料、炭化温度和生物质炭不同组分对植物生长的影响,进而揭示生物质炭的增产机制。【方法】分别以木屑和玉米秸秆为原料,在350、450、550℃下裂解得到生物质炭。采用热水浸提法将生物质炭中的可溶性组分(浸提液)与难溶性组分(炭骨架)分离。通过盆栽试验,研究不同生物质炭及组分对小白菜生长的影响。【结果】添加玉米秸秆生物质炭及其各组分处理下,小白菜地上部生物量平均为16.1 g/盆,显著高于添加木屑生物质炭及其各组分(13.0 g/盆)和对照处理(13.5 g/盆)。与地上部生物量类似,添加玉米秸秆生物质炭及其各组分处理下小白菜根长、根表面积、根体积和根尖数等形态学指标较木屑生物质炭和对照处理显著改善。添加炭骨架处理下小白菜地上部生物量平均为16.5 g/盆,较添加原状生物质炭和浸提液分别提高26.9%和17.9%。添加炭骨架处理下小白菜根长、根表面积、根体积和根尖数较添加浸提液处理分别提高64.1%、51.1%、38.3%和80.0%。不同炭化温度裂解得到的生物质炭对小白菜地上部生物量和根系生长无显著影响。与添加原状生物质炭处理相比,添加炭骨架处理下小白菜地上部氮含量提高25.9%,而磷和钾含量分别降低39.7%和14.1%。添加玉米秸秆生物质炭及其各组分处理下土壤pH、有机碳、全氮、速效磷和速效钾含量较添加木屑生物质炭处理分别提高0.1个单位、20.3%、19.1%、29.1%和189.2%。与添加原状生物质炭相比,添加生物质炭骨架处理下土壤有机碳、全氮、速效磷和速效钾含量分别降低14.6%、6.6%、41.3%和55.1%,土壤pH升高0.13个单位;而添加生物质炭浸提液处理下土壤有机碳、全氮和速效磷含量分别降低49.8%、18.9%和24.2%,土壤pH和速效钾含量无显著变化。相关分析表明,不同处理下小白菜地上部生物量与根长、表面积、平均直径、根体积、根尖数等根系形态指标和土壤pH呈正相关,与小白菜地上部磷含量呈负相关。【结论】生物质炭制备原料和组成是影响植物生长的重要因素,玉米秸秆生物质炭较木屑生物质炭有更好的增产效果;玉米秸秆生物质炭经热水浸提后再添加至土壤中有更好的增产效果。生物质炭中可溶性组分对根系生长的促进作用是生物质炭增产的主要机制,而可溶性组分对根系促生作用与原料、制备温度和其本身物质组成密切相关。  相似文献   

4.
为了探明生物质炭对华北平原土壤氨挥发的影响,以该区域4种典型土壤(水稻土、砂姜黑土、褐土、潮土)为研究对象进行微区试验,设置了对照(CK)、单施化肥(NPK)、单施生物质炭(BC)、化肥配施生物质炭(BC+NPK)4个处理,于冬小麦生育前期观测土壤氨挥发损失,分析土壤矿质氮含量、土壤pH和温度对土壤氨挥发的影响。结果表明,4种土壤单施化肥处理氨挥发累积损失分别为2.70、3.14、2.90、4.00 kg N·hm-2,占施氮量的比例(氨挥发损失率)为3.3%、3.8%、3.5%、4.9%。与单施化肥相比,化肥配施生物质炭可以降低砂姜黑土(15.3%)和潮土(14.8%)的氨挥发损失,但增加了水稻土(3.0%)和褐土(6.9%)氨挥发。添加生物质炭显著提升土壤pH值和土壤温度,相关性分析表明,土壤pH值是决定生物质炭对土壤氨挥发增减的关键因素。综上所述,在华北平原砂姜黑土和潮土施用生物质炭可以有效降低小麦生育前期土壤氨挥发。  相似文献   

5.
 以草炭、腐熟玉米秸、腐殖土为有机材料,珍珠岩、蛭石为无机材料的混配基质为材料,研究了不同有机物料配比对基质出苗率、烟苗生长发育以及烟苗成苗素质的影响,结果表明:(1)腐殖土和腐熟玉米秸的混配比例是影响该型基质综合育苗性能的主要因素,在试验设定的草炭水平下,基质的出苗率、烟苗苗色、烟苗生长速度与生长势以及烟苗成苗素质与腐殖土在基质中的添加比例成正比,与腐熟玉米秸的比例成反比;(2)该型基质中草炭的适宜混配比例是30%~40%(V),以40%为最佳;(3)草炭比例处于试验所设置的最低水平(10%,V)时,腐殖土+腐熟玉米秸为50%+20%的处理在基质出苗率和烟苗的生长发育以及烟苗的成苗素质方面与CK均不存在显著性差异,该处理对于本课题组正在进行的烤烟漂浮育苗替代草炭基质的研究工作具有一定的参考价值。  相似文献   

6.
为筛选出适宜北京地区设施番茄生产的生态化栽培基质,以蚯蚓粪、菇渣和粉煤灰等废弃物资源为原料,部分替代草炭,同时添加有机肥进行不同比例的混配,开发了生态化园艺栽培基质,在北京市密云区进行设施番茄生产,筛选出了适于番茄生产的生态栽培基质。结果显示:与传统栽培基质相比,利用基质4(草炭∶蚯蚓粪∶有机肥∶土=3∶4∶1∶2)生产的番茄生长情况、产量、品质和水分生产效率均表现为最好,定植后50 d,基质4栽培的番茄株高最高(173.8 cm),较对照(CK)提高5.33%,差异显著;最终产量较CK生产的番茄提高29.31%;Vc含量和可溶性固形物含量显著提高,Vc含量达到207.8 mg·kg-1,较CK处理高7.8%,差异达显著水平;可溶性固形物含量为4.1%,较CK提高21.78%,差异极显著;水分生产效率为31.32 kg·m-3,较CK处理高30.71%,达到显著差异。综上,草炭、蚯蚓粪、有机肥和土4种物质混配比例为3∶4∶1∶2的生态化基质适宜北京地区设施番茄生长。  相似文献   

7.
为了解不同比例生物质炭的添加对猪粪和稻草堆肥过程中氮素损失及温室气体排放的影响,监测了堆置过程中铵态氮、硝态氮、氨挥发及温室气体的变化。试验设猪粪秸秆对照(B0)以及猪粪秸秆中添加5%(B1)、10%(B2)、15%(B3)生物质炭共4个处理。结果表明:添加生物质炭能够提高堆体温度,缩短堆肥周期,B3处理的堆体比B0处理提前3 d进入高温期;高温期B0、B1、B2、B3各处理堆体中NH+4含量分别比初始值增加6.6%、41.8%、51.9%、48.6%。与B0相比,添加生物质炭能够显著增加高温期堆体NH+4含量,减少高温期NH+4向NH3的转化,显著降低堆肥过程中的氨挥发,其中B1、B2、B3氨挥发累计量比B0分别减少23.1%、68.6%、78.4%;B2处理与B0相比能够显著减少CO_2排放总量,而B1、B3处理效果不显著,但能够显著减少堆肥过程中CH4的排放;与B0相比,添加生物质炭处理CH4排放总量降低16.3%~23.5%,且可显著降低堆肥过程中N_2O的排放,其中B2、B3的N2O排放总量比B0减少70.7%。  相似文献   

8.
[目的]探讨椰糠替代草炭作为生菜栽培基质的可能性。[方法]以椰糠、草炭为试验材料按照不同体积比配制混配基质,并以草炭和蛭石比例1∶1(体积比)作为对照(CK),研究混配基质的物理、化学性状和发芽指数,探讨混配基质对生菜生长的影响。[结果]混配基质中随着椰糠含量增加,容重、总孔隙度、持水能力及水气比下降,通气孔隙度逐渐上升,氮磷钾含量总体呈下降趋势,pH和EC值逐渐增大;处理T_2的混配基质中钾含量及地上部和全株干鲜重明显高于其他处理,发芽指数大,叶绿素a和叶绿素总量含量高。[结论]处理T_2(草炭:椰糠=4∶2,体积比)混配基质可作为生菜栽培的替代基质。  相似文献   

9.
为探讨不同原料生物炭对污泥-土壤混合基质理化性质和在该基质中种植的园林植物生长的影响,采用盆栽试验,以污泥和土壤(质量比1∶1)混合物为栽培基质(CK),研究污泥生物炭(SB)、凋落物生物炭(LB)和水稻秸秆生物炭(RB)添加(按照基质质量的4.5%添加)对基质理化性质、有效态重金属含量以及蓝花草(Ruellia simplex)生长的影响。结果表明:与CK(基质中不添加生物炭)相比,3种生物炭均降低基质容重,提高总孔隙度和毛管持水量,对基质pH影响不显著。SB显著增加基质全P含量,降低速效P含量,LB显著提高有机质、全N、全P、碱解N、速效K含量,降低速效P含量,RB显著提高全P、全K、速效P、速效K含量。对于有效态重金属,SB显著降低有效态Cd、Pb、Cu、Zn、Ni含量,而LB和RB仅显著降低有效态Cu含量。3种生物炭均显著促进蓝花草根系生长及对N、K的吸收,SB还显著提高蓝花草地上部生物量及对P的吸收。模糊隶属函数显示,对基质改良和植物生长影响的综合评价排序为SB>LB>RB>CK。综上,在污泥园林利用中添加污泥生物炭、凋落物生物炭和水稻秸秆生物炭均可有效提升土壤质量,促进园林植物生长,其中污泥生物炭的综合改良效果最佳。  相似文献   

10.
为探究不同比例生物炭对镉污染农田中番茄产量和品质及其体内镉累积的影响,以千禧番茄(Lycopersicon esculentumMill.)为材料,设计4个处理(CK:不添加生物炭;T1:1%生物炭;T2:3%生物炭;T3:5%生物炭),采用盆栽试验研究了不同处理下番茄根系、茎部和果实中镉的累积、产量与品质和土壤理化性质与酶活性的差异。结果表明:与CK处理相比,添加生物炭显著提高了番茄的产量和品质(维生素C、番茄红素、可溶性蛋白、可溶性糖含量和糖酸比),其中T2处理的品质提升效果最显著,分别较CK处理提高了24.7%、114.4%、12.0%、37.4%和80.0%。添加生物炭可显著降低番茄体内(根系、茎部和果实)镉含量,其中T3处理的效果最显著,在生长末期,T3处理番茄根系、茎部和果实中的镉含量分别为1.31、0.33 mg·kg-1和0.03 mg·kg-1。此外,在番茄的整个生育期中添加生物炭可显著改善土壤理化性质(pH和腐殖质),提高土壤养分含量(碱解氮、速效磷和速效钾)和酶活性(脲酶、过氧化氢酶、蔗糖酶和纤维素酶),其中在生长末期,T2处理的碱解氮、速效磷、速效钾含量和脲酶、过氧化氢酶、蔗糖酶和纤维素酶活性显著高于其余处理,依次为47.42、165.85、167.76 mg·kg-1和6.28 mg·g-1·d-1、3.20 mg·g-1·20 min-1、1.07 mg·g-1·d-1和2.13 mg·g-1·d-1;T3处理对pH、腐殖质含量提高效果最为明显,分别为7.15和24.56 g·kg-1,但与T2处理无显著差异。研究表明,添加生物炭可显著降低番茄体内镉含量,改善土壤理化性质并提高土壤养分含量,进而提高番茄的产量和品质,其中以3%生物炭处理效果最佳。同时,添加生物炭显著提高了土壤的酶活性,改善土壤的生态环境。  相似文献   

11.
以红茶花凤仙(Impatiens balsamina)为材料,研究水培和不同配方基质对红茶花凤仙生长发育指标的影响,以便为其无土栽培提供科学依据。试验设置4个处理,分别为1:1、2:1、1:2体积比的椰糠:泥炭组合和水培,培养至3周、6周、9周时测定生长和开花数据。结果表明,1:2的椰糠:泥炭处理有利于叶数、开花数、叶重、茎重、花重、株重的增加;水培有利于株高和根重的增加,但是不利于开花;1:1和2:1的椰糠:泥炭组合的营养生长差,开花在4个处理中均处于中等水平。  相似文献   

12.
为了提高薄壳山核桃硬枝扦插成活率,利用5种配比(基质1,泥炭;基质2,蛭石;基质3,泥炭:蛭石:珍珠岩=3:4:3;基质4,泥炭:蛭石:珍珠岩=3:5:2;基质5,泥炭:蛭石:珍珠岩=2:3:5)的薄壳山核桃基质探究其对薄壳山核桃2年生硬枝扦插成活率和扦插苗生长状况的影响。结果显示:(1)5种配比的山核桃基质中,成活率最好的是基质5,成活率达到88.9%,成活率最差的是基质1,只有63.3%,碱解氮与扦插苗成活率相关性最高。(2)5组美国山核桃扦插苗叶绿素含量最高的是基质1,到达5.0 mg·g-1,最差的是基质2,为3.26 mg·g-1,叶绿素与碱解氮含量呈显著正相关。(3)5组扦插苗的净光合速率随光合有效辐射升高而升高,最后趋于稳定,光抑制现象不明显;各组扦插苗最大净光合速率差异不显著。相比于6月份,9月叶片最大净光合速率有明显下降,蒸腾速率有所提高。研究认为,基质5为薄壳山核桃最适硬枝扦插基质,薄壳山核桃扦插苗生长过程中要注意土壤的透气性和氮肥的施用,薄壳山核桃扦插苗光合作用有季节性差异。  相似文献   

13.
为探究生物炭、纳米碳部分替代草炭对基质改良效果和番茄生长的影响,筛选出适宜的外源碳替代量,开展了外源碳不同替代水平的基质袋栽培试验。结果表明:生物炭5%替代草炭基质有利于改善基质化学性质,促进番茄植株生长和果实品质、产量的提高;纳米碳10%替代草炭基质可以提高番茄的可溶性糖含量、有机酸含量和基质的速效氮含量、有机质含量。通过田间表现和隶属函数分析对各处理的基质化学特性和番茄生长状况进行综合评分得出,生物炭5%替代草炭基质得分最高,综合表现最佳,有利于设施番茄生长及产量的提高。  相似文献   

14.
为改善岩生报春盆花的品质,减少花卉无土栽培中对草炭的依赖,本试验以椰糠为主要基质成分,探讨不同基质对岩生报春生长发育的影响.结果表明,盆栽岩生报春的生长量、叶片数、开花品质及叶片叶绿素含量等指标对不同处理的响应不一致.综合评分法分析显示,岩生报春理想盆栽基质为:草炭:椰糠:珍珠岩=3:1:2(体积比),此配比基质栽培的岩生报春生长健壮,开花较对照早,花期较长,基质的综合评价指数(0.89)显著优于对照(草炭:珍珠岩=2:1).  相似文献   

15.
容器规格与基质配比对美国蜡梅容器苗生长的影响   总被引:1,自引:0,他引:1  
为加快新优花灌木美国蜡梅的引种驯化,以美国蜡梅一年生苗为试验材料,进行容器规格与基质配比的双因素试验,通过测定形态及生理指标,筛选适宜组合。容器规格(A)3种(A_1:12 cm×18 cm;A_2:14 cm×18 cm;A_3:16 cm×18 cm),基质配比(B)3种,(B_1园土:泥炭:珍珠岩为1:0:0;B_2为2:1:1;B_3为1:2:1)。结果显示,两因素对各指标影响差异显著,其交互效应也有一定影响。增大容器规格,增加泥炭的体积比可促进生长,提高苗木质量,同时还利于分蘖。出于经济考虑,A_2规格、B_2基质最为适宜。A_1B_1处理各指标最小;A_3B_3组合苗木质量最佳,地径7.87 mm,生物量18.8 g,质量指数0.19,叶绿素总量、可溶性糖和可溶性蛋白含量分别为2.21 mg·g~(-1)、3.78%和10.83mg·g~(-1);A2B3、A_2B_2与A_3B_2组合次之,前者可节省空间,后者可节省泥炭使用量,可依生产需求选择。  相似文献   

16.
减肥条件下生物炭施用方式对土壤肥力及酶活性的影响   总被引:2,自引:1,他引:1  
为研究生物炭逐年施加和一次性施入4年后对土壤肥力和酶活性的影响,采用定位试验设置100%(F1)、80%(F2)和60%(F3)推荐施肥量的三种施肥水平×四种施炭量(CK:0 t·hm-2,B1:2.6 t·hm-2·a-1,B2:13 t·hm-2,B3:26 t·hm-2)共12个处理,分析土壤氮磷钾养分含量和酶活性指标的变化,其中B1处理逐年施加,B2和B3处理一次性施加。结果表明生物炭对土壤氮素提高效果显著,其中全氮含量较对照处理提高23.08%~52.25%,硝态氮含量是对照的1.80~2.46倍,并随施炭量提高而增加,提升效果优于铵态氮。60%推荐施肥条件下,施加13 t·hm-2和26 t·hm-2生物炭土壤速效磷含量分别高于不施炭对照84.99%和159.23%。土壤全钾含量未因生物炭加入发生显著变化,但是速效钾含量较对照提高了18.99%~61.24%。土壤酶活性主要受生物炭施加方式的影响:逐年施加生物炭(B1)显著提高了酸性磷酸酶活性,但降低了土壤脲酶和过氧化氢酶活性,而一次性施炭可提高土壤脲酶活性。研究表明,生物炭对土壤氮磷肥力和速效钾肥力均有一定的提升效果,其中对氮素的提高效果最理想,可弥补减肥40%引起的土壤氮素降低。逐年施炭对土壤酶活性影响显著,新鲜生物炭中所含物质是影响酶活性的主要因素。  相似文献   

17.
生物炭调节盐化水稻土磷素形态及释放风险研究   总被引:4,自引:2,他引:2  
为探明生物炭施用对盐化水稻土磷素形态及释放风险的影响,以滨海草甸盐化水稻土为基础,结合室内分析,研究了不同用量生物炭还田方式(CK:0 t·hm~(-2);B1:20 t·hm~(-2);B2:40 t·hm~(-2))条件下土壤磷含量、组分特征及磷素释放风险。结果表明:生物炭能提高土壤全磷、有效磷、总有机磷和总无机磷含量,提高幅度分别为:11.40%~35.70%、28.96%~46.63%、11.30%~29.19%和10.54%~25.98%。生物炭提高了土壤NaHCO_3浸提态磷(Ca_2-P)、NH_4AC浸提态磷(Ca_8-P)和NH_4F浸提态磷(Al-P)含量,随着施炭量的增加而增大,且各处理间差异显著;当施炭量为20 t·hm~(-2)时,土壤NaOH-Na_2CO_3浸提态磷(Fe-P)和闭蓄态磷(O-P)含量显著高于其他处理;施用生物炭对H_2SO_4浸提态磷(Ca_(10)-P)无显著影响。生物炭显著提高了土壤活性有机磷(LOP)和中等活性有机磷(MLOP)含量,但显著降低了土壤中等稳定性有机磷(MROP)含量,当施炭量为40 t·hm~(-2)时,土壤高等稳定性有机磷(HROP)含量最小,且显著低于其他处理。本试验中土壤的活性Al[Al(ox)]和活性Fe[Fe(ox)]均处于较高水平;施用生物炭显著提高了土壤磷吸持指数(PSI),增加了土壤固磷能力;土壤磷吸持饱和度(DPSS)为6.81%~8.34%,土壤磷释放风险指数(ERI)为54.55%~61.67%。综上所述,在本文试验条件下,施用生物炭可以改善盐化水稻土磷素状况,且不会增大土壤磷素释放的风险。  相似文献   

18.
为研究秸秆生物炭复配基质对波斯菊(Cosmos bipinnatus)生长的影响,以泥炭、蛭石、珍珠岩和土壤比例4∶1∶1∶4(体积比)作为对照配置基质,将大豆、小麦、水稻、玉米及老化玉米秸秆生物炭按照不同比例替换对照配方中的泥炭作复配基质,直至将其完全代替,每种秸秆生物炭设4个不同比例处理,以期得出适合培养波斯菊的复配基质种类及配比。结果表明:与对照相比,秸秆生物炭复配基质可以促进波斯菊生长,秸秆生物炭复配基质的种类及用量对波斯菊发芽率、生物量、丙二醛含量、过氧化氢酶活性、叶绿体色素浓度、根系活力均具有显著影响。当使用水稻秸秆生物炭(水稻秸秆生物炭20%、泥炭20%、珍珠岩10%、蛭石10%、土壤40%)复配基质培育波斯菊时,波斯菊的发芽率最高,其生物量、过氧化氢酶活性及根系活力与对照相比均显著提高,叶绿体色素浓度、丙二醛含量与对照并无显著差异。  相似文献   

19.
为探究不同施肥和保水措施对油茶土壤N_2O排放的影响,采用静态暗箱-气相色谱法,设置对照(B0CK)、氮肥(N,0.13 g N·kg~(-1))、磷肥(P,0.065 g P·kg~(-1))、氮磷肥(NP,0.13 g N·kg~(-1)+0.065 g P·kg~(-1))、低复合保水材料(生物炭和聚丙烯酰胺,B1,每盆13.65 g炭+1.35 g聚丙烯酰胺)、高复合保水材料(生物炭和聚丙烯酰胺,B2,每盆27.30 g炭+2.70 g聚丙烯酰胺)、低复合保水材料和N(NB1)、高复合保水材料和N(NB2)、低复合保水材料和P(PB1)、高复合保水材料和P(PB2)、低复合保水材料和NP(NPB1)、高复合保水材料和NP(NPB2),共12个处理,进行不同施肥和保水措施下土壤N_2O排放的差异比较。结果表明,N、P添加均显著增加土壤N_2O的累积排放量,NP添加与对照无差异。施加复合保水材料抑制土壤N_2O的排放,随着复合保水材料施用量的增加,土壤N_2O的排放显著降低,与对照相比,B1和B2处理N_2O减排50%以上。N添加条件下,与对照相比,添加复合保水材料NB1、NB2的N_2O累积排放显著降低。P与复合保水材料无交互作用。N、P和复合保水材料对土壤N_2O累积排放量具有显著作用,在NP同施时,与对照相比,添加复合保水材料NPB1、NPB2的N_2O累积排放分别降低了1.18%、30.69%。因此,高复合保水材料类型的施肥措施对减少油茶土壤N_2O排放具有重要意义,从而对缓解全球气候变化具有重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号