首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
一个新矮生玉米种质资源矮生性状QTL的定位   总被引:1,自引:1,他引:0  
用新发现的玉米矮生种质资源矮2003×冀257构建的255个F2:3家系为作图群体, 利用114个覆盖玉米全基因组的SSR标记构建连锁图谱, 图谱总长度2 852.1 cM, 标记间平均距离为27.42 cM。2006年在北京与海南进行随机区组试验, 鉴定了255个F2:3家系成株期株高。用复合区间作图法(composite interval mapping, CIM), 对控制玉米株高性状的遗传位点进行QTL检测。在两个不同环境下均检测到相同的控制玉米株高的QTL位点3个, 分别位于第1和第2条染色体。其中在第1染色体上的1.10~1.11区段存在一个控制株高的主效QTL, 与dwarf plant8 (d8)位置相近, 在北京和海南环境下分别能够解释株高表型变异的50.5%和37.5%, 作用方式表现为显性效应。深入的序列分析结果显示, 该基因/QTL位于已知的d8基因下游20~30 cM的染色体区间, 这可能是玉米中控制株高的一个新基因。  相似文献   

2.
利用代换系分析水稻株高QTL及其互作效应   总被引:1,自引:0,他引:1  
利用一套以优良籼稻恢复系93-11为背景、导入片段源于粳稻日本晴的代换系群体(CSSLs)评价日本晴基因对株高的影响。3个环境共检测到6个影响株高的QTLs。其中4个QTL(qPH1,qPH3.1,qPH3.2和qPH9.1)能在3个环境中稳定表达,源于日本晴的qPH1、qPH3.2和qPH9.1显著增加株高,而qPH3.1降低株高。将携有目标QTL的代换系进行成对杂交,后代分离分析显示,位于qPH9.2与qPH1间具有累加效应;qPH9.1与qPH1或qPH9.2存在一定上位作用。研究结果为发掘和鉴定株高的基因以及剖析其相互作用、对水稻株高的定向改良奠定一定基础。  相似文献   

3.
玉米光周期敏感相关性状发育动态QTL定位   总被引:2,自引:1,他引:1  
玉米是短日照作物,大多数热带种质对光周期非常敏感。光周期敏感性限制了温、热地区间的种质交流。研究玉米光周期敏感性的分子机理,有利于玉米种质的扩增、改良、创新,提高玉米品种对不同光周期变化的适应性。本研究以对光周期钝感的温带自交系黄早四和对光周期敏感的热带自交系CML288为亲本配置的组合衍生的一套207个重组自交系为材料,在长日照环境条件下对不同发育时期的叶片数、株(苗)高变化进行QTL分析。结果表明,双亲间的最终可见叶片数和株高差异很大;发育初期CML288的叶片数和苗高都低于黄早四,而发育后期CML288的叶片数和株高都明显高于黄早四;测定各时期F7重组自交系间也存在显著差异。利用包含237个SSR标记、图谱总长度1 753.6 cM、平均图距7.40 cM的遗传连锁图谱,采用复合区间作图法,分别检测到控制叶片数和株(苗)高发育的QTL 11个和20个。但是,没有一个条件QTL 能在测定的几个时期都有效应。在长日照条件下,控制叶片数与株(苗)高的非条件与条件QTL主要集中在第1、9和10染色体上,特别是在第10染色体的标记umc1873附近均检测到了影响这两个性状的QTL,且在不同的发育时期单个条件和非条件QTL所解释的表型变异分别为4.34%~25.74%和10.02%~22.57%,表明这一区域可能包含光周期敏感性关键基因。  相似文献   

4.
基于多个相关群体的玉米雄穗相关性状QTL分析   总被引:5,自引:0,他引:5  
雄穗相关性状对玉米生产至关重要。为了解析玉米雄穗相关性状的遗传机制,利用以黄早四为共同亲本组配的11个重组自交系群体,对玉米雄穗一级分枝数、雄穗主轴长和雄穗干重3个性状进行QTL分析。经过对11个群体及亲本两年三点的田间鉴定,单环境和联合环境下的玉米雄穗相关性状QTL定位,及基因型与环境互作和上位性互作分析,检测到15个在多环境下稳定表达(5个环境以上)的“环境钝感”主效QTL,其中,在染色体bin3.04区域,齐319群体和旅28群体中都定位到1个主效雄穗一级分枝数相关QTL,其平均贡献率分别为17.4%和14.4%,并且2个群体的QTL标记区间高度重叠,在IBM2008 Neighbors图谱上的重叠区间为226.0~230.1。对比不同群体结果发现,在2个群体以上都能检测到的一致性区间21个,其中在第2、第3、第6、第8染色体上的5个一致性区间在3个群体中可稳定表达。这些多环境和多个遗传背景下稳定表达的位点可作为玉米雄穗性状分子标记辅助选择、精细定位及基因克隆的候选位点。  相似文献   

5.
基于SNP标记的玉米株高及穗位高QTL定位   总被引:11,自引:3,他引:8  
为进一步弄清玉米株高和穗位高的遗传机理,为育种生产提供服务,本研究以K22×CI7、K22×Dan3402个F2群体为作图群体,利用覆盖玉米10条染色体的SNP标记构建了2个连锁图谱。并将这2个F2群体衍生的分别含237和218个家系的F2:3群体用于田间性状的鉴定。用复合区间作图模型对2个群体的株高、穗位高表型进行QTL定位分析,结果显示,在武汉和南宁两种环境条件下共定位到21个株高QTL和27个穗位高QTL;单个QTL表型变异贡献率的变幅为4.9%~17.9%;株高和穗位高QTL的作用方式以加性和部分显性为主;第7染色体上可能存在控制株高和穗位高的主效QTL。  相似文献   

6.
张玲  李晓楠  王伟  杨生龙  李清  王嘉宇 《作物学报》2014,40(12):2128-2135
以南方籼型杂交稻恢复系泸恢99和北方粳型超级稻沈农265杂交衍生的重组自交系群体(recombinant inbred lines, RILs)为试验材料, 对株型性状(株高、穗长、分蘖和叶片性状)进行不同环境下的数量性状基因位点(quantitative trait locus, QTL)分析。共检测到39个相关QTL, 分布在水稻第1、第2、第3、第6、第7、第8和第9染色体上, LOD值介于2.50~16.90之间, 有11个QTL能在两年中被检测到。株型相关的QTL在染色体上成簇分布, 主要分布于第1、第6和第9染色体上, 这可能与株型性状间显著或极显著相关有关。其中, 在第9染色体上RM3700B–RM7424区间存在1个QTL簇, 含4个QTL, 即qPH9、qPL9、qFLL9和qSLL9, 这4个QTL在两年中均被检测到。此外, 进一步鉴定出5个能稳定表达的QTL, 其中, qPH8、qFLW6和qSLW6效应较大。这些信息综合反映了株型相关性状遗传的复杂性, 有助于我们更全面地了解和掌握株型性状的遗传基础。  相似文献   

7.
控制水稻株高的QTL定位及环境互作分析   总被引:4,自引:2,他引:2  
为水稻的基因水平研究提供了重要的平台,利用由小穗小粒型品种‘密阳46’和大穗大粒型品种FJCD建立的一个包含130个家系F10的重组自交系群体,分别在武夷山和莆田环境下测定其株高,进行QTL定位及环境互作分析。武夷山环境下检测到2个加性QTL,位于1、2号染色体上,其中主效qPH-2-5解释了26.2%的表型变异;莆田环境下检测到4个加性QTL,分别位于2、2、2、6号染色体上,共解释了20.61%的表型变异。经过GE互作分析,2个背景QTL存在显著的加性×环境互作效应,共解释了17.36%的表型变异。此研究从一定程度上揭示了株高的数量遗传规律,同时为株高分子育种提供理论依据。  相似文献   

8.
人工合成小麦拥有丰富的有利遗传变异,可用于普通小麦的遗改良。本研究选用两个人工合成小麦改良品系构建了由284个单株组成的F2群体,基于1 671具有染色体位置信息的多态性DAr Tseq标记构建遗传图谱,并结合该群体农艺性状(株高,穗长,穗颈节长,小穗数,穗粒数,单株有效穗数,千粒重,单株重)的表现型,利用QTL作图软件ICIMapping 4.1进行了QTL定位。结果表明,共检测到20个QTL,其中4个为株高QTL,分布于2A、3B、5B染色体上,可解释表型变异的5.4%~10.8%;4个为穗长QTL,分布于2D、3B、5B染色体上,可解释表型变异的1.4%-8.8%;3个为穗颈节长QTL,分布于1A和5A染色体上,可解释表型变异的4.6%~12.2%;2个为穗粒数QTL,分布于3D和5A染色体上,可解释表型变异的18.9%~29.8%;1个为单株有效穗数QTL,分布于2A染色体上,可解释表型变异10.2%;5个为千粒重QTL,分布于1B、5A、5B、5D和7B染色体上,可解释表型变异的8.9%~10.9%;1个为位于7B染色体上的单株重QTL,可解释表型变异的6.1%。同时,在5B和7B染色体上存在控制多个性状的同一QTL位点。利用生物信息学的方法,筛选到1个千粒重相关的候选基因。以上结果可为人工合成小麦农艺性状QTL精细定位、分子标记辅助选择育种和基因克隆奠定基础。  相似文献   

9.
不同水分胁迫下小麦胚芽鞘和胚根长度的QTL分析   总被引:2,自引:0,他引:2  
小麦胚芽鞘和胚根在不同渗透溶液下的长度变化是鉴评小麦幼苗抗逆性的重要指标。以小麦花培3号×豫麦57的DH株系衍生的含168个组合的永久F2 (immortalized F2, IF2)群体为材料,在蒸馏水(正常条件)以及10%、20%和30%聚乙二醇(PEG-6000)模拟水分胁迫处理下,进行胚芽鞘长和胚根长度的数量性状基因(QTL)定位分析。利用完备区间作图法,共检测到影响胚芽鞘和胚根长度的23个QTL,单个QTL对表型的贡献率为4.93%~35.37%。位于4B染色体区间Xcfd39.2–Xcfd22.2上影响胚芽鞘长度的位点QCl4B,具有最大的遗传效应,贡献率为35.37%;在3D染色体Xcfd223–Xbarc323区段,正常条件和20% PEG-6000处理下同时检测到影响胚芽鞘长度的QTL,QCl3D-a,其贡献率分别为7.83%和11.74%。另外,在10% PEG-6000处理下,3D染色体上的相近区域还定位出了影响胚芽鞘长度的QCl3D-b位点;在染色体1A和染色体5A1上各检测出与胚根长度有关的2个和3个不同的QTL;在6D染色体Xswes679.1–Xcfa2129和Xwmc412.1–Xcfd49区间分别检测到2个影响胚芽鞘长度和胚根长度的QTL。这些主效QTL可用于胚芽鞘和根系的分子标记辅助选择。  相似文献   

10.
玉米SSR连锁图谱构建与株高及穗位高QTL定位   总被引:10,自引:2,他引:8  
用玉米自交系组合R15×掖478的F2群体构建连锁图谱,并通过1年2点随机区组试验设计,考察玉米229个F2:4家系成株期的株高和穗位高。所建连锁图谱上共拟合146个SSR标记位点,覆盖基因组1 666 cM,标记间平均距离为11.4 cM。用复合区间作图法进行QTL分析,共检测到8个控制株高的QTL,分别位于第2、3、4、5和8染色体;3个控制穗位高的QTL位点,位于第4染色体。单个株高QTL的贡献率变幅为6.67%~11.59%,单个穗位高QTL贡献率变幅为10.46%~12.15%。  相似文献   

11.
利用染色体片段代换系定位陆地棉株高QTL   总被引:4,自引:0,他引:4  
以陆地棉中棉所36为轮回亲本和海岛棉海1为供体亲本, 构建染色体片段代换系。为了能检测到稳定的株高QTL,将三个代换系群体(BC5F3, BC5F3:4和BC5F3:5)在5个环境中种植,2009年和2010年分别在河南安阳种植BC5F3单株、BC5F3:4株行, 2011年分别在河南安阳、辽宁辽阳和新疆石河子种植BC5F3:4株系。结果表明,在不同群体环境中株高的超亲比例为53.43%~88.97%。从早期构建的总图距为5088.28 cM, 含有2280个SSR标记位点,覆盖26条染色体的遗传连锁图谱中筛选标记,对408个单株进行的SSR鉴定,结果检测到16个株高QTL,分布在10条染色体上。单个QTL解释的表型变异为7.35%~13.17%。有7个QTL在2个以上环境被检测到。与标记MUSS563紧密连锁的qPH-15-19在一个环境中被检测到,在前人的研究中也有报道。这些结果为进一步精细定位QTL、基因克隆、分子辅助选择等研究奠定基础。  相似文献   

12.
氮胁迫与非胁迫条件下玉米不同时期株高的动态QTL定位   总被引:4,自引:0,他引:4  
以玉米杂交种农大108的203个F2:3家系为材料,在施氮(N+)和不施氮(N-)2种条件下对拔节期到灌浆期的株高变化进行了动态QTL分析。结果表明,N胁迫条件对亲本许178影响较小,而对亲本黄C的影响较大,F2:3群体在不同时期的株高均值在2种施肥水平下没有显著差异,但变异范围存在一定的差异。利用包含199个SSR标记的遗传连锁图谱与复合区间作图法,在N-条件下,拔节期、小喇叭口期、大喇叭口期、灌浆期分别定位1、1、2和2个非条件QTL,可分别解释各时期株高表型变异的8.42%、13.86%、24.33%和22.66%;在N+条件下,相应时期分别定位1、1、2和4个非条件QTL,可分别解释各时期株高表型变异的8.10%、12.92%、21.30%和44.41%。在N-条件下,拔节期至喇叭口期、开花期至灌浆期分别定位了1和5个条件QTL,可分别解释该时期株高动态变异的9.14%和50.98%;在N+条件下,相应时期分别定位1和4个条件QTL,可分别解释该时期株高动态变异的13.33%和44.47%。这些非条件QTL和条件QTL多数表现以显性和部分显性为主。  相似文献   

13.
利用多亲本高代互交系(multi-parent advanced generation inter-cross,MAGIC)群体(DC1、DC2和8way)及其复合群体DC12(DC1+DC2)和RMPRIL(DC1+DC2+8way)进行关联分析定位水稻抽穗期和株高QTL。2015年和2016年分别在江西和深圳收集3个MAGIC群体抽穗期数据,2016年在两地收集株高数据,结合Rice 55K SNP芯片进行基因分型,利用关联分析方法检测到3个影响抽穗期的主效QTL(q HD3、q HD6和q HD8),分别位于第3、第6和第8染色体,且分别与已知抽穗期基因DTH3、Hd3a和Ghd8在同一区域。检测到5个影响株高的QTL(q PH1.1、q PH1.2、q PH1.3、q PH4和q PH6),其中q PH1.1和q PH1.2位于已知基因Psd1和sd1附近,其余3个QTL为影响株高的新位点,但仅在1个群体和单个环境下被检测到,QTL表达受遗传背景和环境影响大。不同MAGIC群体定位抽穗期和株高的效果不同,在8亲本MAGIC群体8way及复合群体DC12和RMPRIL分别检测到5、5和6个抽穗期和株高QTL,明显多于4亲本群体DC1的2个和DC2的4个,而且作图的精度更高,表现在定位到的QTL显著水平高和与已知基因距离更近,尤其是复合群体的联合分析(如DC12和RMPRIL)的作图优势更为明显。  相似文献   

14.
基于QTL定位分析小麦株高的杂种优势   总被引:6,自引:2,他引:4  
为探讨小麦株高杂种优势的分子遗传基础,以小麦品种花培3号和豫麦57杂交F1经染色体加倍获得的DH群体168个株系为材料,构建了一套含168个杂交组合的"永久F2"群体。利用复合区间作图法,在3个环境中进行了基于QTL定位的株高杂种优势分析,共检测到3个加性效应位点、2个显性效应位点、4对上位效应位点(包括加性×加性、加性×显性、显性×加性和显性×显性)和20个杂种优势位点。位于2D、4D和5B2染色体上的QPh2D、QPh4D和QPh5B2在3个环境中同时被检验到,受环境影响小,表达稳定。在2D染色体上相近的区域定位出多个杂种优势位点,其中QPh2D-2和QPh2D-7可解释杂种优势表型变异的29.77%和55.77%。在7D染色体的Xwmc273.2-Xcfd175之间定位出同一个杂种优势位点Qph7D-2。结果表明,在2D、4D和7D染色体上这些区域存在一些对小麦株高的杂种优势起重要作用的位点。  相似文献   

15.
Plant height is an important plant architecture trait that determines the canopy structure, photosynthetic capacity and lodging resistance of upland cotton populations. To understand the genetic basis of plant height for marker-assisted breeding, quantitative trait loci (QTL) analysis was conducted based on the genetic map of recombinant inbred lines (RILs) derived from the cross “CRI12 × J8891” (Gossypium hirsutum L.). Three methods, including composite interval mapping, multiple interval mapping and multi-marker joint analysis, were used to detect QTL across multiple environments in the RILs and in the immortalized F2 population developed through intermating between RILs. A total of 19 QTL with genetic main effects and/or genetic × environment interaction effects were identified on 15 chromosomes or linkage groups, each explaining 5.8–14.3 % of the phenotypic variation. Five digenic epistatic QTL pairs, mainly involving additive × additive and/or dominance × dominance, were detected in different environments. Seven out of eight interacting loci were main-effect QTL, suggesting that these loci act as major genes as well as modifying genes in the expression of plant height. The results demonstrate that additive effects, dominance and epistasis are all important for the genetic constitution of plant height, with additive effects playing a more important role in reducing plant height. QTL showing stability across environments that were repeatedly detected by different methods can be used in marker-assisted breeding.  相似文献   

16.
以开花期相近的181个大豆重组自交系(RIL)为材料,研究开花后不同光照长度对大豆主要农艺性状的影响,并在利用SSR标记构建大豆遗传图谱的基础上,分别在长日(16 h)和短日(12 h)条件下检测与主要农艺性状及其光周期敏感度(PS)相关的QTL。结果表明,开花后光照处理对大豆农艺性状和品质性状有较大影响,不同性状的光周期敏感度差异明显,株高>主茎节数>蛋白质含量、脂肪含量>百粒重>单株荚数>蛋白质和脂肪总量。利用复合区间作图法检测到12个与株高、主茎节数、单株荚数、百粒重、蛋白质和脂肪总量等性状及各性状对开花后光周期处理的敏感度相关的QTL,分别定位于A1、A2、B1、B2、C1、D1a、F、L等8个连锁群上。其中,在短日条件下检测到4个QTL,可解释的遗传变异范围在11.37%~26.63%之间;在长日条件下检测到3个QTL,可解释的遗传变异范围在11.84%~27.85%之间;检测到5个与不同性状光周期敏感度有关的QTL,可解释相对应性状表型变异的范围在6.15%~21.44%之间。针对同一性状,未检测到在长日和短日条件下均起作用的主效QTL, 说明开花后光周期对大豆产量和品质性状相关基因的表达有较大影响。  相似文献   

17.
定位棉花种子性状的基因对揭示棉花种子性状的遗传规律,以及明确棉花种子、产量、纤维品质等性状间的遗传关系具有重要意义。以(渝棉1号×T586) F2:7重组近交系群体构建的遗传连锁图谱,在鉴定270个家系3个环境种子物理性状的基础上,利用MQM作图方法,共检测到34个种子物理性状QTL,包括9个种子重(qSW)、5个短绒重(qFW)、3个短绒率(qFP)、8个种仁重(qKW)、6个种子壳重(qHW)和3个种仁率(qKP)QTL,它们可解释4.6%~80.1%的性状表型变异。9个QTL在2个或3个环境中被检测到,其中包括第12染色体显性光子位点的短绒重与短绒率QTL,以及另外7个微效应QTL。34个QTL分布于15条染色体,其中A染色体组20个,D染色体组14个。有12个染色体区段分布有2个或2个以上的QTL,而且同一染色体区域同一亲本所具有的不同性状QTL的方向大多数与性状表型相关系数的正负一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号