首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
农学   5篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 187 毫秒
1
1.
小麦胚芽鞘长、幼苗根长的QTL定位   总被引:2,自引:0,他引:2  
小麦品种花培3号和豫麦57构建的DH群体的168个株系及亲本为材料,在正常发芽和20%PEG-6000模拟水分胁迫处理条件下测定小麦幼苗的胚芽鞘长、根长。利用完备区间作图法分析幼苗胚芽鞘长、幼根长的QTL。两种处理条件下共定位了8个控制胚芽鞘长加性QTL,其中位于染色体2A、4B和4D上的QCl2A、QCl4B和QCl4D在两种处理条件下均被检测到,可解释6.10%~16.31%的表型变异。两种条件下共定位了10个控制幼根长加性QTL,其中位于染色体6A上Xgwm82和Xwmc553区间的QRl6A在两种处理下均被检测到,可分别解释8.26%和9.74%的表型变异。在检测到的18对控制胚芽鞘长、根长的上位性互作位点中,大多数互作属于非等位QTL间的非加性QTL位点之间互作。因此在小麦材料的早期抗旱性筛选、分子育种时要同时考虑加性QTL和非加性QTL位点间的上位性互作。  相似文献   
2.
利用“永久F2”群体进行小麦幼苗根系性状QTL分析   总被引:5,自引:1,他引:4  
为了研究小麦苗期根系性状的遗传,以小麦品种花培3号和豫麦57的杂交DH群体组配了一套含168个杂交组合的“永久F2”群体。利用WinRHIZO根系分析系统测定四叶一心期小麦水培幼苗根系总长度、直径、表面积、体积、根尖数、最大根长、茎叶干重、根干重及根茎干重比9个性状。采用复合区间作图法分析幼苗根系8个性状的QTL,定位了7个加性效应QTL和12对上位性互作QTL,包括加性效应、显性效应,加加互作、加显互作和显显互作,分布在1A、1D、2A、2B、2D、3A、3B、5D、6D和7D染色体上,单个QTL可解释0.01%~11.91%的遗传变异。在染色体2D上XWMC41至XBARC349.2区间检测到同时控制总根长和根干重的一个QTL。上位性对苗期根系生长发育有重要作用。试验结果表明,苗期根系性状的遗传机制较复杂, 因此在育种中要综合考虑根系各性状之间的关系,保证根系协调统一、发达健壮。  相似文献   
3.
不同水分胁迫下小麦胚芽鞘和胚根长度的QTL分析   总被引:2,自引:0,他引:2  
小麦胚芽鞘和胚根在不同渗透溶液下的长度变化是鉴评小麦幼苗抗逆性的重要指标。以小麦花培3号×豫麦57的DH株系衍生的含168个组合的永久F2 (immortalized F2, IF2)群体为材料,在蒸馏水(正常条件)以及10%、20%和30%聚乙二醇(PEG-6000)模拟水分胁迫处理下,进行胚芽鞘长和胚根长度的数量性状基因(QTL)定位分析。利用完备区间作图法,共检测到影响胚芽鞘和胚根长度的23个QTL,单个QTL对表型的贡献率为4.93%~35.37%。位于4B染色体区间Xcfd39.2–Xcfd22.2上影响胚芽鞘长度的位点QCl4B,具有最大的遗传效应,贡献率为35.37%;在3D染色体Xcfd223–Xbarc323区段,正常条件和20% PEG-6000处理下同时检测到影响胚芽鞘长度的QTL,QCl3D-a,其贡献率分别为7.83%和11.74%。另外,在10% PEG-6000处理下,3D染色体上的相近区域还定位出了影响胚芽鞘长度的QCl3D-b位点;在染色体1A和染色体5A1上各检测出与胚根长度有关的2个和3个不同的QTL;在6D染色体Xswes679.1–Xcfa2129和Xwmc412.1–Xcfd49区间分别检测到2个影响胚芽鞘长度和胚根长度的QTL。这些主效QTL可用于胚芽鞘和根系的分子标记辅助选择。  相似文献   
4.
基于QTL定位分析小麦株高的杂种优势   总被引:6,自引:2,他引:4  
为探讨小麦株高杂种优势的分子遗传基础,以小麦品种花培3号和豫麦57杂交F1经染色体加倍获得的DH群体168个株系为材料,构建了一套含168个杂交组合的"永久F2"群体。利用复合区间作图法,在3个环境中进行了基于QTL定位的株高杂种优势分析,共检测到3个加性效应位点、2个显性效应位点、4对上位效应位点(包括加性×加性、加性×显性、显性×加性和显性×显性)和20个杂种优势位点。位于2D、4D和5B2染色体上的QPh2D、QPh4D和QPh5B2在3个环境中同时被检验到,受环境影响小,表达稳定。在2D染色体上相近的区域定位出多个杂种优势位点,其中QPh2D-2和QPh2D-7可解释杂种优势表型变异的29.77%和55.77%。在7D染色体的Xwmc273.2-Xcfd175之间定位出同一个杂种优势位点Qph7D-2。结果表明,在2D、4D和7D染色体上这些区域存在一些对小麦株高的杂种优势起重要作用的位点。  相似文献   
5.
利用永久F2群体定位小麦株高的QTL   总被引:3,自引:0,他引:3  
王岩  李卓坤  田纪春 《作物学报》2009,35(6):1038-1043
为研究小麦株高的遗传机制,利用DH群体构建了一套包含168个杂交组合的小麦永久F2群体, 并于2007年种植于山东泰安和山东聊城。构建了一套覆盖小麦21条染色体的遗传连锁图谱并利用该图谱的324个SSR标记对小麦株高进行QTL定位研究,使用基于混合线性模型的QTLNetwork 2.0软件进行QTL分析。在永久F2群体中定位了7个株高QTL,包括4个加性QTL,一个显性QTL,一对上位性QTL,共解释株高变异的20%,其中位于4D染色体的qPh4D,具有最大的遗传效应,贡献率为7.5%;位于2D 染色体显性效应位点qPh2D,可解释1.6%的表型变异;位于5B~6D染色体上位效应位点,可解释1.7%的表型变异。还发现加性效应、显性效应和上位效应对小麦株高的遗传起重要作用,并且基因与环境具有互作效应,结果表明利用永久F2群体进行QTL定位研究的方法有助于分子标记辅助育种。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号