首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antioxidant compounds from the leaves of Peucedanum japonicum thunb   总被引:1,自引:0,他引:1  
Seventeen compounds were isolated from the n-butanol soluble fraction of the leaves of Peucedanum japonicum Thunb. On the basis of MS and various NMR spectroscopic techniques, the structures of the isolated compounds were determined as isoquercitrin (1), rutin (2), 3-O-caffeoylquinic acid (3), 4-O-caffeoylquinic acid (4), 5-O-caffeoylquinic acid (5), cnidioside A (6), praeroside II (7), praeroside III (8), apterin (9), esculin (10), (R)-peucedanol (11), (R)-peucedanol 7-O-beta-d-glucopyranoside (12), l-tryptophan (13), uracil (14), guanosine (15), uridine (16), and thymidine (17). All compounds except 11 and 12 were isolated for the first time from P. japonicum. Several isolated compounds were quantified by high-performance liquid chromatography analysis. In addition, all isolated compounds were examined for radical scavenging on 1,1-diphenyl-2-picrylhydrazyl radical and for inhibition of oxidation of liposome induced by 2,2'-azobis(2-amidinopropane)dihydrochloride. Compounds 2-5 were found to be the major potent constituents, which contribute to the antioxidant activity of P. japonicum leaves.  相似文献   

2.
采用蛋白质组双向电泳技术和已鉴定蜂王浆蛋白质组的比对,对王浆高产蜜蜂(浆蜂)和中华蜜蜂(中蜂)的蜂王浆蛋白质组进行了差异比较。结果表明,浆蜂蜂王浆的总蛋白质点数(93个)显著高于中蜂蜂王浆总蛋白质点数(70个),它们的等电点主要集中在5-8之间,分子量在50-80kDa之间,其中共有蛋白质点为30个;通过与已鉴定的浆蜂蜂王浆蛋白质组比较,这些共有蛋白质点推断为蜂王浆主蛋白1、2、3和葡萄糖氧化酶。同时两蜂种蜂王浆的蛋白质丰度也存在较大差异,共有点中有4个蛋白质的丰度中蜂显著高于浆蜂,7个浆蜂显著高于中蜂中。结果表明浆蜂和中蜂蜂王浆蛋白质种类及丰度均有较大差异。  相似文献   

3.
Four new abscisic acid related compounds (1-4), together with (+)-abscisic acid (5), (+)-beta-D-glucopyranosyl abscisate (6), (6S,9R)-roseoside (7), and two lignan glucosides ((+)-pinoresinol mono-beta-D-glucopyranoside (8) and 3-(beta-D-glucopyranosyloxymethyl)-2- (4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-(2R,3S)-dihydrobenzofuran (9)) were isolated from the antioxidative ethanol extract of prunes (Prunus domestica L.). The structures of 1-4 were elucidated on the basis of NMR and MS spectrometric data to be rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (1), rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid 3'-O-beta-d-glucopyranoside (2), rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (3), and rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxabicyclo[3,2,1]- oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (4). The antioxidant activities of these isolated compounds were evaluated on the basis of oxygen radical absorbance capacity (ORAC). The ORAC values of abscisic acid related compounds (1-7) were very low. Two lignans (8 and 9) were more effective antioxidants whose ORAC values were 1.09 and 2.33 micromol of Trolox equiv/micromol, respectively.  相似文献   

4.
为研究不同采收时间对蜂王浆品质的影响,以4-9月份采收的蜂王浆为研究对象,通过比较不同采收时间蜂王浆中蜂王浆主蛋白(MRJPs)、总水溶性蛋白和多酚的含量,分析了MRJPs与自由基清除能力和总抗氧化能力的相关性。结果表明,不同采收期蜂王浆中MRJPs含量存在显著差异(P<0.05),且6月份采收的MRJPs含量最低。水溶性蛋白及总酚含量差异不大(P>0.05)。蜂王浆自由基清除能力与MRJP1和 MRJP3含量的相关系数达0.828和0.847;总抗氧化能力与MRJP1和 MRJP3含量的相关系数分别为0.680和0.743。蜂王浆的抗氧化活性与其MRJPs存在一定程度的正相关,但与多酚含量相关性不明显,说明其自由基清除能力与总抗氧化活性可能是多种抗氧化性活性物质共同作用的结果。本研究为蜂王浆的抗氧化活性研究提供了参考。  相似文献   

5.
Two new lactams, coixspirolactam D (1) and coixspirolactam E (2), and a new spiroenone, coixspiroenone (3), together with seven known compounds, coixspirolactam A (4), coixspirolactam B (5), coixspirolactam C (6), coixlactam (7), coixol (8), ethyl dioxindole-3-acetate (9), and isoindol-1-one (10), and two neolignans, zhepiresionol (11) and ficusal (12), were isolated from the bioactive subfraction of adlay bran ethanolic extract (ABE). Compounds 9 and 10 are the first isolates from natural resources. The structures of new compounds were identified by spectroscopic methods, including infrared (IR) spectrum, 1D and 2D nuclear magnetic resonance (NMR), and mass spectrum (MS). All of the isolated compounds were tested for antiproliferative effects on MCF-7, MDA-MB-231, and T-47D cells. Results showed that compounds 1, 3, 4, 6, and 7 at 50 μM significantly inhibited MCF-7 cell proliferation by 30.2, 19.2, 21.0, 13.5, and 32.4%, respectively; compounds 2, 4, and 7 significantly inhibited T-47D cells at 50 μM by 20.7, 24.8, and 28.9%; and compounds 1, 2, and 12 significantly inhibited MDA-MB-231 cells at 50 μM by 47.4, 25.3, and 69.3%, respectively. In conclusion, ABE has antiproliferative activities, and this effect is partially related to the presence of lactams and spiroenone.  相似文献   

6.
This is the first report of TRPA1 activation by fatty acids. Activation of TRPA1 and TRPV1 induces thermogenesis and energy expenditure enhancement. In this study, we searched for novel agonists of TRPA1 and TRPV1 from a nonpungent food, royal jelly (RJ). We measured the activation of human TRPA1 and TRPV1 by RJ extracts and found that the hexane extract contains TRPA1 agonists. The main functional compounds in the hexane extract were trans-10-hydroxy-2-decenoic acid (HDEA) and 10-hydroxydecanoic acid (HDAA). These are characteristic fatty acids of RJ. Their EC50 values were about 1,000 times larger than that of AITC, and their maximal responses were equal. They activated TRPA1 more strongly than TRPV1. Their EC50 values for TRPV1 were 2 times larger, and the maximal response was less than half of that for TRPA1. Next, we studied the potencies of other lipid components for both receptors. Most of them have higher affinity to TRPA1 than TRPV1. Among them, dicarboxylic acids showed equal efficacy for both receptors, but those are present in only small amounts in RJ. We concluded that the main function of RJ is TRPA1 activation by HDEA and HDAA, the major components of the RJ lipid fraction.  相似文献   

7.
Bioactivity-guided fractionation of Red Delicious apple peels was used to determine the chemical identity of bioactive constituents, which showed potent antiproliferative and antioxidant activities. Twenty-nine compounds, including triterpenoids, flavonoids, organic acids and plant sterols, were isolated using gradient solvent fractionation, Diaion HP-20, silica gel, and ODS columns, and preparative HPLC. Their chemical structures were identified using HR-MS and 1D and 2D NMR. Antiproliferative activities of isolated pure compounds against HepG2 human liver cancer cells and MCF-7 human breast cancer cells were evaluated. On the basis of the yields of isolated flavonoids (compounds 18- 23), the major flavonoids in apple peels are quercetin-3-O-beta-D-glucopyranoside (compound 20, 82.6%), then quercetin-3-O-beta-D-galactopyranoside (compound 19, 17.1%), followed by trace amounts of quercetin (compound 18, 0.2%), (-)-catechin (compound 22), (-)-epicatechin (compound 23), and quercetin-3-O-alpha-L-arabinofuranoside (compound 21). Among the compounds isolated, quercetin (18) and quercetin-3-O-beta-D-glucopyranoside (20) showed potent antiproliferative activities against HepG2 and MCF-7 cells, with EC 50 values of 40.9 +/- 1.1 and 49.2 +/- 4.9 microM to HepG2 cells and 137.5 +/- 2.6 and 23.9 +/- 3.9 microM to MCF-7 cells, respectively. Six flavonoids (18-23) and three phenolic compounds (10, 11, and 14) showed potent antioxidant activities. Caffeic acid (10), quercetin (18), and quercetin-3-O-beta-D-arabinofuranoside (21) showed higher antioxidant activity, with EC 50 values of <10 microM. Most tested flavonoids and phenolic compounds had high antioxidant activity when compared to ascorbic acid and might be responsible for the antioxidant activities of apples. These results showed apple peel phytochemicals have potent antioxidant and antiproliferative activities.  相似文献   

8.
In this study, the proteins contained in royal jelly (RJ) produced by Africanized honeybees and European honeybees (Apis mellifera) haven been analyzed in detail and compared using two-dimensional gel electrophoresis, and the N-terminal amino acid sequence of each spot has been determined. Most spots were assigned to major royal jelly proteins (MRJPs). Remarkable differences were found in the heterogeneity of the MRJPs, in particular MRJP3, in terms of molecular weights and isoelectric points between the two species of RJ. Furthermore, during the determination of the N-terminal amino acid sequence of each spot, for the first time, MRJP4 protein has been identified, the existence of which had been only implied by cloning of its cDNA sequence. The presence of heterogeneous bands of glucose oxidase was also identified. Thus, the results suggest that two-dimensional gel electrophoresis provides a suitable method for the qualitative analysis of the proteins contained in RJ derived from different honeybee species.  相似文献   

9.
One sphingolipid, 1-O-beta-D-glucopyranosyl-(2S,3R,4E,8Z)-2-[(2R)-2-hydroxyhexadecanoylamino]-4,8-octadecadiene-1,3-diol, and four other constituents, beta-sitosterol, daucosterol, uridine, and adenosine, have been isolated from the nuts of almond (Prunus amygdalus). Complete assignments of the proton and carbon chemical shifts for the sphingolipid were accomplished on the basis of high-resolution 1D and 2D NMR data. All of these compounds are being reported from almond nuts (P. amygdalus)for the first time.  相似文献   

10.
Furosine: a suitable marker for assessing the freshness of royal jelly   总被引:7,自引:0,他引:7  
Fifteen commercial samples of royal jelly, consisting of 10 imported samples, and 5 samples of known origin obtained freshly harvested from beekeepers, were analyzed for protein, lysine, and furosine content. In addition, a commercial sample of royal jelly, at the beginning of its commercial shelf life, was stored for 10 months both at 4 degrees C and at room temperature in order to assess the development of the Maillard reaction (furosine) and relative nutritional damage (blocked lysine). The commercial royal jelly products contained different amounts of furosine, ranging from 37.1 to 113.3 mg/100 g protein, evidence of different storage times and conditions. The average furosine content of the royal jelly samples of known origin and harvesting was significantly lower than that of the imported samples (41.7 versus 73.6 mg/100 g protein, respectively). With regard to shelf life, furosine content increased significantly from 72.0 mg/100 g protein to 500.8 mg/100 g protein after 10 months of storage at room temperature, while it increased to a much lower level (100.5 mg/100 g protein) when the royal jelly was stored at 4 degrees C. However, nutritional damage, expressed as blocked lysine (calculated indirectly from the furosine content), was minor or negligible, 11.9 and 2.3% of total lysine, in samples stored at room temperature and at 4 degrees C, respectively. Lysine was determined by an innovative procedure based on high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The results showed that furosine is a suitable index for assessing the quality and freshness of royal jelly.  相似文献   

11.
The saponin composition of leaves from the Medicago polymorpha cultivars 'Santiago' and 'Anglona' belonging to the botanical varieties brevispina and vulgaris, respectively, was investigated by a combination of chromatographic, spectroscopic, and spectrometric techniques. Several compounds were detected and quantitated by HPLC analysis using the external standard method. Twelve triterpene saponins (1-12) were purified by reverse-phase chromatography and their structures elucidated by spectroscopic (1D and 2D NMR, ESI-MS/MS) and chemical methods. They were identified as glycosides of echinocystic acid, hederagenin, caulophyllogenin, bayogenin, and soyasapogenol B. Two of them (2, 10) were previously reported in M. polymorpha; five of them (4, 6, 7, 9, 12) were already identified in other Medicago species; and three of them (1, 8, 11) were found in other plant genera. The two saponins identified as 3-O-α-L-arabinopyranosyl-28-O-[β-D-glucopyranosyl(1→6)β-D-glucopyranoside] echinocystic acid (3) and 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside echinocystic acid (5) are newly identified natural compounds. The presence of echinocystic acid is reported here for the first time in the genus Medicago. Saponins from the cultivar 'Anglona' were characterized by a higher amount of echinocystic acid glycosydes, whereas saponins from the cultivar 'Santiago' were characterized by a higher amount of hederagenin glycosydes.  相似文献   

12.
To compare the protein complement of royal jelly (RJ) from high RJ producing honeybees ( Apis mellifera L.), a strain of A. mellifera artificially selected for increased RJ production from Italian honeybees in China for more than two decades was compared to those of native Italian honeybees ( A. mellifera L.) and Carnica honeybees ( A. mellifera C.); the protein in RJ from these three strains of honeybees was partially identified by using a combination of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS), and a protein engine identification tool applied to the honeybee genome. The results showed that 152, 157, and 137 proteins were detected in the three species of RJ; among which 57, 57, 51 high abundant proteins ere identified, respectively. Most identifited spots, 45, 45, 41, were assigned to major royal jelly proteins (MRJPs). Remarkable differences were found in the heterogeneity of the MRJPs, in particular, MRJP3. Also, 3-glucose oxidase, 1-peroxiredoxin (PRDX), and 1-glutathione S-transferase (GST) S1 were identified in three RJ samples. Furthermore, during the determination of the peptides mass fingerprinting (PMF) of each spot, for the first time, PRDX and GST S1 proteins have been identified in RJ. Thus, the results suggest that the protein complement of high RJ producing honeybees is not different compared to native Italian honeybees, while a difference remains between Carnica honeybees.  相似文献   

13.
To obtain insight into the metabolic regulation of adenosine 5'-triphosphate (ATP) in royal jelly and to determine whether ATP and its catabolites can be used as objective parameters to evaluate the freshness and quality of royal jelly (RJ), a rapid ultraperformance liquid chromatography (UPLC) method has been developed for feasible separation and quantitation of ATP and its catabolites in RJ, namely, adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), inosine monophosphate (IMP), inosine (HxR), and hypoxanthine (Hx). The analytes in the sample were extracted using 5% precooled perchloric acid. Chromatographic separation was performed on a Waters Acquity UPLC system with a Waters BEH Shield RP18 column and gradient elution based on a mixture of two solvents: solvent A, 50 mM phosphate buffer (pH 6.5); and solvent B, acetonitrile. The recoveries were in the range of 86.0-102.3% with RSD of no more than 3.6%. The correlation coefficients of six analytes were high (r(2) ≥ 0.9988) and within the test ranges. The limits of detection and quantification for the investigated compounds were lower, at 0.36-0.68 and 1.22-2.30 mg/kg, respectively. The overall intra- and interday RSDs were no more than 1.8%. The developed method was successfully applied to the analysis of the analytes in samples. The results showed that ATP in RJ sequentially degrades to ADP, AMP, IMP, HxR, and Hx during storage.  相似文献   

14.
Investigation on the anthelminthic bioactive compounds of the ethanol extract of Tadehagi triquetrum resulted in the isolation of three new prenylated isoflavones, triquetrumones A (1), B (2), and C (3), and one new prenylated biisoflavanone, (R)-triquetrumone D (4), along with 16 known compounds, cyclokievitone (5), yukovanol (6), aromadendrin (7), kaempferol (8), astragalin (9), 2-O-methyl-l-chiro-inositol (10), galactitol (11), p-hydroxycinnamic acid (12), ursolic acid (13), betulinic acid (14), beta-sitosterol (15), daucosterol (16), stigmasterol (17), stigmasta-5,22-dien-3-O-beta-d-glucopyranoside (18), saccharose (19), and docosanoic acid (20). The structures of 1-4 were elucidated on the basis of spectroscopic and spectrometric methods. Compounds 1-3 displayed mild anthelminthic bioactivity, and compound 3 showed a significant binding ability to the estrogen receptor.  相似文献   

15.
Two novel caffeoylmalic acid methyl esters, 2-O-(trans-caffeoyl)malic acid 1-methyl ester (6) and 2-O-(trans-caffeoyl)malic acid 4-methyl ester (7), were isolated from pear (Pyrus pyrifolia Nakai cv. Chuhwangbae) fruit peels. In addition, 5 known hydroxycinnamoylmalic acids and their methyl esters were identified: 2-O-(trans-coumaroyl)malic acid (1), 2-O-(cis-coumaroyl)malic acid (2), 2-O-(cis-coumaroyl)malic acid 1-methyl ester (3), 2-O-(trans-coumaroyl)malic acid 1-methyl ester (4), and 2-O-(trans-caffeoyl)malic acid (phaselic acid, 5). The chemical structures of these compounds were determined by spectroscopic data from ESI MS and NMR. Of all the isolated compounds, five hydroxycinnamoylmalic acids and their methyl esters (2-4, 6, 7) were identified in the pear for the first time.  相似文献   

16.
An aggressive isolate of Didymella pinodes isolated from pea ( Pisum sativum ) produced four different metabolites in vitro. The metabolites isolated from the culture filtrates were characterized by spectroscopic and optical methods. A new nonenolide, named pinolide, was isolated and characterized as (2S*,7R*,8S*,5E,9R*)-2,7,8-trihydroxy-9-propyl-5-nonen-9-olide. Pinolidoxin, the main toxin produced by D. pinodes, was also isolated together with two other closely related nonenolides, identified as herbarumin II and 2-epi-herbarumin II. Herbarumin II and 2-epi-herbarumin II have been previously isolated from the fungi Phoma herbarum and Paraphaeosphaeria recurvifoliae , respectively, but described here to be isolated for the first time from D. pinodes. When tested on leaves of the host plant and other legumes and weeds, pinolidoxin was phytotoxic in all of the plant species, whereas the other three nonenolides did not produce any symptoms. The importance of the stereochemistry of the hydroxy group at C-7 on phytotoxicity also is discussed.  相似文献   

17.
Maple syrup is made by boiling the sap collected from certain maple ( Acer ) species. During this process, phytochemicals naturally present in tree sap are concentrated in maple syrup. Twenty-three phytochemicals from a butanol extract of Canadian maple syrup (MS-BuOH) had previously been reported; this paper reports the isolation and identification of 30 additional compounds (1-30) from its ethyl acetate extract (MS-EtOAc) not previously reported from MS-BuOH. Of these, 4 compounds are new (1-3, 18) and 20 compounds (4-7, 10-12, 14-17, 19, 20, 22-24, 26, and 28-30) are being reported from maple syrup for the first time. The new compounds include 3 lignans and 1 phenylpropanoid: 5-(3″,4″-dimethoxyphenyl)-3-hydroxy-3-(4'-hydroxy-3'-methoxybenzyl)-4-(hydroxymethyl)dihydrofuran-2-one (1), (erythro,erythro)-1-[4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethoxy]-3,5-dimethoxyphenyl]-1,2,3-propanetriol (2), (erythro,threo)-1-[4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethoxy]-3,5-dimethoxyphenyl]-1,2,3-propanetriol (3), and 2,3-dihydroxy-1-(3,4- dihydroxyphenyl)-1-propanone (18), respectively. In addition, 25 other phenolic compounds were isolated including (threo,erythro)-1-[4-[(2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethoxy]-3-methoxyphenyl]-1,2,3-propanetriol (4), (threo,threo)-1-[4-[(2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-(hydroxymethyl)ethoxy]-3-methoxyphenyl]-1,2,3-propanetriol (5), threo-guaiacylglycerol-β-O-4'-dihydroconiferyl alcohol (6), erythro-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2,6-dimethoxyphenoxy]-1,3-propanediol (7), 2-[4-[2,3-dihydro-3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2-benzofuranyl]-2,6-dimethoxyphenoxy]-1-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol (8), acernikol (9), leptolepisol D (10), buddlenol E (11), (1S,2R)-2-[2,6-dimethoxy-4-[(1S,3aR,4S,6aR)-tetrahydro-4-(4-hydroxy-3,5-dimethoxyphenyl)-1H,3H-furo[3,4-c]furan-1-yl]phenoxy]-1-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol (12), syringaresinol (13), isolariciresinol (14), icariside E4 (15), sakuraresinol (16), 1,2-diguaiacyl-1,3-propanediol (17), 2,3-dihydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone (19), 3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)propan-1-one (20), dihydroconiferyl alcohol (21), 4-acetylcatechol (22), 3',4',5'-trihydroxyacetophenone (23), 3,4-dihydroxy-2-methylbenzaldehyde (24), protocatechuic acid (25), 4-(dimethoxymethyl)pyrocatechol (26), tyrosol (27), isofraxidin (28), and 4-hydroxycatechol (29). One sesquiterpene, phaseic acid (30), which is a known metabolite of the phytohormone abscisic acid, was also isolated from MS-EtOAc. The antioxidant activities of MS-EtOAc (IC(50) = 75.5 μg/mL) and the pure isolates (IC(50) ca. 68-3000 μM) were comparable to that of vitamin C (IC(50) = 40 μM) and the synthetic commercial antioxidant butylated hydroxytoluene (IC(50) = 3000 μM), in the diphenylpicrylhydrazyl radical scavenging assay. The current study advances scientific knowledge of maple syrup constituents and suggests that these diverse phytochemicals may impart potential health benefits to this natural sweetener.  相似文献   

18.
Fourteen triterpene saponins (1-14) have been isolated from the roots of Medicago hybrida and their structures elucidated by FAB-MS and NMR analysis. Two of them are new compounds and were identified as hederagenin 3-O-[alpha-L-rhamnopyranosyl(1-->2)-beta-D-glucopyranosyl(1-->2)-beta-D-glucopyranosyl]-28-O-beta-D-glucopyranoside (7) and oleanolic acid 3-O-[beta-D-galactopyranosyl(1-->2)-beta-D-glucuronopyranosyl]-28-O-[alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranoside] (14). Seven saponins being mono- and bidesmosides of hederagenin (1, 5, 6, 9), one bidesmoside of bayogenin (2), and two bidesmosides of 2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid (11) and oleanolic acid (13) are known compounds but not previously reported as saponin constituents of Medicago, whereas five other saponins, being mono- and bidesmosides of medicagenic acid (3, 4, 8, 10, 12), and one monodesmoside of hederagenin (8) have been previously isolated from other Medicago species. The presence of 2beta,3beta-dihydroxyolean-12-en-23-al-28-oic acid might represent an interesting intermediate in the biosynthesis of these substances.  相似文献   

19.
The enantiomeric compositions of 2-methylbutanol (1), 4-methylhexanol (2), 2-methylbutanoic acid (3), and 4-methylhexanoic acid (4) present in rhubarb (Rheum rhabarbarum L.) stalks were determined. Enantiodifferentiation was achieved via multidimensional gas chromatography using heptakis(2,3,6-tri-O-ethyl)-beta-cyclodextrin as a chiral stationary phase. For all compounds the enantiomeric ratios were in favor of the (R)-enantiomers. The alcohols (1 and 2) exhibited generally high excesses of the (R)-enantiomers, the ratios varying slightly from batch to batch. For the acid (3) a rather narrow range averaging 65% (R):35% (S) was observed. The procedure applied to isolate the volatiles (vacuum headspace technique, simultaneous distillation--extraction, liquid--liquid extraction) had no significant impact on the enantiomeric ratios. The study describes for the first time a plant used as food material in which 2-methyl-branched volatiles are not nearly exclusively present as (S)-enantiomers. This information enlarges the current regulatory knowledge regarding the classification of these important flavor compounds as "natural" on the basis of their enantiomeric ratios.  相似文献   

20.
Glycosidically bound compounds were isolated from the methanol extract of fresh rhizomes of smaller galanga (Alpinia officinarum Hance). Nine glycosides (1-9) were finally obtained by reversed-phase HPLC and their structures were elucidated by MS and NMR analyses. They were the three known glycosides, (1R,3S,4S)-trans-3-hydroxy-1,8-cineole beta-D-glucopyranoside (1), benzyl beta-D-glucopyranoside (3), and 1-O-beta-D-glucopyranosyl-4-allylbenzene (chavicol beta-D-glucopyranoside, 4); and the six novel glycosides, 3-methyl-but-2-en-1-yl beta-D-glucopyranoside (2), 1-hydroxy-2-O-beta-D-glucopyranosyl-4-allylbenzene (5), 1-O-beta-D-glucopyranosyl-2-hydroxy-4-allylbenzene (demethyleugenol beta-D-glucopyranoside, 6), 1-O-(6-O-alpha-L-rhamnopyranosyl-beta-D-glucopyranosyl)-2-hydroxy-4-allylbenzene (demethyleugenol beta-rutinoside, 7), 1-O-(6-O-alpha-L-rhamnopyranosyl-beta-D-glucopyranosyl)-4-allylbenzene (chavicol beta-rutinoside, 8), and 1,2-di-O-beta-D-glucopyranosyl-4-allylbenzene (9). Compounds 2-9 were detected for the first time as constituents of galanga rhizomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号