首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Sweet potato virus disease (SPVD) is the name used to describe a range of severe symptoms in different cultivars of sweet potato, comprising overall plant stunting combined with leaf narrowing and distortion, and chlorosis, mosaic or vein-clearing. Affected plants of various cultivars were collected from several regions of Uganda. All samples contained the aphid-borne sweet potato feathery mottle potyvirus (SPFMV) and almost all contained the whitefly-borne sweet potato chlorotic stunt closterovirus (SPCSV). SPCSV was detected by a mix of monoclonal antibodies (MAb) previously shown to react only to a Kenyan isolate of SPCSV, but not by a mixture of MAb that detected SPCSV isolates from Nigeria and other countries. Sweet potato chlorotic fleck virus (SPCFV) and sweet potato mild mottle ipomovirus (SPMMV) were seldom detected in SPVD-affected plants, while sweet potato latent virus (SPLV) was never detected. Isolates of SPFMV and SPCSV obtained by insect transmissions together induced typical symptoms of SPVD when graft-inoculated to virus-free sweet potato. SPCSV alone caused stunting and either purpling or yellowing of middle and lower leaves when graft-inoculated to virus-free plants of two cultivars. Similarly diseased naturally inoculated field plants were shown consistently to contain SPCSV. Both this disease and SPVD spread rapidly in a sweet potato crop.  相似文献   

2.
3.
 根据已报道的甘薯潜隐病毒(Sweet potato latent virus,SPLV)外壳蛋白(CP)基因的核苷酸序列合成引物,利用RT-PCR方法克隆了SPLV河南分离物(SPLV-HN)的CP基因及部分3'端非编码区序列,序列分析表明,SPLV-HN CP基因由879个核苷酸组成(GenBank登录号为DQ399862),编码293个氨基酸残基。与GenBank中SPLV-CH(X84011)和SPLV-T(X84012)分离物的核苷酸序列相似性分别为96.8%和93.0%;与日本分离物(E15420)的核苷酸序列相似性为83.6%。将CP基因克隆到原核表达载体pET-30a(+)上,SDS-PAGE分析表明,经IPTG诱导,CP基因在大肠杆菌BL21(DE3)pLysS中得到了高效表达。以表达的蛋白为抗原,免疫家兔,制备了SPLV外壳蛋白的特异性抗血清。ACP-ELISA检测结果表明,制备的抗血清可用于田间甘薯样品的检测。  相似文献   

4.
5.
 甘薯褪绿斑病毒(Sweet potato chlorotic fleck virus,SPCFV)是侵染甘薯的主要病毒之一。本研究利用RT-PCR方法克隆了SPCFV中国4个分离物的外壳蛋白(CP)基因。序列分析表明,cp基因全长900 bp,编码299个氨基酸残基。4个分离物cp基因的核苷酸序列一致性为78.3%~89.9%,推导的氨基酸序列一致性为91.3%~95.7%,存在较大的分子变异。不同分离物CP氨基酸序列N末端的第3-32位氨基酸为多变区。将四川分离物的cp基因克隆到原核表达载体pET-28a(+)上,SDS-PAGE分析表明,经IPTG诱导,cp基因在大肠杆菌BL21(DE3)中得到了高效表达。以表达的蛋白为抗原免疫家兔,制备了SPCFV CP的特异性抗血清。ACP-ELISA检测结果表明,制备的抗血清效价达1∶128 000,可用于田间甘薯样品的检测。  相似文献   

6.
ABSTRACT Approximately 12.4 kb of the genome of a mealybug-transmissible, North American isolate of Little cherry virus (LChV-3, previously designated LChV-LC5) has been cloned and sequenced. The sequenced portion of the genome contains 10 open reading frames (ORFs) and, based on sequence comparisons, encodes a putative RNA helicase (HEL), RNA-dependent RNA polymerase (POL), two coat proteins (CPs), a homologue of HSP70, a 53K protein (p53) that is similar to an equivalent-size protein in other closteroviruses, and a 22K (p22) protein of unknown function. The genome also potentially encodes two small proteins (p5 and p6), one of which is similar to the small hydrophobic proteins of other closteroviruses. Phylogenetic analyses utilizing sequences of the HEL, POL, and HSP70 homologue suggest that LChV-3 is most similar to other mealybug-transmitted closteroviruses. Further comparisons between LChV-3 and a 4.7-kb region of the recently described Little cherry virus-2 (LChV-2) reveals 77% nucleotide sequence identity. Based on this low sequence identity, we propose that LChV-3 be considered a separate species, designated LChV-3. Unexpectedly, the LChV-3 CP duplicate ORF was found to lie upstream of the HSP70 ORF; therefore, the genome organization of LChV-3 is distinct from that of other closteroviruses. Polyclonal antiserum raised to bacterially expressed LChV-3 CP was useful for detection of LChV-diseased trees in the cherry-growing districts of British Columbia, Canada.  相似文献   

7.
ABSTRACT Isolates of Sweetpotato feathery mottle virus (SPFMV, genus Potyvirus, family Potyviridae) were obtained in several districts of Uganda from sweetpotato plants infected with the sweetpotato virus disease (SPVD), the most important disease of this crop in Africa. A monoclonal antibody (MAb 7H8) raised against the coat proteins (CP) of a mixture of the SPFMV strain C (United States) and the isolate SPV-I (West Africa) distinguished Ugandan SPFMV isolates into those detectable and not detectable by the MAb. These two serotypes differed in prevalence in different districts of Uganda and in two common sweetpotato cultivars. Both serotypes could be transmitted simultaneously by single aphids. The serotypes differed in their ability to systemically coinfect sweetpotatoes that were infected with Sweetpotato chlorotic stunt virus (SPCSV, genus Crinivirus), the virus required to induce SPVD in SPFMV-infected plants. One sweetpotato breeding line, resistant to SPFMV from the New World, was infected by graft-inoculation with all SPFMV isolates from Uganda. Another SPFMV-resistant sweetpotato line became infected with SPFMV and developed SPVD only following coinoculation with SPCSV.  相似文献   

8.
以原核表达的甘薯潜隐病毒(SPLV)的外壳蛋白(CP)为抗原免疫小鼠,经过细胞融合和亚克隆,筛选出2株稳定分泌抗SPLV CP的单克隆抗体杂交瘤细胞株(5B11-2和5G8-2),并分别制备了单克隆抗体腹水。间接ELISA结果表明,用SPLV CP包被酶联板,5B11-2和5G8-2单克隆抗体的效价均为1∶512 000;用感染SPLV的甘薯叶片汁液包被酶联板,2株单克隆抗体的效价均为1∶6 400。抗体类型及亚类鉴定结果表明,2株单克隆抗体均为IgG1、κ轻链。Western blot分析表明,2株单抗均能与SPLV CP和感染SPLV的甘薯叶片汁液有特异性反应。利用单克隆抗体建立的间接抗原包被ELISA(ACP-ELISA)检测SPLV方法,病叶1∶3 840倍稀释仍能检测到病毒。血清学和RT-PCR检测结果表明,制备的单克隆抗体可用于田间甘薯样品的检测。  相似文献   

9.
 根据已报道的甘薯脉花叶病毒(Sweet potato vein mosaic virus,SPVMV)外壳蛋白(CP)基因的核苷酸序列合成引物,利用RT-PCR方法克隆了SPVMV河南分离物(SPVMV-HN)基因组3′端1.8 kb的基因片段,包括部分NIb 基因序列和完整的CP基因及3′端非编码区序列(3′UTR)。序列分析表明,SPVMV-HN的CP基因由996个核苷酸组成(GenBank登录号为FJ687211),编码332个氨基酸残基。与已发表的SPVMV其他分离物相比,其推导的氨基酸序列一致性为95.2%~98.5%,与 SPVMV广东分离物的氨基酸序列一致性为97.9%。将CP基因克隆到原核表达载体pET-28a(+)上,SDS-PAGE分析表明,经IPTG诱导,CP基因在大肠杆菌BL21(DE3) pLysS中得到了高效表达。以表达的蛋白为抗原,免疫家兔,制备了SPVMV外壳蛋白的特异性抗血清。ACP-ELISA检测结果表明,制备的抗血清可用于田间甘薯样品的检测。利用SPVMV的抗血清,对采自全国14个省(市)的田间甘薯样品以及嫁接的巴西牵牛样品进行了检测,结果表明,SPVMV在我国甘薯上普遍存在。  相似文献   

10.
北方四省区番茄褪绿病毒的分子鉴定   总被引:3,自引:0,他引:3  
2015-2016年间,在山西省、内蒙古自治区、辽宁省、吉林省采集到疑似感染番茄褪绿病毒Tomato chlorosis virus(ToCV)的番茄植株。利用扩增ToCV外壳蛋白(coat protein,CP)和类热激蛋白(heat shock protein 70homolog,HSP70h)基因片段的两对特异性引物,通过RT-PCR对疑似样品进行分子检测,得到970bp和1 864bp的特异条带,经测序、比对确定为ToCV。序列分析表明,山西晋中分离物SXJZ(KX853540)的CP核苷酸序列与河南安阳分离物HNAYHX(KP264983)相似性为99.7%,内蒙古呼和浩特分离物NMHHHT(KU204709)和辽宁大连分离物LNDL(KU204707)的CP核苷酸序列与国内已报道的山东寿光分离物SDSG(KC709510)相似性分别为99.5%和99.7%,吉林长春分离物JLCC(KU306111)的CP核苷酸序列与山东聊城分离物SDLC(KC812622)的相似性为99.8%。而HSP70h核苷酸序列的相似性分析表明,山西晋中分离物SXJZ(KX853539)与日本分离物Tochigi(AB513442)相似性为99.4%,内蒙古呼和浩特分离物NMHHHT(KU204710)、辽宁大连分离物LNDL(KU204708)和吉林长春分离物JLCC(KX880384)与山东寿光分离物SDSG(KC709510)相似性分别为99.7%、99.8%和99.7%。试验结果明确了番茄褪绿病毒已蔓延传播到我国山西、内蒙古及东北地区。  相似文献   

11.
正病毒病是引起甘薯品质降低和减产的重要原因之一,现已报道30多种能侵染甘薯的病毒~([1,2])。山东省是甘薯种植大省,病毒种类近10种~([3,4])。甘薯羽状斑驳病毒(Sweet potato feathery mottle virus,SPFM V)、甘薯潜隐病毒(Sweet potato latent virus,SPLV)是为害甘薯的主要病毒,在全国甘薯种植区广泛分布~([5,6])。甘薯病毒2(Sweet potato virus 2,SPV2)为Potyvirus的一个暂定种,多与同属的其他病毒混合侵染~([7])。多重PCR技术由Chamberian等~([8])1988年首次提出,可实现多基因的同时扩增,具有节省时间、提高效率的优点,已初  相似文献   

12.
A total of 119 isolates of Rhizoctonia were collected from stem canker lesions, stolon and root lesions, hymenia on stems, or from black scurf on tubers of potato plants ( Solanum tuberosum ) in Finland (latitudes 60–67°N). All isolates except three belonged to anastomosis group 3 (AG-3) of R. solani , as determined by phylogenetic analysis of the internal transcribed spacer sequences (ITS1 and ITS2) of ribosomal RNA (rRNA) genes. Sensitivity of the 119 isolates to the fungicide flutolanil was tested in vitro (EC50 values 0·14–0·75  µ g active ingredient mL−1). The isolates also varied considerably in growth rate (5·1–14·8 mm day−1). The severity of disease caused by 99 isolates was determined based on the proportion of potato sprouts affected by lesions, discoloration or death, which was c . 1–60%. Only two isolates that were able to cause severe symptoms showed particularly low sensitivity to the fungicide and rapid growth rate. One isolate each of anastomosis groups AG-2-1 and AG-5 and an unknown, binucleate Rhizoctonia sp. were detected. The AG-5 isolate and the binucleate isolate caused mild symptoms on potato sprouts, whereas the AG-2-1 isolate was not pathogenic. Taken together, AG-3 of R. solani was the predominant causal agent of the stem canker and black scurf diseases of potato in Finland and showed considerable variability in disease severity, fungicide sensitivity and growth rate in vitro .  相似文献   

13.
本文研究了培养基、温度、振荡速度等因素对稻曲病菌Ustilaginoidea virens薄壁分生孢子产孢量的影响。结果表明,稻曲病菌薄壁分生孢子在培养第7天基本达到最大孢子量;该菌最适宜产孢的培养基为马铃薯煮汁,在煮汁中添加蔗糖可大幅提高产孢量;适宜的产孢温度为26~28℃;静止培养不利于产孢,振荡培养有利于产孢,并表现为转速越高产孢量越多;光照条件对产孢量没有影响。  相似文献   

14.
Novel and severe symptoms of chlorosis, rugosity, leaf strapping and dark green islands, designated as sweetpotato severe mosaic disease (SPSMD), were caused by dual infection of Sweet potato mild mottle virus (SPMMV; Ipomovirus ) and Sweet potato chlorotic stunt virus (SPCSV; Crinivirus ) in three East African sweetpotato cultivars (Tanzania, Dimbuka and New Kawogo). The storage root yield was reduced by ∼80%, as compared with healthy plants under screenhouse conditions in Uganda. Plants infected with SPMMV or SPCSV alone showed nonsignificant or 50% yield reduction, respectively. SPCSV reduced resistance to SPMMV in sweetpotato, similar to the situation with resistance to Sweet potato feathery mottle virus (SPFMV; Potyvirus ) that breaks down following infection with SPCSV, followed by development of sweet potato virus disease (SPVD). In single virus infections with SPMMV and SPFMV or their coinfection, cvs Tanzania and Dimbuka were initially systemically infected, displayed symptoms and contained readily detectable virus titres, but new leaves were symptomless with very low virus titres, indicating recovery from disease. In contrast, cv. New Kawogo remained symptomless and contained low SPMMV and SPFMV titres following graft inoculation. These moderate and high levels of resistance to SPMMV and SPFMV, respectively, were lost and cultivars succumbed to a severe disease following coinfection with SPCSV. The synergistic interactions increased titres of SPMMV and SPFMV RNA by ∼1000-fold as quantified by real-time PCR, whereas SPCSV titres were reduced twofold, indicating an antagonistic interaction. Coinfection with SPMMV and SPFMV caused no detectable changes in virus titres or symptom severity.  相似文献   

15.
甘薯病毒病害(Sweet potato virus disease,SPVD)是由毛形病毒属(Crinivirus)的甘薯褪绿矮化病毒(Sweet potato chlorotic stunt virus,SPCSV)和马铃薯Y病毒属(Potyvirus)的甘薯羽状斑驳病毒(Sweet potato feathery mottle virus,SPFMV)协生共侵染甘薯引起的病毒病害[1].  相似文献   

16.
3种甘薯病毒多重RT-PCR检测方法的建立   总被引:1,自引:0,他引:1  
  相似文献   

17.
Resistance tests were made on seedlings of transformed lines of Nicotiana benthamiana which contain a transgene encoding the coat protein (CP) gene of a Scottish isolate of potato mop-top virus (PMTV). This transgene has been reported to confer strong resistance to the PMTV isolate from which the transgene sequence was derived and also to a second Scottish isolate. Plants of lines of the transgenic N. benthamiana were as resistant to two Swedish and two Danish PMTV isolates as to a Scottish isolate, and of five lines tested, greater than 93.5% of transgenic plants were immune. The coat protein gene sequences of these four Scandinavian isolates were very similar to those of the two Scottish isolates. The greatest divergence between the isolates was three amino acid changes and there was less than 2% change in CP gene nucleotide sequence. It is concluded that the PMTV CP transgene used in these experiments could confer resistance against isolates from different geographical areas because it is becoming apparent that the CP genes of PMTV isolates are highly conserved.  相似文献   

18.
Sixteen Plum pox virus (PPV) isolates from several stone fruit cultivars, host species, orchards and geographical areas of Bosnia and Herzegovina were selected for typing, using serotype-specific monoclonal antibodies (MAbs) and PCR–RFLP, targeting the 3' terminal region of the coat protein (CP) and P3-6K1 with restriction enzymes Rsa I and Dde I. Four PPV isolates were identified as PPV-M by serology and PCR; eight isolates were identified as PPV-D based on PCR–RFLP on both genomic regions, but were not recognized by the D-specific MAb4DG5. Four isolates from plum were identified as natural D/M recombinants (PPV-Rec), based on conflicting results of CP and P3-6K1 typing. To investigate the genetic diversity of Bosnian PPV isolates in more detail, five isolates (three PPV-Rec, one PPV-M and one PPV-D) were partially sequenced in the region spanning the 3' terminal part of the NIb gene and the 5'-terminal part of the CP gene, corresponding to nucleotides 8056–8884. Nucleotide sequence alignment of recombinant isolates showed that they were closely related at the molecular level to previously characterized recombinants from other European countries, and shared the same recombination break point in the 3' terminal part of the NIb gene. This is the first report of naturally infected Prunus trees with PPV-M, PPV-D and PPV-Rec in Bosnia and Herzegovina. The high variability of the Bosnian PPV isolates fits with the presence of this virus in the country over a long period.  相似文献   

19.
烟草花叶病毒丁香分离物的分离与鉴定   总被引:6,自引:0,他引:6  
 从表现花叶症状的丁香病株上获得一病毒分离物,其在电镜下为约300 nm×18nm的杆状粒子;电泳分析表明感病组织中ds RNA大约为6.4kbp,而其外壳蛋白分子量约为17.6k Da。以上实验结果初步将该病毒分离物鉴定为烟草花叶病毒属(Tobamovirus)。根据该属病毒复制酶基因序列设计通用引物,进行RT-PCR检测,扩增出约1000 bp的预期特异片段(Gen Bank AY566703)。将PCR产物克隆后测序,序列分析表明,与从蚕豆中分离的TMV-B株系序列(Gen Bank AJ011933.1)同源性为99.90%。根据烟草花叶病毒(Tobacco mosaic virus,TMV)的RNA CP基因序列设计引物,进行RT-PCR,扩增出约800 bp的预期特异片段(Gen Bank AY56672),序列分析表明,与TMV-B株系序列(Gen Bank AJ011933.1)同源性达99%,上述实验结果表明,该病毒分离物为TMV。由于该分离物与TMV-B在指示植物上的症状存在明显差异,所以,作者把该分离物暂命名为TMV-S。  相似文献   

20.
In a previous study, we found that a 70% aqueous ethanol extract of the fresh aerial tissue of Geranium carolinianum L. showed antimicrobial activity against the pathogen causing soil rot of sweet potato. As the appropriate time for cultivation of sweet potato and the growing period of G. carolinianum do not overlap in Okinawa Prefecture, Japan, the fresh aerial tissue is available in order to control soil rot of sweet potato. Thus, we examined the control effect of fresh aerial tissue against soil rot of sweet potato. The various trials (a single repetition of 20 m2) were performed in fields that had undergone 8 years of continuous cropping of sweet potato at Okinawa Prefectural Agricultural Experiment Station, Horticultural branch. After harvest, when the disease severity was evaluated by determining the necrotic area of the storage root, the incorporation of fresh aerial tissue (5000 kg 1000 m-2) into the soil was considered to be highly effective, with a protective value of 75.4. This result shows that G. carolinianum could be used as a biological agent for the control of soil rot of sweet potato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号