首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly sensitive, lightweight, portable instrument has been developed for continuous monitoring of N02 in air. It operates by detecting the chemiluminescence produced when N02 encounters a surface wetted with a specially formulated solution containing luminol. Unlike other chemiluminescent instruments it measures N02 directly and does not require prior conversion of N02 to NO. It does not respond to H202, NO, HNO3, NH3, CO, C02, S02 or organic nitrates. The only interferences encountered to date are from 03 and PAN with the response to 03 being less than 0.2% of its response to N02. The response time of the instrument is less than 1 s and its sensitivity is better than 5 pptv. The instrument shows a negative temperature dependence of about 2% °C?1 which is compensated electronically. Measurements have been made with the instrument during a number of field missions in polluted urban and relatively clean rural air. The relative influences of photochemistry and transport from local sources has been observed. Simultaneous measurements made with this instrument and the unequivocal tunable diode laser absorption spectroscopy method have shown excellent agreement.  相似文献   

2.
A preliminary analysis of O3, SO2, SO inf4 sup2? , and total NO inf3 sup? deposition to the red spruce forest on the summit of Whitetop Mountain, Virginia, illustrates uncertainties in analysis methodologies, establishes the relative importance of three deposition pathways, and suggests areas for further research. Results are presented here for an analysis of the dry, wet (precipitation), and cloud water deposition pathways for the four chemical species during a 26-day period in April and May 1986. Dry and cloud water depositions are estimated using available models along with air and cloud water chemistry measurements made at the summit. For water soluble species, depositions by precipitation and cloud interception are found to be comparable in magnitude, while dry deposition appears to be about an order of magnitude less. High levels of atmospheric O3 lead to a large estimate of 03 deposition (on a mass flux basis) when compared to the estimated deposition of gaseous SO2. This is in spite of the fact that computed SO2 dry deposition velocities exceed those for O3. Model uncertainties are large for both dry deposition velocity and cloud water flux computations, and some bias in computations probably exists because of the application of the models to a complex terrain situation. Field evaluation of the cloud water deposition model is of greatest priority because of the apparent relative importance of that deposition pathway.  相似文献   

3.
Atmospheric gases and particulates were collected using four-stage filter-pack in Chunchon from January through December in 1999. Particulate SO4 2? and NO3 ?, and gaseous HNO3, SO2 and NH3 were analyzed. Annual average concentration of SO4 2?(S), NO3 ?(S), HNO3 (g), SO2(g) and NH3(g) were 5.75µg/m3, 4.98µg/m3, 0.33ppb, 1.52ppb and 7.25ppb, respectively. Annual dry deposition fluxes were estimated using the measured concentration and dry deposition velocity published by other research group. Annual dry deposition of S was 287kg · (km)?2·y?1, which accounted for about 30% of total S deposition. For N deposition, dry deposition is predominant; about 70% of total N deposition was through dry process mostly as forms of NH3 and HNO3.  相似文献   

4.
Rainfall, stemflow, and throughfall were collected from 1996 to 1999 at two types of forest sites: (1) forests near the traffic roads and urban areas and (2) forests away from the urban areas at Mt. Gokurakuji, Hiroshima, western Japan in order to estimatethe effects of anthropogenic activities on atmospheric deposition. Rainfall deposition for major ions showed small differences between the sites. The NO3 - and SO4 2-concentrations in stemflow were higher at the urban-facing slope than at the mountain-facing slope. Throughfall deposition of NO3 - and SO4 2- was also higher at urban-facing slopes. Net throughfall (NTF) deposition (throughfall minus rainfall) of NO3 - and SO4 2- accounted for 77 and50% of the total throughfall deposition on urban-facing slopes, respectively, while it accounted for 44 and 23% on themountain-facing slopes, respectively. These results indicated a higher contribution from dry deposition on urban-facing slopes compared to mountain-facing slopes. Atmospheric N (NO3 - +NH4 +) deposition from throughfall was estimated to be around 17–26 kg N ha-1 yr-1 on urban-facing slopes, which was greater than the threshold of N deposition that could cause nitrogen leaching in Europe and the United States. The highload of atmospheric N deposition may be one of the factors bringing about the decline of pine forests on urban-facing slopesof Mt. Gokurakuji.  相似文献   

5.
山西省太原市旱作农区大气活性氮干湿沉降年度变化特征   总被引:6,自引:0,他引:6  
鉴于大气氮素沉降对整个生态系统的重要影响,我国近年来陆续开展了不同尺度的大气氮素干、湿沉降的研究,但少有农业区多年连续监测的资料。本研究利用DELTA系统、被动采样器和雨量器在山西省太原市郊区阳曲县河村旱作农业区进行了4年的监测试验,观测大气氮素干、湿沉降的时间变异。结果表明:2011年4月—2015年3月,河村4年大气活性氮NH_3、HNO_3、NO_2、颗粒态NO_3~-(pNO_3~-)、颗粒态NH_4~+(pNH_4~+)平均沉降量分别为4.50 kg(N)·hm~(-2)·a~(-1)、3.54 kg(N)·hm~(-2)·a~(-1)、2.56 kg(N)·hm~(-2)·a~(-1)、1.62 kg(N)·hm~(-2)·a~(-1)、2.75 kg(N)·hm~(-2)·a~(-1),大气氮素干沉降总量为12.38~18.95 kg(N)·hm~(-2)·a~(-1),以2011年的氮干沉降量最高,2014年的最低。2011年4月—2015年3月各月氮干沉降量与氨气沉降量之间存在显著正相关,相关系数在0.809 8~0.937 1,由此可知,该地区活性氮沉降主要受农业氨气排放的影响。河村4年雨水中NO_3~-、NH_4~+平均浓度分别为3.20 mg(N)·L~(-1)和2.43 mg(N)·L~(-1),大气氮素湿沉降11.67~41.31 kg(N)·hm~(-2)·a~(-1)。年度间氮素湿沉降存在很大差异,以2012年氮素年湿沉降量最高,2014年最低,每年大气氮素湿沉降占氮总沉降量的份额超过50%。此外,4年湿沉降中不仅NO_3~--N和NH_4~+-N之间、且二者与降雨量也呈显著线性或二次相关关系,说明降雨量对NO_3~--N和NH_4~+-N的湿沉降影响较大。本研究表明太原市旱作农区不同年份间氮素湿沉降比干沉降差异更大,且总沉降数量较高。虽然是旱作区,该地区氮素干沉降略低于湿沉降。研究结果为该地区农田氮肥施用和氮素循环监测提供了理论依据。  相似文献   

6.
Dry deposition velocity estimates of SO, HNO3 and SO4 2? were computed for six locations in eastern North America using two different inferential models; a Big-Leaf model utilized by the U. S. National Dry Deposition Network (NDDN) and, a land-use based model (LUM) that has been used in the past to estimate the relative importance of dry versus wet deposition over selected Canadian regions. There were consistent differences between models that were related to the surface type, chemical species and time of year. Mean monthly dry deposition velocities based upon the 1990–91 time period were compared at two locations. The seasonal cycles in deposition velocity were similar between models, but there were considerable differences in the amplitude of the cycles. The LUM predicted about a 400% increase in S042- deposition velocity from the winter to the summer months, while there was a 50 to 100% increase in the NDDN model estimates, depending upon location. According to the LUM, HN03 deposition to crop land increased by about a factor of 6 from winter to summer, while the big leaf model predicted a 50% increase. Overall, there was better agreement for SO2. Averaged over 12 months, the differences in deposition velocity between models were smaller and generally within the range of uncertainty associated with inferential models. For all six sites, the mean percent difference between models in deposition velocity for SO2, HNO3 and SO4 2? were 13, 35 and 79, respectively. These differences highlight the effect of using different methods for estimating dry deposition and the importance of applying the same model when examining regional patterns in dry/total deposition rates.  相似文献   

7.
Generally, dry deposition processes are very important for atmospheric chemistry of pollutants providing up to 30–80 % of the removal for certain compounds from the atmosphere. The model for calculating of dry deposition fluxes for a large territory seems unsophisticated in spite of the dependence on surface characteristics, pollutant properties and atmospheric conditions. The approach of combining monthly average concentrations measured at the Integrated Background Monitoring Network (IBMoN) and EMEP stations and linear dry deposition velocity was used to calculate total sulphur and nitrogen fluxes for the whole of the former Soviet Union (FSU) taking into account large-scale geographical variability in climate and lands. Most values of all SO2 and SO4 2? concentrations were below 2.9 and 3.1 mgS/m3, and NO2 concentration were 1.5 mgN/m3 over European part and 0.6 mgN/m3 in Western Siberia. The long-term trends of oxidised sulphur and nitrogen compounds in the atmosphere were examined for 1982–1998 in certain FSU regions. Annual dry deposition of sulphur was estimated as 3.64 Mt S (in sulphate form) and 2.76 Mt S (in SO2 form) for the whole area of FSU. Annual removal of NO2 by dry deposition was calculated at 1.27 Mt N. These values constituted between 44 and 50% of total oxidised sulphur and nitrogen deposition.  相似文献   

8.
One-year field measurements were conducted in a Japanese cedar (Cryptomeria japonica) forest, located in Gunma Prefecture, Japan. On the basis of the meteorological and atmospheric concentration data, the dry deposition of SO2, HNO3, NO2 and HCl was estimated using the inferential method. The annual dry deposition of H+ was estimated at 721 eq ha?1yr?1, which was 40% larger than the measured annual wet deposition of H+ (514 eq ha?1yr?1). Therefore, dry deposition is an important pathway for the atmospheric input of H+ to the forest in the study site. The contribution of each gas to the dry deposition of H+ was as follows: SO2, 25%; HNO3, 32%; NO2, 10%; and HCl, 33%. The extremely high contribution of HCl appeared to be caused by the high emission intensity of HCl due to waste incineration in the site region. The differences between estimated deposition and throughfall and stemflow measurements indicated that about 80% of the total deposition of H+ was taken up by the canopy.  相似文献   

9.
Aerodynamically designed surrogate surfaces were used to determine the relative importance of gaseous (SO2, HNO3, NH3) and particulate species (SO4 2?, NO3 ?, NH4 +, Ca2+) in the dry deposition flux. For 11 sampling periods, we measured the deposition fluxes, ambient gaseous concentrations, size distributions of atmospheric aerosols and some meteorological parameters in Uji. The dry deposition of the gas to a nearly perfect sink was calculated by subtracting the greased surface flux from the total deposition flux to both the greased and reagent impregnated (or water) surface. It was found that the gas phase deposition contributed significantly more (60–93%) than the particulate phase to overall deposition of sulfur and nitrogen compounds. The dry deposition velocities of the species were also calculated using the deposition fluxes and the measured ambient concentrations. Comparisons were made between the measured and modeled particulate deposition flux.  相似文献   

10.
Ambient particle and gas concentrations, wet deposition and dry deposition were measured in Warren, MI between December 18, 1983 and April 6, 1984. Dry deposition was measured to various surfaces in a cutoff bucket, including a snow surface, a snow/water surface during melting and a deionized water surface. Dry deposition velocities were calculated for various species from the ratio of the dry flux to the ambient concentrations. The dry deposition velocities measured to a snow surface were 0.082 cm s?1 SO2 2.0 for HNO3, 0.083 for NH4 +, 2.0 for Ca++ and 4.3 for Cl?. The values were not significantly different for a snow/water surface during melting compared to a snow surface. However, higher values of 0.69 cm s?1 for SO2, 6.2 for HNO3, 0.33 for NH4 +, and 4.2 for Ca++ were found to a deionized water surface in the spring. These higher values could be due to the higher air temperature, the pH of the liquid or to increased atmospheric mixing during this period.  相似文献   

11.
Laboratory experiments were conducted to investigate the deposition to aqueous media of the gas phase oxidation products of the following hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs): HCFC-22 (CClF2H), HFC-41 (CH3F), HCFC-123 (CCl2HCF3), HCFC-124 (CClFHCF3), HFC-125 (CF3CF2H), HFC-134a (CF3CFH2), HCFC-141b (CCl2FCH3), HCFC-142b (CClF2CH3), and HFC-152a (CF2HCH3). Single component experiments were conducted were the oxidation products CF3CFO, COF2, CF3C(O)Cl were exposed under laminar flow conditions to alkaline, acidic, and neutral solutions in a aluminum exposure trough. The anionic composition of the exposure solutions were used to determine the effective deposition velocity. Exposures to neutral solutions were also conducted for irradiated HFC and HCFC/Cl2/air mixtures. The combined single component and irradiated mixture experiments were used to measure the effective deposition velocities of C(O)F2, C(O)FCl, HFC(O), CF(O)OOCF(O), CF3CCl(O), CF3CF(O). The deposition velocities differed by as much as a factor of two with the largest velocities found for C(O)F2 and CF3CF(O). The data were insufficient to determine the extent to which gas and liquid phase resistance controlled the overall deposition. However, the data were used to estimate lower limits for the laboratory aqueous resistance and the results were found to be consistent with the recent conclusions of Wine and Chameides who reported the deposition of the oxidation products to oceans and cloudwater was sufficiently fast that there was little likelihood that the products would be transported to the stratosphere.  相似文献   

12.
A eulerian grid photochemical transport and dispersion model was used to simulate the dry deposition rates of nitrogen (as HNO3) and sulfur (as SO2) in Hiroshima, west Japan. Seasonal patterns of predicted dry deposition fluxes reveal that HNO3 is most prevalent at more remote locations while SO2 is deposited near to and slightly downwind from the major emission sources. The predicted dry deposition rates of HNO3 and SO2 were compared to the values measured at Mt. Gokurakuji (located in Hatsukaichi) and in Hiroshima City. The simulation results show that the model under-predicted (about 44% and 80%, respectively) both nitrogen and sulfur deposition rates at Mt. Gokurakuji and in Hiroshima City, indicating that the acid deposition in Hiroshima prefecture is possibly affected by long-range transboundary transport of acidic pollutants. Comparison of wet to dry deposition ratios (4.5 and 8.7 for nitrogen and 4.6 and 7.0 for sulfur) from the two observation sites above indicates that wet deposition maybe the most important acid deposition pathway in Hiroshima, Japan.  相似文献   

13.
Many ecosystems in Switzerland suffer from eutrophication due to increased atmospheric nitrogen (N) input. In order to get an overview of the problem, critical loads for nutrient N were mapped with a resolution of 1×1 km applying two methods recommended by the UN/ECE: the steady state mass balance method for productive forests, and the empirical method for semi-natural vegetation, such as natural forests, (sub-)alpine or species-rich grassland and raised bogs. The national forest inventory and a detailed atlas of vegetation types were used to identify the areas sensitive to N input. The total N input was calculated as the sum of NO3 ?, NH4 +, NH3, NO2 and HNO3 wet and dry deposition. Wet deposition was determined on the basis of a precipitation map and concentration measurements. Dry deposition was calculated with inferential methods including land-use specific deposition velocities. The concentration fields for NH3 and NO2 were obtained from emission inventories combined with dispersion models. Reduced N compounds account for 63% of total deposition in Switzerland. As indicated by exceeded critical loads, the highest risk for harmful effects of N deposition (decrease of ecosystem stability, species shift and losses) is expected on forests and raised bogs in the lowlands, where local emissions are intense. At high altitudes and in dry inner-alpine valleys, deposition rates are significantly lower.  相似文献   

14.
To evaluate ecosystem response to changing atmospheric deposition, element budgets were established over the period from 1973 to 1991 for a Norway Spruce (Picea abies (L.) Karst.) site. Budgets for Na+, Cl?, Ca2+, Mg2+, N, S and H+ were based on total deposition and seepage water fluxes. The deposition of Ca2+, Mg2+, particularly, of S and H+ decreased with time, while calculated N deposition remained constant at a high level. The decrease in Ca2+ deposition led to a reduction of Ca2+ fluxes with seepage water. The decrease of Mg2+ deposition did not have an effect on the output fluxes of Mg2+. The reversibility of soil and seepage water acidification by reduced S deposition was delayed by the release of previously accumulated soil SO 4 2? . The highest NO 3 ? fluxes were observed during the period of 1986 to 1988; NO 3 ? fluxes in general demonstrated a considerable annual and periodic variation. Total N accumulation in the ecosystem amounted to nearly 590 kg ha?1 yr?1 during the observation period. The major sink of N in the spruce site is the aggrading humus layer. The results emphasize the need for measurements over several years to make conclusions regarding the function of ecosystems in response to atmospheric deposition.  相似文献   

15.
A simple mass flux model was developed to simulate the response of SO4 2- concentrations in surface waters to past and anticipated future changes in atmospheric deposition of SO4 2-. Values of bulk (or wet) SO4 2- deposition and dry deposition of S determined from measured air concentrations and a deposition velocity were insufficient to balance watershed SO4 2- export at the Hubbard Brook Experimental Forest, NH and for a regional survey of watersheds in the northeastern U.S. We propose two explanations for the unmeasured S source: 1) a significant underestimation of dry S deposition, and/or 2) internal watershed S sources, such as weathering and/or mineralization of soil organic S. Model simulations based on these two mechanisms agreed closely with measured stream SO4 2- concentrations at Hubbard Brook. Close agreement between measured and model predicted results precluded identification of which of the two mechanisms controlled long-term trends in stream SO4 2-. Model simulations indicated that soil adsorption reactions significantly delayed the response of stream water to declines in SO4 2- inputs since 1970, but could not explain the discrepancy in watershed S budgets. Extrapolation of model predictions into the future demonstrates that uncertainty in the source of the S imbalance in watersheds has important implications for assessments of the recovery of surface water acid neutralizing capacity in response to anticipated future reductions in SO2 emissions.  相似文献   

16.
The dry deposition of base cations to a Norway spruce stand was estimated by multiplying the ratio of the ion deposition to the sodium deposition on a surrogate surface with the dry deposition of sodium on the forest stand. The method can in principle only be applied to species that are present only in particles, but the method gives reasonable results when tested on ions that are also dry deposited in other forms (SO 4 2– . NO 3 and NH 4 + ). The atmospheric input and especially the dry deposition of base cations is an important replacement for the loss of base cations from the soil by run-off. The calculated internal circulation of K+ and Ca2+ showed maxima synchronously with rainfall maxima and constitute 71% and 53%, respectively, of the net throughfall deposition. The internal circulation of Ca2+ was almost equal to the SO2 uptake.  相似文献   

17.
Trends in the precipitation-weighted average concentrations and in the deposition of inorganic ions in daily precipitation samples at three Finnish background stations were calculated for a period extending from the seventies to 1988. During the period 1973–1988, S04 2? concentrations in wet deposition at the station in Central Finland decreased by 39% in accordance with the emission decrease of SO1 in Finland of 50% over the same period, and the 20% decrease in Europe from 1980 to 1988. However, due to the more significant decrease in alkaline ions (80% for Mg2+), H+ concentrations increased by 30%. At the two southernmost stations, overall concentrations are higher and the decrease of Mg2+ and Ca2+ is less important, but at the station in southeastern Finland the increase of N03 ? relative to NH4 + has doubled H+ concentrations during the period 1977–1988. Division of the data according to wind direction sectors showed generally decreasing concentrations in the sectors related to Scandinavia, but unchanging or increasing concentrations in the sectors related to eastern Europe. Acid deposition trends were estimated as H+, S04 2? - (Ca2+ + Mg2+), and H+ + NH4 + - N03 +. All these trends showed increasing acid deposition in central Finland and decreasing trends in western Finland. In eastern Finland the trends were opposing due to the increasing N03 + but decreasing NH4 ? trends. It is concluded that S04 2? deposition trends do not reflect acid deposition trends, and SO4 2? or N03 ? deposition do not geographically represent acid deposition.  相似文献   

18.
Anthropogenic and biogenic high molecular weight (C12–C32) hydrocarbons (HC) were deposited from the atmosphere in association with both wet and dry deposition. Wet deposition generally removes HC at a faster rate (22 to 670 μg m?2 day?1) than dry deposition (4 to 189 μg m?2 day?1). However, due to longer periods during which dry deposition occurred, the removal of atmospheric HC by wet and dry deposition is almost equal during this sampling period. Atmospheric HC concentrations ranged from 0.8 to 4.1 μg m?3 and show no simple relationship to wet or dry deposition rates. Large variabilities in deposition rates for individual events were found, but long-term average deposition was relatively constant.  相似文献   

19.
In order to obtain information on dry deposition of SO2 onto loess in China, the effects of water vapor and NO2 on SO2 deposition-oxidation processes were investigated in laboratory measurements. The deposition velocities of SO2 onto loess particles were 2.34–7.33 cm s?1, were high in comparison with the other studies. Deposition of SO2 onto the particles was decreased with exposed time and amounts of SO2, but was influenced by adsorption of water vapor onto the particles. On the other hand, oxidation of SO2 physically8 adsorbed was promoted by the coexistence of water vapor and NO2. So, it was indicated that it was possible for water vapor and NO2 in the atmosphere to play an important role in dry deposition for the deposition-oxidation interaction between SO2 and loess particles.  相似文献   

20.
In 1990 a project to develop a dry deposition monitoring method of SO2, NH3 and NO2 to Speulder forest in the Netherlands began. Detailed annual deposition fluxes for these gases were measured throughout November 1992 to December 1995. This paper describes the measurement set-up and the analysis of the deposition parameters for SO2. The dry deposition velocity was usually smaller than the maximum Vd, showing a resistance to surface uptake, except for periods when the canopy is wet and surface resistance is negligible. Several methods were tested to estimate annual average fluxes from the gradient measurements. Annual fluxes were estimated by selecting the data for periods fulfilling gradient theory and extending the data by using an inferential method for the other periods. The surface resistance parametrisation used in the inferential method was tested using the selected data and was found to yield systematic larger fluxes of the order of 20%. Annual fluxes were 465 mol ha-1 a-1 in 1992/1993, 460 mol ha-1 a-1 in 1994 and 330 mol ha-1 a-1 in 1995. The uncertainty in the annual flux was estimated to be 25%. The annual average dry deposition velocity was 1.5 cm s-1. No large differences were found in deposition parameters between each of the three years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号