首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
【目的】根据木质素结构特点,探究一种木质素基泡沫炭制备方法,为木质素制备新型炭材料提供新的技术方法和产品。【方法】以酶解木质素为碳质前驱体,以氯化锌和酚醛树脂为催化剂和增强剂,在未添加发泡剂的情况下,经混合塑化、发泡、固化、炭化等工艺制备木质素基高比表面积泡沫炭;采用热重分析、扫描电子显微镜和氮气吸附等方法分析木质素发泡机理、过程以及制备的泡沫炭结构;通过测试泡沫炭的密度、机械性能、开孔率等质量指标,探讨发泡温度、氯化锌和酚醛树脂用量对泡沫炭结构的影响。【结果】热重分析结果表明,氯化锌显著催化并降低木质素热分解温度,使木质素发生热分解的温度与发生软化/塑化的温度重合,为木质素热分解产生的挥发性物质发挥发泡功能提供合适温度区域,酚醛树脂与木质素之间形成的三维网状结构赋予发泡前驱体较好的韧性和强度,为木质素自发泡提供基础。160~180℃是合适的发泡温度;氯化锌用量显著影响泡沫炭的密度和孔隙率,酚醛树脂用量主要影响泡沫炭的孔泡尺寸和开孔率。在未添加发泡剂的情况下,采用自发泡方法制备出体积密度为0.26~0.46 g·cm-3、孔隙率为74%~85%、开孔率为82%~9...  相似文献   

2.
在碱性条件下,木质素可部分替代苯酚与甲醛反应制备木质素基酚醛树脂,酚醛树脂经物理发泡,高温碳化工艺生成木质素基泡沫炭。为达到调控木质素基泡孔炭的泡孔结构,改善其孔径分布比例的目的,选用600℃碳化后的泡沫炭(CF-600℃)作为活化基体,利用化学试剂KOH对泡沫炭进行原位活化。研究结果表明:纯碱木质素可以部分取代苯酚,与甲醛发生缩合反应生成酚醛树脂;酚醛树脂基泡沫在450℃时有最大分解速率2.04%/min,炭收率为54.36%; 600℃碳化后的泡沫炭(CF-600℃)、900℃碳化后的泡沫炭(CF-900℃)与KOH原位活化后的泡沫炭(CF-KOH)呈玻璃网状结构,泡孔由50~300μm的泡孔及孔壁组成; 3种泡沫炭皆为无定型炭,非石墨化的炭质结构; KOH原位活化后的泡沫炭(CF-KOH)微孔比例下降,中孔比例上升,比表面积可达1 094.14 m~2/g;且3种泡沫炭的表观密度在0.10~0.15 g/cm~3之间,压缩强度最高可达0.35 MPa。  相似文献   

3.
以腰果酚为原料,先合成一种分子主链结构上含有叔氨基的自催化型聚醚多元醇(CPO),然后与异多苯基多亚甲基多异氰酸酯(PAPI)在无催化剂下制备出一种腰果酚基自催化型聚氨酯泡沫(CPUF),再采用木质素对CPUF增强改性,制备腰果酚-木质素基复合自催化型聚氨酯泡沫(LCPUF),并研究了木质素添加量对此复合聚氨酯泡沫的结构与性能的影响。结果表明:采用木质素改性CPUF可有效提高泡沫的表观密度及压缩强度;当木质素添加量为CPO质量的20%时,所制备的LCPUF泡孔略有减小,表观密度和压缩强度最大,分别为81.48 kg/m~3、0.44 MPa;TG分析显示,木质素的加入对CPUF的热降解过程无显著影响。  相似文献   

4.
泡沫炭(CF)是具有炭特征的海绵状炭材料。泡沫炭以其低密度、耐高温、高机械强度等优异性能而在较多领域展示出巨大应用潜力。对泡沫炭的制备原料、制备方法进行了综述,讨论了制备过程中的影响因素和其结构性能的差异,归纳了泡沫炭的结构、性质和应用,并对泡沫炭未来的发展进行了展望。  相似文献   

5.
泡沫炭(CF)是具有炭特征的海绵状炭材料.泡沫炭以其低密度、耐高温、高机械强度等优异性能而在较多领域展示出巨大应用潜力.对泡沫炭的制备原料、制备方法进行了综述,讨论了制备过程中的影响因素和其结构性能的差异,归纳了泡沫炭的结构、性质和应用,并对泡沫炭未来的发展进行了展望.  相似文献   

6.
以碱木质素和树皮粉为原料,通过苯酚液化后与甲醛反应制备改性树脂。代替5%~15%的多元醇以及异氰酸酯合成了树皮粉和木质素基硬质聚氨酯泡沫。通过对材料的表观密度、抗压强度、导热系数、吸水率的测定,分析了改性树脂对泡沫的力学性能影响,同时分析了材料的热学性能。结果表明,树皮粉的添加有利于提高材料的力学性能,热重分析显示树皮粉的添加没有降低材料的热性能,扫描电镜的图片显示聚氨酯泡沫与树皮粉混合均匀。  相似文献   

7.
碳点(CDs)和石墨烯量子点(GQDs)由于结构稳定、环境友好、水分散性和生物相容性良好、易于功能化改性和可光致发光等优点已成为备受关注的零维碳纳米材料,有望广泛应用于生化指示、生物医学、储能、显示器件和催化等前沿领域。近年来,相比于传统的化石燃料基化合物,来自可再生生物质的木质素及其衍生物不仅价廉易得、活性基团丰富,而且具有天然芳香结构,已成为CDs和GQDs的重要前驱体。但是,已有报道对木质素的解聚机制认识不足,这也逐渐成为制约木质素基CDs和GQDs性能提升的瓶颈之一。因此,必须阐明木质素在相关工艺过程中发生解聚的化学本质,并明确杂原子掺杂与木质素基CDs和GQDs的激发依赖发光行为的内在联系。笔者首先介绍了木质素基CDs和GQDs的制备方法发展历程和潜在应用,同时对其结构和性质等进行评述,重点讨论并总结了制备具有出色激发依赖发光行为的木质素基CDs和GQDs的技术难点,认为开发一类适用于普遍性木质素原料的高效环保解聚策略,以及揭示木质素基CDs和GQDs的杂原子掺杂与其激发依赖发光行为的关联机理将成为该领域今后的重点研究方向。  相似文献   

8.
木质素在合成聚氨酯中的应用   总被引:4,自引:2,他引:2  
木质素作为一种天然可再生资源,其研究和应用日益活跃。在材料中引入木质素,不仅可提高材料的性能,还能降低成本,产生可观的经济效益。文章综述了国内外以木质素、改性木质素代替多元醇为原料合成聚氨酯材料的一些探索性研究和应用,对木质素在聚氨酯泡沫、聚氨酯薄膜、聚氨酯黏胶剂以及聚氨酯涂料等方面进行了阐述;并针对木质素的结构和性能,提出了改性木质素将成为木质素基聚氨酯的研究重点。  相似文献   

9.
在碱性条件下,先利用木质素部分替代苯酚与甲醛反应合成酚醛树脂,然后利用酚醛树脂经发泡工艺制备木质素基酚醛树脂泡沫,当木质素替代量为0%、10%、20%和30%时,分别记为LPF-0%、LPF-10%、LPF-20%和LPF-30%。对泡沫的性能研究结果表明:木质素可部分替代苯酚,与甲醛发生缩合反应生成酚醛树脂;当木质素替代量为20%(LPF-20%)时,泡沫热解具有最大的残炭率54.60%,其热稳定性优于其它酚醛树脂泡沫;随着木质素替代量的增加,木质素基酚醛树脂泡沫的颜色由黄色渐变为褐色,其表观密度由0.05 g/cm~3增加至0.11 g/cm~3,压缩强度从0.26 MPa增加为0.56 MPa,表面粉化程度由13.73%降低至3.48%,吸水率由3.73%降低至1.92%;木质素基酚醛树脂泡沫具有良好的阻燃性,LPF-30%的氧指数最大为33.67%。  相似文献   

10.
木质素是一种绿色环保、低成本的不规则酚类聚合物,其结构中富含羟基和甲氧基等官能团,并且可以从造纸工业的副产品以及农林废弃物中大量获取,因此在各行各业中具有巨大的应用潜力。在储能领域,大量的研究报道了木质素作为可再生碳源制备用于储能装置的电极材料。近年来,越来越多的研究关注了木质素结构中丰富的官能团结构,并充分利用官能团性质将其应用于储能设备,如:利用羟基的亲水性将木质素应用于液流电池的膜结构中提高膜的质子传导率,利用酚-醌结构的可逆变化增加超级电容器的赝电容,利用与苯环共轭的发色基团对太阳能电池光电化学界面进行调控与敏化,利用木质素结构高电荷密度的含氧官能团改善锂离子电池存储的不稳定性,利用木质素分子中丰富的碳和杂原子官能团制备电极从而提高燃料电池的电化学性能。基于木质素分子的官能团结构和性能特点,概述木质素分子对超级电容器、锂离子电池、燃料电池、太阳能电池、液流电池等主流储能器件电化学性能的提升作用和代表性应用,认为最大化保留木质素分子的官能团并将其应用于电化学器件,可以实现木质素分子的多功能化应用,充分发挥木质素基团的特点以提高储能设备的电化学性能。最后,总结归纳了木质素分子应用于...  相似文献   

11.
木质素的高附加值应用研究进展   总被引:3,自引:0,他引:3  
木质素是由3种苯丙烷单元通过醚键和碳碳键相互连接形成的具有三维网状结构的生物高分子,含有丰富的芳环结构、脂肪族和芳香族羟基以及醌基等活性基团。利用木质素的芳香基、酚羟基、醇羟基、羰基和甲氧基等官能团,能制备出具有紫外吸收、生物可分解性、抗菌性、抗氧化、电子传递和吸附性等特性的高分子材料。笔者结合木质素和改性木质素的结构特点,阐述其在胶黏剂与聚氨酯等聚合材料、纳米复合材料、超级电容器电极材料、碳纤维、复合薄膜材料、金属离子吸附材料等领域研究现状,并对其在应用过程中存在的问题进行了分析。最后,阐述了木质素在未来木质素材料化制备高附价值产品应用研究的重点和方向,木质素在电磁波吸收材料、发光材料等新领域具有广阔的应用前景。  相似文献   

12.
木质素基多孔炭材料的制备及应用研究进展   总被引:1,自引:0,他引:1  
木质素是无定型态的高度交联的多酚芳香族聚合物,来源广泛,碳含量丰富,适合用于多孔炭材料的制备.将木质素用于制备多孔炭是实现资源化利用,解决木质素难以大量高效利用而造成环境污染问题的重要途径.本文主要介绍了近些年来,以木质素为炭前驱体,通过物理、化学活化法制备出的以微孔为主的活性炭及采用模板法制备出的介孔炭材料工艺研究情...  相似文献   

13.
随着自然资源的消耗和环保意识的增强,人们不断寻找绿色资源的高质化利用方法,以木材(及其他生物质材料)为主要原材料、采用高温烧结制备的木陶瓷日益受到关注。这种新型的多孔炭材料不仅在一定程度上保存了生物质材料多层次孔隙结构特征,而且具有良好的热学、电磁学、摩擦学和电化学等特性,应用前景广阔。笔者从制备的原辅材料、胶黏剂、功能性添加剂、成型与烧结工艺、结构形态及应用前景等方面出发,详细介绍了国内外在木陶瓷方面所取得的最新成就,并从基本结构与微观形貌、孔隙大小与分布状态、力学性能与行为等方面对其理化性能进行了概括;同时,就物相构成与微晶结构演变、金属离子掺杂机理与复合机制、结构增强机理与界面结构模型等基础理论进行探讨;对吸波与电磁屏蔽特性、电化学与储能性能等功能进行比较与分析,并就材料、结构、制备工艺等对基本性能的影响进行了总结;最后从基础理论的深化、制备方法的改进、基本性能的提升以及使用范围的扩展等方面为今后木陶瓷的研究提出一些建议,旨在进一步提升这种新型炭基多孔材料的性能,为其在高效储能、化工合成、电子电器、航空航天等领域得到更广泛的应用提供依据与参考。  相似文献   

14.
以自制甲阶酚醛树脂为原料,通过发泡法制备泡沫炭,考察了发泡和炭化条件对泡沫炭的微观结构、物相组成、机械强度的影响。结果表明:酚醛树脂泡沫在200~650℃之间应采用较慢的升温速率(1℃/min)进行炭化;由XRD分析发现,900℃炭化温度下所得泡沫炭主要以无定形炭形式存在,同时还存在NaCl晶体;SEM分析可知,表面活性剂吐温-80用量主要影响泡沫炭中泡孔的分布均匀性,发泡剂正己烷用量对泡沫炭的泡孔数量及孔径影响较大,而固化剂盐酸用量则对泡孔的孔径影响较大。泡沫炭制备的较佳工艺为:固化剂用量、表面活性剂和发泡剂用量分别为甲阶树脂质量的3%、6%和6%,此条件下所得泡沫炭的泡孔孔径为50~150μm,孔泡结构规整、孔壁较薄,其表观密度为0.276 g/cm~3,比表面积为137.9 m~2/g,抗压强度为11.1 MPa。  相似文献   

15.
以价格低廉的杉木屑为原料,与尿素和FeCl3·6H2 O按照质量比1:1:2混合,在700~1000℃下炭化制备负载铁的氮掺杂多孔炭材料(Fe-N-C).对不同温度下所制备炭材料的元素组成、结构和表面化学等进行分析,并考察其对硝基苯的催化还原性能.研究结果表明:炭化温度对负载铁和掺杂氮物种有显著影响,700℃时制备的多...  相似文献   

16.
利用酶解木质素部分替代苯酚,以十二胺为增韧剂,成功制备了含有柔性侧链的酶解木质素酚醛树脂,并利用其制备改性酶解木质素酚醛泡沫。系统研究了该树脂的发泡工艺,结果表明:当十二胺添加量为苯酚质量的8%,固化剂用量为12%(树脂的质量分数,下同),发泡剂用量为7%,表面活性剂用量为6%时,该泡沫的综合性能较佳。同时使用核磁共振(1H NMR)对树脂结构分析,使用热重分析(TG)与扫描电镜(SEM)对泡沫进行了分析,结果表明:改性木质素酚醛泡沫孔和孔壁厚度均匀,具有规则和致密的网络结构。改性后泡沫残碳率为49.0%。研究结论为今后利用脂肪单胺体系长链结构改性木质素酚醛树脂刚性结构提供了理论基础。  相似文献   

17.
采用一锅法将生物柴油副产物粗甘油(CG)转化为生物基多元醇(CG-polyol),并以糠醛渣(FR)为增强填料,共混发泡制备出一种FR增强生物基聚氨酯(PU/FR)泡沫复合材料。通过对PU/FR泡沫的结构形貌、热稳定性、发泡时间、密度和压缩强度进行表征,探究了糠醛渣粒径(0.25 mm、 0.09 mm样品分别标记为FR60和FR180)和添加量对PU/FR泡沫性能的影响。结果表明:通过热转化法合成的CG-polyol酸值为1.9 mg/g、羟值为406 mg/g、黏度为1 092 mPa·s,该多元醇适合用于制备PU泡沫。FR的加入延长了发泡时间,最大上升时间和不粘时间分别由未添加时的29和31 s提高到37和39 s,泡孔结构更加完整,泡孔尺寸减少,破碎现象明显减少。FR添加量≤5%时,可有效提高泡沫的密度和压缩强度;当添加量相同时,FR180填料对泡沫的性能提升更显著;当FR180添加量为5%时制备的PU/FR180-5泡沫复合材料的压缩强度达到最大为0.153 3 MPa,相比未添加FR的泡沫提高了28.1%,此时密度为0.051 0 g/cm3,导热系数...  相似文献   

18.
基于美国材料实验协会ASTM D6866标准,利用超低本底液体闪烁技术,测定不同原料来源的泡沫材料中放射性碳同位素~(14)C含量,转化为生物基含量,从而用于鉴别生物基泡沫材料。实验中,分别利用元素分析和热重分析确定样品用量及其氧化燃烧温度,样品燃烧后产生的二氧化碳经过一系列化学反应合成为液体苯,通过测定合成苯中的放射性碳同位素~(14)C含量来区别鉴定生物质基泡沫材料和石油基泡沫材料,同时测定本底物质煤炭和标准物质糖碳中的~(14)C含量。结果表明:采用该方法测定的糖碳标准物质的~(14)C放射性活度值与标准值一致,由生物质基泡沫材料的~(14)C放射性活度值测定结果计算得到的生物基含量结果与美国Beta实验室采用加速器质谱(AMS)方法测试的结果一致。4种泡沫样品的生物基含量分别为18.77%、23.51%、5.39%和11.13%,全部为生物质基泡沫材料。说明利用该方法能够鉴别生物质基泡沫材料与石油基泡沫材料。  相似文献   

19.
以毛竹为炭前驱体,KOH作活化剂,通过调节KOH用量在相同活化条件下制备了具有不同孔隙结构的竹基活性炭材料,通过扫描电镜、BET氮气吸附、直流充放电、交流阻抗和循环伏安等结构与电化学性能分析方法,考察了碱炭比对竹基活性炭材料结构和性能的影响.研究结果表明:随着碱炭比增大,活性炭材料的比表面积与总孔容、中孔孔客、微孔孔客...  相似文献   

20.
随着经济的发展和社会的进步,人们对具有长的循环寿命、高的功率密度和绿色廉价的能源设备的需求逐渐增加,基于生物质活性炭的超级电容器近年来备受关注。然而,生物质基活性炭的电化学性能仍然缺少竞争力,此外,对其微观结构的控制也是较大难题。笔者以糠醛渣为原料,KOH为活化剂,在氩气氛围下通过两步炭化的方法制备三维多孔炭材料,并将制备的多孔炭用做超级电容的电极材料。通过SEM、TEM、Raman、XPS、XRD等手段系统分析表征了所获多孔炭材料的形貌、结构、组成,并探讨活化剂的比例对糠醛渣多孔炭结构性能的影响。研究结果表明:当KOH和糠醛渣的质量比为3∶1时,所制备的多孔炭材料比表面积为2 164.3 m~2/g,具有良好的电容性能(当电流密度1 A/g时,比电容为235.6 F/g)、倍率性能和循环稳定性(当循环充放电10 000次后,比电容仍能保留96%以上)。本研究从生物精炼废弃物中制备了性能优异的超级电容器用活性炭,为降低高性能超级电容器成本,实现生物质的高值化应用提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号