首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Molecular genetics of race non-specific rust resistance in wheat   总被引:1,自引:0,他引:1  
Over 150 resistance genes that confer resistance to either leaf rust, stripe rust or stem rust have been catalogued in wheat or introgressed into wheat from related species. A few of these genes from the ‘slow-rusting’ adult plant resistance (APR) class confer partial resistance in a race non-specific manner to one or multiple rust diseases. The recent cloning of two of these genes, Lr34/Yr18, a dual APR for leaf rust and stripe rust, and Yr36, a stripe rust APR gene, showed that they differ from other classes of plant resistance genes. Currently, seven Lr34/Yr18 haplotypes have been identified from sequencing the encoding ATP Binding Cassette transporter gene from diverse wheat germplasm of which one haplotype is commonly associated with the resistance phenotype. The paucity of well characterised APR genes, particularly for stem rust, calls for a focused effort in developing critical genetic stocks to delineate quantitative trait loci, construct specific BAC libraries for targeted APR genes to facilitate robust marker development for breeding applications, and the eventual cloning of the encoding genes.  相似文献   

2.
Numerous stripe rust resistance genes have been identified from wheat, and new virulent races of Puccinia striiformis f. sp. tritici have also emerged in recent years. Deployment of diverse combinations of resistance genes is an efficient way to combat virulent evolution of strip rust pathogen. In this study, publically available molecular markers were used to identify the distribution of 36 Yr genes in 672 wheat accessions. The effectiveness of Yr genes individually and in combinations was also evaluated in field conditions. The result showed effective resistance of some recently applied genes, such as Yr15 and Yr65. It also showed the lost efficacy of some once widely used genes, such as Yr9 and Yr10. Moreover, significant additive effects were observed in some gene combinations, such as Yr9 + Yr18 and Yr30 + Yr46. Proper deploying of Yr genes and utilizing the positive interactions will be helpful for durable resistance breeding in wheat.  相似文献   

3.
Stripe rust is a devastating disease in common wheat (Triticum aestivum) worldwide. Growing cultivars with adult-plant resistance (APR) is an environmental friendly approach that provides long-term protection to wheat from this disease. Wheat cultivar Yaco“S” showed a high level of APR to stripe rust in the field from 2008 to 2014. The objective of this study was to detect the major quantitative trait loci (QTL) for APR to stripe rust in Yaco“S”. One hundred and eighty-four F2:3 lines were developed from a cross between Yaco“S” and susceptible cultivar Mingxian169. Illumina 90K and 660K single nucleotide polymorphism (SNP) chips were implemented to bulked pools and their parents to identify SNPs associated with the major QTL. A high-density linkage map was constructed using simple sequence repeat (SSR) and SNP markers. Inclusive composite interval mapping detected a major effect QTL Qyryac.nwafu-2BS conferring stable resistance to stripe rust in all tested environments. Qyryac.nwafu-2BS were mapped to a 1.3 cm interval and explained 17.3–51.9% of the phenotypic variation. Compared with stripe rust resistance genes previously mapped to chromosome 2B, Qyryac.nwafu-2BS is likely a new APR gene to stripe rust. Combining SNP iSelect assay and kompetitive allele specific PCR technology, we found that the APR gene could be rapidly and accurately mapped and it is useful for improving stripe rust resistance in wheat breeding.  相似文献   

4.
A collection of 112 African barley accessions were assessed for response to Puccinia hordei in seedling greenhouse tests using 10 pathotypes and in adult plant field tests over three successive field seasons in Australia. One of the 10 pathotypes (viz. 5457P+) used in seedling tests was also used in field tests to allow assessment of the presence of adult plant resistance (APR) in lines that were seedling susceptible to this pathotype. The seedling resistance genes Rph1, Rph2, Rph3, Rph9.am and Rph9.z were postulated in a number of accessions, singly and in various combinations, with Rph2 and Rph9.z being the most common. Twenty-six accessions carried seedling resistance that was either uncharacterized or could not be determined using the 10 P. hordei pathotypes. One accession carried high levels of APR and 11 accessions showed moderate levels of APR, all of which were susceptible to all P. hordei pathotypes at the seedling stage. All barley accessions were genotyped for the presence of marker alleles that are closely linked to the APR genes Rph20 and Rph23 (bPb-0837 and Ebmac0603, respectively). No accession was positive for bPb-0837, suggesting that Rph20 is not frequent in African germplasm. Thirteen accessions were postulated to carry Rph23 based on the presence of the marker allele Ebmac0603 found in Yerong (Rph23), and 10 out of the 11 accessions with moderate APR lacked the bPb-0837 and Ebmac0603 marker alleles, indicating that they likely carry new uncharacterized APR genes. Inheritance studies were performed using populations derived from four of the accessions that carried APR (Clho 9776, Clho 11958, Mecknes Maroc and Sinai) by crossing with the susceptible barley genotype Gus. Chi squared analysis of the phenotypic data from F3 populations suggested that CIho9776 carried a single APR gene and CIho11958, Mecknes Maroc and Sinai each carried two genes for APR to leaf rust.  相似文献   

5.
Race non-specific resistance to rust diseases in CIMMYT spring wheats   总被引:1,自引:0,他引:1  
Rust diseases continue to cause significant losses to wheat production worldwide. Although the life of effective race-specific resistance genes can be prolonged by using gene combinations, an alternative approach is to deploy varieties that posses adult plant resistance (APR) based on combinations of minor, slow rusting genes. When present alone, APR genes do not confer adequate resistance especially under high disease pressure; however, combinations of 4?C5 such genes usually result in ??near-immunity?? or a high level of resistance. Although high diversity for APR occurs for all three rusts in improved germplasm, relatively few genes are characterized in detail. Breeding for APR to leaf rust and stripe rust in CIMMYT spring wheats was initiated in the early 1970s by crossing slow rusting parents that lacked effective race-specific resistance genes to prevalent pathogen populations and selecting plants in segregating populations under high disease pressure in field nurseries. Consequently most of the wheat germplasm distributed worldwide now possesses near-immunity or adequate levels of resistance. Some semidwarf wheats such as Kingbird, Pavon 76, Kiritati and Parula show high levels of APR to stem rust race Ug99 and its derivatives based on the Sr2-complex, or a combination of Sr2 with other uncharacterized slow rusting genes. These parents are being utilized in our crossing program and a Mexico-Kenya shuttle breeding scheme is used for selecting resistance to Ug99. High frequencies of lines with near-immunity to moderate levels of resistance are now emerging from these activities. After further yield trials and quality assessments these lines will be distributed internationally through the CIMMYT nursery system.  相似文献   

6.
Genes which confer partial resistance to the rusts in wheat figure prominently in discussions of potential durable resistance strategies. The positional cloning of the first of these genes, Lr34/Yr18 and Yr36, has revealed different protein structures, suggesting that the category of partial resistance genes, as defined by phenotype, likely groups together suites of functionally heterogenous genes. With the number of mapped partial rust resistance genes increasing rapidly as a result of ongoing advances in marker and sequencing technologies, breeding programs needing to select and prioritize genes for deployment confront a fundamental question: which genes or gene combinations are more likely to provide durable protection against these evolving pathogens? We argue that a refined classification of partial rust resistance genes is required to start answering this question, one based not merely on disease phenotype but also on gene cloning, molecular functional characterization, and interactions with other host and pathogen proteins. Combined with accurate and detailed disease phenotyping and standard genetic studies, an integrated wheat-rust interactome promises to provide the basis for a functional classification of partial resistance genes and thus a conceptual framework for their rational deployment.  相似文献   

7.
The stripe (yellow) rust resistance gene Yr27 was located in wheat (Triticum aestivum L.) chromosome 2B and shown to be closely linked to the leaf (brown) rust resistance genes Lr13 and Lr23 in the proximal region of the short arm. Gene Yr27 was genetically independent of Lr16, which is distally located in the same arm. While Yr27 was often difficult to score in segregating seedling populations, it is apparently quite effective in conferring resistance to avirulent cultures under field conditions. The occurrence of Yr27 in Mexican wheat germplasm and the current over-dependence on Yr27 for crop protection in Asia are discussed.  相似文献   

8.
四川省是小麦条锈菌新小种产生的重要地区之一,了解2016年以来四川小麦育成品种(系)对当前流行的条锈菌生理小种和致病类型的抗性水平以及明确其抗条锈病基因的分布状况,可为四川育种防控小麦抗条锈病和品种布局提供理论依据。本研究选择2个小种CYR32和CYR34对78份四川小麦育成品种(系)进行苗期鉴定,利用当前小麦条锈菌优势小种CYR32、CYR33、CYR34,以及贵22-14、贵农致病类群等混合菌进行成株期人工接种鉴定,并利用19个抗条锈病QTL和基因QYr.nwafu-4BL、Yr5、Yr10、Yr15、Yr17、Yr18、Yr26、Yr28、Yr29、Yr30、Yr36、Yr39、Yr41、Yr48、Yr65、Yr67、Yr78、Yr80和Yr81的分子标记对供试材料进行抗条锈病基因检测。结果表明,在78份供试材料的苗期鉴定中,对CYR32表现出抗性的有60份,占76.92%;对CYR34表现出抗性的有40份,占51.28%;同时对CYR32和CYR34表现抗性的有36份,占46.15%。78份小麦品种(系)在成株期均表现抗条锈病,其中绵麦835、蜀麦1743、蜀麦1829和蜀麦1868表现为免疫。苗期和成株期抗病性鉴定结果表明,成株期抗性材料有42份,占53.85%;全生育期抗性材料有36份,占46.15%。分子检测结果表明,可能携带QYr.nwafu-4BL、Yr15、Yr17、Yr18、Yr26、Yr28、Yr29、Yr30、Yr39、Yr41、Yr65、Yr67、Yr78、Yr80和Yr81的材料分别有5、5、45、2、30、5、30、39、3、2、22、8、23、6和24份。同时携带2~6个抗条锈病基因的聚合材料分别有24、22、11、14和3份,占94.87%。所有供试品种(系)均未检测到Yr5、Yr10、Yr36和Yr48,仅西科麦18未检测到上述19个抗条锈病基因,可能携带其他已知或新的条锈病抗性基因。本研究鉴定了78份四川小麦育成品种(系)对条锈病抗性水平整体较好,明确了其携带的抗条锈病基因,为利用其培育持久抗性小麦品种提供了科学依据。  相似文献   

9.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases on wheat in China. To assess resistance in wheat cultivars and breeding lines in China, 330 leading cultivars and 164 advanced breeding lines were evaluated with stripe rust. In the greenhouse tests, seedlings of the entries were inoculated separately with several Pst pathotypes. In the field tests, the entries were evaluated for stripe rust resistance in Yangling, Shaanxi Province artificially inoculated and in Tianshui, Gansu Province under natural infection of Pst. The oversummering/wintering and spring epidemic zones of resistance genes were postulated using molecular markers for Yr5, Yr9, Yr10, Yr15, Yr17, Yr18, and Yr26, in combination with resistance spectra. Out of the 494 wheat entries, 16 (3.24 %) entries had all-stage resistance (ASR) in all race tests, 99 (20.04 %) had adult-plant resistance (APR), 28 (5.67 %) were considered to have slow-rusting (SR), and 351 (71.05 %) were susceptible to one or more races in both seedling and adult-plant stages. Advanced breeding lines had a higher percentage (37.2 %) of resistant entries (The sum of ASR, APR and SR) than leading cultivars (24.85 %). Among the epidemic regions, southern Gansu had a higher percentage of resistant entries than any other regions. Based on stripe rust reactions and molecular markers, two cultivars were found to possibly have Yr5 while no entries have Yr10 or Yr15. Resistance genes Yr9, Yr17, Yr18, and Yr26 were found in 134 (29.4 %), 45 (9.1 %), 10 (2 %), and 15 (3 %) entries, respectively.  相似文献   

10.
利用5个锈病成株期抗性基因的KASP标记Sr2_ger9 3p、Lr34jagger、CSTM4_67G、Lr68-2、VPM_SNP和抗赤霉病基因Fhb1的KASP标记TaHRC-KASP,对云南省育成的42个小麦品种(系)进行检测,旨在筛选出含有目标基因的优异小麦种质,为云南省持久抗病小麦新品种(系)的选育提供材料。结果表明,4个材料含兼抗型成株抗锈病基因Lr34/Yr18/Sr57,频率为9.52%;6个品种(系)含兼抗型成株抗锈病基因Lr67/Yr46/Sr55,频率为14.29%;7个材料含抗慢叶锈病基因Lr68,频率为16.67%;含兼抗型成株抗锈病基因Sr2/Yr30和成株抗叶锈基因Lr37的材料各有1个,频率均为2.38%;未检测出含抗赤霉病基因Fhb1的品种(系)。云麦69、云麦75、云麦56、宜麦1号和宜麦3号等兼有2个成株期抗锈病基因,可作为今后云南持久抗锈病育种的抗源材料。  相似文献   

11.
The main phytosanitary problems affecting global coffee production are the fungal diseases known as rust, caused by Hemileia vastatrix Berkeley and Broome, and coffee berry disease (CBD), induced by Colletotrichum kahawae Waller and Bridge. The main disease control strategy is the use of resistant coffee cultivars. Híbrido de Timor is the most important source of resistant varieties used in breeding programs worldwide. The objective of this work was to characterize the diversity and disease resistance of 152 HdT genotypes from the germplasm collection at the Universidade Federal de Viçosa (UFV). Accessions were phenotyped with H. vastatrix races II and XXXIII. Molecular analysis was carried out with 29 random microsatellite markers or single sequence repeats (SSRs), and two SSRs associated with the CBD resistance gene Ck-1. All accessions in the germplasm collection were resistant to H. vastatrix race II, and 141 were resistant to H. vastatrix race XXXIII. Based on the presence of markers, there were 106 accessions containing the CBD resistance gene Ck-1. In the diversity study, the 152 accessions clustered into 21 different groups. A unique molecular profile (fingerprint) was determined for each individual, using 52 alleles from 22 SSR markers. The HdT germplasm of UFV was highly diverse, and included 99 accessions with multiple disease resistance genes, including the CBD resistance gene Ck-1, and others conferring resistance to H. vastatrix races II and XXXIII.  相似文献   

12.
28个小麦微核心种质抗叶锈性分析   总被引:3,自引:1,他引:2  
选取在成株期表现高、中、低抗叶锈的28个小麦微核心种质,利用39个以Thatcher为背景的近等基因系(或单基因系)作为已知基因的鉴别寄主,接种8个小麦叶锈菌致病型进行苗期抗叶锈基因推导,结合成株期抗病鉴定,初步明确了这些品种(系)的抗性和可能携带的抗病基因。利用19个与Lr基因紧密连锁或共分离的分子标记,对28个微核心种质进行抗叶锈病基因的进一步鉴定,推测新克旱9号可能含有Lr17、Lr2b、Lr14a和Lr33;兴义4号可能含有Lr26、Lr36和Lr37;紫皮可能含有Lr2b和Lr34;大白皮含有Lr1;毕红穗含有Lr1、Lr10和Lr34;中优9507含有Lr10;小白麦、红粒当年老、老麦、蝉不吱、苏麦3号和车锏子含有Lr1和Lr34;红花早可能含有Lr1、Lr34、Lr14a和Lr2b;江西早、泡子麦、三月黄、有芒扫谷旦、阜阳红、成都光头和酱麦可能含有Lr34;敦化春麦和甘肃96可能含有Lr28;欧柔可能含有Lr34、Lr16、Lr11、Lr3bg和Lr33;此外,新克旱9号、兴义4号、红花早、红粒当年老、欧柔、有芒扫谷旦、成都光头、甘肃96、小红皮、定兴寨、中优9507和红冬麦中可能含有未知抗病基因;在这28份种质中,不含Lr9、Lr19、Lr20、Lr21、Lr24、Lr29、Lr35、Lr38和Lr47基因。研究结果表明,测试的微核心种质中含有比较丰富的抗叶锈病基因,可为育种提供丰富的抗源。  相似文献   

13.
小麦新品种“山农20”抗病基因的分子检测   总被引:1,自引:0,他引:1  
山农20是2011年和2012年分别通过国家黄淮南、北片审定的小麦高产多抗新品种,在国家区试抗病性鉴定和生产中都表现出良好的抗黄淮麦区主要病害的特性。本研究利用与小麦抗白粉病、条锈病、叶锈病、纹枯病基因和抗赤霉病主效QTL紧密连锁的SSR、SCAR、STS等标记对该品种进行了分子检测,发现山农20含有6个抗白粉病基因(Pm12、Pm24、Pm30、Pm31、Pm35和Pm36),6个抗条锈病基因(Yr5、Yr9、Yr15、Yr24、Yr26和YrTp1),2个抗叶锈病基因(Lr21和Lr26),1个抗纹枯病基因(Ses1),但未检测到抗赤霉病主效QTL。分子检测结果部分解释了山农20的优良抗病性,也为利用分子标记辅助选择培育抗病稳产小麦新品种提供参考。  相似文献   

14.
A set of 105 European wheat cultivars was assessed for seedling resistance and adult plant resistance (APR) to stripe (yellow) rust in greenhouse and field tests with selected Australian isolates of Puccinia striiformis f. sp. tritici (Pst). Twelve cultivars were susceptible to all pathotypes, and among the remainder, 11 designated seedling genes (Yr1, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr27, Yr32, YrHVII and YrSP) and a range of unidentified seedling resistances were detected either singly or in combination. The identity of seedling resistance in 43 cultivars could not be determined with the available Pst pathotypes, and it is considered possible that at least some of these may carry uncharacterised seedling resistance genes. The gene Yr9 occurred with the highest frequency, present in 19 cultivars (18%), followed by Yr17, present in 10 cultivars (10%). Twenty four cultivars lacked seedling resistance that was effective against the pathotype used in field nurseries, and all but two of these displayed very high levels of APR. While the genetic identity of this APR is currently unknown, it is potentially a very useful source of resistance to Pst. Genetic studies are now needed to characterise this resistance to expedite its use in efforts to breed for resistance to stripe rust. Colin R. Wellings seconded from NSW Department of Primary Industries.  相似文献   

15.
小麦条锈病、叶锈病和白粉病是我国小麦的重要真菌病害,培育兼抗型成株抗性品种是控制病害最为经济有效和持久安全的方法。本研究选用由成株抗性育种方法培育的21份冬小麦高代品系和96份春小麦高代品系,在多个环境下进行这3种病害的成株期抗性鉴定,并利用紧密连锁的分子标记检测了兼抗型基因Lr34/Yr18/Pm38、Lr46/Yr29/Pm39和Sr2/Yr30的分布。田间鉴定表明,21份冬小麦品系中有17份兼抗3种病害,占80.9%;96份春小麦品系中有85份兼抗3种病害,占88.5%。分子标记检测发现,21份冬小麦品系均含QPm.caas-4DL,其中7份还含QPm.caas-2BS,9份还含QPm.caas-2BL;96份春小麦品系中,18份含Lr34/Yr18/Pm38,37份含Lr46/Yr29/Pm39,29份含Sr2/Yr30。以上结果表明,分子标记与常规育种相结合,可有效培育兼抗型成株抗性品种,为我国小麦抗病育种提供了新思路。  相似文献   

16.
There is worldwide interest in adult plant resistance (APR) because of greater durability of APR to the cereal rusts. Peruvian bread wheat genotype ‘CPAN (Coordinated Project Accession Number) 1842’ (LM 50–53) has shown leaf rust resistance in disease screening nurseries since its introduction in 1977. However, it is susceptible at the seedling stage to several Puccinia triticina (Pt) pathotypes including the widely prevalent 77‐5 (121R63‐1) that infects bread wheat. Inheritance studies showed that CPAN 1842 carried a dominant gene for APR to pathotype 77‐5, which was different from Lr12, Lr13, Lr22a, Lr34, Lr35, Lr37, Lr46, Lr48, Lr49 and Lr68, based on the tests of allelism; and from Lr67, based on genotyping with the closely linked SSR marker cfd71. This gene should also be different from Lr22b as the latter is totally ineffective against pathotype 77‐5. CPAN 1842 therefore appears to be a new promising source of leaf rust resistance. Also having resistance to stem rust and stripe rust, this line can contribute to breeding for multiple rust resistances in wheat.  相似文献   

17.
为了解3份具特异优良性状但高感条锈病的人工合成小麦SHW-Z1、SHW-Z2和SHW-Z4感病性的遗传特点,进行更好的育种利用。用高抗条锈病的普通小麦材料5157与上述人工合成小麦分别进行正反杂交,对6个杂交组合的亲本、F1世代的条锈病抗性与F2代的条锈病抗感分离情况进行了分析以探究其感病性的遗传特点,结果表明:(1)本研究的普通小麦和人工合成小麦杂交后代的条锈病抗性由多对基因控制,遗传上表现出加-显效应;(2)SHW-Z1条锈病的抗性改良效果优于SHW-Z2和SHW-Z4;(3)本研究材料的条锈病抗性基因可能还受到遗传背景的影响。本研究对这3份人工合成小麦的条锈病抗性改良和育种利用提供了理论依据,同时可为相关研究提供参考。  相似文献   

18.
56个小麦品种(系)的苗期和成株抗叶锈鉴定   总被引:1,自引:1,他引:0  
为了研究中国小麦品种中所携带的抗叶锈基因,对56个小麦品种(系)进行苗期接种推导其中所含有的抗叶锈基因,同时连续2年对供试材料进行田间成株抗叶锈鉴定。通过苗期基因推导结合分子标记辅助检测,结果表明,在36个小麦品种中共鉴定出Lr26、Lr34、Lr1、Lr2a、Lr11、Lr20、Lr30、Lr33和Lr44等9个抗叶锈基因,其中28个品种含有Lr26,Lr1和Lr20分别存在于6个品种中,4个品种含有Lr30,Lr11和Lr44各存在于2个品种中,Lr2a、Lr33和Lr34各自在1个品种中出现。经过2年的田间抗叶锈鉴定共筛选出46个慢锈品种。筛选到的这些苗期和成株抗病品种均可用于小麦持久抗叶锈品种的培育。  相似文献   

19.
Plant landraces have long been recognized as potential gene pools for biotic and abiotic stress-related genes. This research used spring wheat landrace accessions to identify new sources of resistance to the wheat stem sawfly (WSS) (Cephus cinctus Norton), an important insect pest of wheat in the northern Great Plains of North America. Screening efforts targeted 1409 accessions from six geographical areas of the world where other species of grain sawflies are endemic or where a high frequency of accessions possesses the resistance characteristic of solid stems. Resistance was observed in approximately 14% of accessions. Half of the lines displayed both antixenosis and antibiosis types of resistance. Among the resistant accessions, 41% had solid or semi-solid stems. Molecular genetic screening for haplotypes at the solid stem QTL, Qss.msub.3BL, showed that 15% of lines shared the haplotype derived from ‘S-615’, the original donor of the solid stem trait to North American germplasm. Other haplotypes associated with solid stems were also observed. Haplotype diversity was greater in the center of origin of wheat. Evaluation of a representative set of resistant landrace accessions in replicated field trials at four locations over a three year period identified accessions with potential genes for reduced WSS infestation, increased WSS mortality, and increased indirect defense via parasitoids. Exploitation of distinct types of plant defense will expand the genetic diversity for WSS resistance currently present in elite breeding lines.  相似文献   

20.
The root lesion nematode Pratylenchus thornei is widely distributed in Australian wheat (Triticum aestivum) producing regions and can reduce yield by more than 50%, costing the industry AU$50 M/year. Genetic resistance is the most effective form of management but no commercial cultivars are resistant (R) and the best parental lines are only moderately R. The wild relatives of wheat have evolved in P. thornei-infested soil for millennia and may have superior levels of resistance that can be transferred to commercial wheats. To evaluate this hypothesis, a collection of 251 accessions of wheat and related species was tested for resistance to P. thornei under controlled conditions in glasshouse pot experiments over two consecutive years. Diploid accessions were more R than tetraploid accessions which proved more R than hexaploid accessions. Of the diploid accessions, 11 (52%) Aegilops speltoides (S-[B]-genome), 10 (43%) Triticum monococcum (A m -genome) and 5 (24%) Triticum urartu (A u -genome) accessions were R. One tetraploid accession (Triticum dicoccoides) was R. This establishes for the first time that P. thornei resistance is located on the A-genome and confirms resistance on the B-genome. Since previous research has shown that the moderate levels of P. thornei resistance in hexaploid wheat are dose-dependent, additive and located on the B and D-genomes, it would seem efficient to target A-genome resistance for introduction to hexaploid lines through direct crossing, using durum wheat as a bridging species and/or through the development of amphiploids. This would allow resistances from each genome to be combined to generate a higher level of resistance than is currently available in hexaploid wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号