首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.

Purpose

Our main aim objective was to evaluate the transfer of Cd, Cr, Cu, Ni, Pb and Zn to barley (Hordeum vulgare) grown in various soils previously amended with two sewage sludges containing different concentrations of heavy metals. This allowed us to examine the transfer of heavv metals to barley roots and shoots and the occurrence of restriction mechanisms as function of soil type and for different heavy metal concentration scenarios.

Material and methods

A greenhouse experiment was performed to evaluate the transfer of heavy metals to barley grown in 36 agricultural soils from different parts of Spain previously amended with a single dose (equivalent to 50 t dry weight ha?1) of two sewage sludges with contrasting levels of heavy metals (common and spiked sludge: CS and SS).

Results and discussion

In soils amended with CS, heavy metals were transferred to roots in the order (mean values of the bio-concentration ratio in roots, BCFRoots, in brackets): Cu (2.4)?~?Ni (2.3)?>?Cd (2.1)?>?Zn (1.8)?>?Cr (0.7)?~?Pb (0.6); similar values were found for the soils amended with SS. The mean values of the soil-to-shoot ratio were: Cd (0.44)?~?Zn (0.39)?~?Cu (0.39)?>?Cr (0.20)?>?Ni (0.09)?>?Pb (0.01) for CS-amended soils; Zn (0.24)?>?Cu (0.15)?~?Cd (0.14)?>?Ni (0.05)?~?Cr (0.03)?>?Pb (0.006) for SS-amended soils. Heavy metals were transferred from roots to shoots in the following order (mean values of the ratio concentration of heavy metals in shoots to roots in brackets): Cr (0.33)?>?Zn (0.24)?~?Cd (0.22)?>?Cu (0.19)?>?Ni (0.04)?>?Pb (0.02) for CS-amended soils; Zn (0.14)?>?Cd (0.09)?~?Cu (0.08)?>?Cr (0.05)?>?Ni (0.02)?~?Pb (0.010) for SS-amended soils.

Conclusions

Soils weakly restricted the mobility of heavy metals to roots, plant physiology restricted the transfer of heavy metals from roots to shoots, observing further restriction at high heavy metal loadings, and the transfer of Cd, Cu and Zn from soils to shoots was greater than for Cr, Ni and Pb. Stepwise multiple linear regressions revealed that soils with high sand content allowed greater soil-plant transfer of Cr, Cu, Pb and Zn. For Cd and Ni, soils with low pH and soil organic C, respectively, posed the highest risk.  相似文献   

2.
A greenhouse experiment was conducted to evaluate the availability of metals from sewage sludge and inorganic salts, and the effect of pH and soil type on yield and metal (Zn, Cu, Cd and Ni) uptake by wheat (Triticum aestivum L. var. ‘holly’). Soils used in this study were Hartsells sandy loam (fine-loamy, siliceous Thermic Typic Hapludult) and Decatur silty clay loam (Clayey, kaolinitic, Thermic Rhodic Paleudult). Two treatments of sewage sludge containing metals were applied at the rate of 20 and 100 mt ha?1. Inorganic Salts of Zn, Cu, Cd, and Ni were applied (as sulfate salts) at concentrations equivalent to those found in the 20 and 100 mt ha?1 sludge. One treatment consisted of inorganic metals plus sewage at the 20 Mg ha?1 rate. Two soil pH levels, one at field pH (below 6.0) and another pH adjusted between 6.5 and 7.0 were used. Wheat plants were harvested four weeks after germination. Two more subsequent harvests were made at four week intervals. For each harvest, dry matter yield increased as the rate of sludge application increased for both soil types. The soil pH also influenced the dry matter yield. High yield was observed when the pH was adjusted between 6.5 to 7.0 for both soils. An increase in yield was also observed at each subsequent harvest for most of the treatments. Inorganic salt treatments produced lower dry matter yields when compared with the sludge. Both sludge application and metal salts increased plant tissue concentration of Zn, Cu, Cd, and Ni at field pH for both soils. However, increasing the pH of the soil for both sludge and inorganic salt treatments generally decreased the tissue concentration of the above metals.  相似文献   

3.
Total content of trace elements (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn), was determined to a depth of about 1 m in the horizons of three representative podzolic soils (i.e., wet moor, dry moor, and dune soil) developed on the coarse sands of the Atlantic face of southwest France. In the aged soils (wet moor and dry moor), Cr, Cu, Ni, Pb and Zn, were highly concentrated in the B horizons whereas Cd accumulated in the litter. An estimate of metal balance was made in the soil profiles, comparing the total amount of metal recovered in the A-B horizons to the amount of indigenous metal determined in a rock matter (C) layer of a similar depth as the A-B horizons. Substantial long-term enrichment of the whole upper part of the profile (A-B horizons) of three representative sites was found for Cd (0.1–0.6 kg ha?1), Cu (3–12 kg ha?1), Ni (1–7 kg ha?1), Pb (20–26 kg ha?1), and, to a lesser extent, for Co, Mn, and Zn. Since the experimental site was remote from industrial, urban and agricultural activities, the increase in soil metal content was apparently caused by the deposition of metallic aerosols via long-range transport. Total long-term inputs are estimated for average values of Cd (0.6 kg ha?1), Cr (5 kg ha?1), Cu (12 kg ha?1), Ni (7 kg ha?1), Pb (25 kg ha?1) and Zn (6 kg ha?1) for the 1 m depth. Several Atlantic areas of Europe are probably affected by a similar metal input.  相似文献   

4.

Purpose

The concentration of human activities in urban systems generally leads to urban environmental contamination. Beijing is one of ancient and biggest cities on the world. However, information is limited on Beijing’s soil contamination, especially for roadside and campus soils. Thus, the aims of this study were to investigate the contents and chemical forms of toxic heavy metals Cd, Cr, Cu, Ni, Pb, and Zn in the road-surface dust, roadside soils, and school campus soils of Beijing. In addition, enrichment and spatial variation of these toxic heavy metals in the soils and dust were assessed.

Materials and methods

Topsoil samples were collected from the schools and roadside adjacent to main ring roads, and dust samples were collected from the surface of the main ring roads of Beijing. These samples were analyzed for total contents and chemical forms of Cd, Cr, Cu, Ni, Pb, Sc, Zn, Al, and Fe. Enrichment factors (EFs, relative to the background content) were calculated to evaluate the effect of human activities on the toxic heavy metals in soils.

Results and discussion

Heavy metal contents in the road dust ranged from 0.16 to 0.80, 52.2 to 180.7, 18.4 to 182.8, 11.9 to 47.4, 23.0 to 268.3, and 85.7 to 980.9 mg kg?1 for Cd, Cr, Cu, Ni, Pb, and Zn, respectively. In the roadside soil and school soil, Cd, Cr, Cu, Ni, Pb, and Zn contents ranged from 0.13 to 0.42, 46.1 to 82.4, 22.7 to 71.6, 20.7 to 29.2, 23.2 to 180.7, and 64.5 to 217.3 mg kg?1, respectively. The average EF values of these metals were significantly higher in the dust than in the soils. In addition, the average EF values of Cd, Cu, Pb, and Zn in the soils near second ring road were significantly higher than those near third, fourth, and fifth ring roads. Anthropogenic Cd, Pb, and Zn were mainly bound to the carbonates and soil organic matter, while anthropogenic Cu was mainly bound to oxides. The mobility and bioavailability of these metals in the urban soils of Beijing generally decreased in the following order: Cd?>?Zn?>?Pb?>?Cu?>?Ni?>?Cr; while in the dust, they decreased in the following order: Zn, Cu, and Cd?>?Pb?>?Ni?>?Cr.

Conclusions

Both EF and chemical forms documented that Cr and Ni in the soils and dust mainly originated from native sources, while Cd, Cu, Pb, and Zn partially originated from anthropogenic sources. In overall, Beijing’s road dust was significantly contaminated by Cd and Cu and moderately contaminated by Cr, Pb, and Zn, while Beijing’s roadside soil and school soil were moderately contaminated by Cd and Pb. However, the maximal hazard quotients (HQs) for individual Cd, Cr, Cu, Ni, Pb, and Zn and comprehensive hazard index (HI) of these metals in the dust and soil were less than 1, indicating that the heavy metals in the dust and soil generally do not pose potential health effects to children, sensitive population.  相似文献   

5.
Trace metals such as Pb, Zn, Cu, Ni, Cd and Fe were determined in sewage sludge produced at a sewage treatment plant in Bahrain (Tubli) and soils. The soils, both untreated and treated with the sludge, are used for agricultural purposes in Bahrain. The Trace-metals level showed the following range (μg g?1 dry weight); Pb, 242 to 609; Zn, 704 to 836, Cu, 329 to 512; Ni, 23 to 41; Cd, 1.8 to 3.9 and Fe, 1867 to 4284. The data show the degree to which untreated soils have already been contaminated with trace elements. The level of trace-elements found in sludge showed the following range (μg g?1 dry weight); Pb, 140 to 186; Zn, 597 to 836; Cu, 348 to 449; Ni, 47 to 53; Cd 5.7 to 9.2 and Fe, 5950 to 8520. Mean levels were generally close or lower than mean concentration reported in the United Kingdom and the United States for sludge. They were also lower than the suggested concentration limits for application of sludge on agricultural land, which is one of the most cost effective and attractive techniques for sludge disposal. Soils treated with this sludge (after 1 yr) were also analyzed and showed substantial enhancement of the available level of trace elements in the soil. This eventually will lead to an increase in the trace-element level in plants grown for human or animal consumption. This could have phytotoxic effects, and the possibility of toxic effects on live-stocks and human beings.  相似文献   

6.
The To Lich and Kim Nguu Rivers, laden with untreated waste from industrial sources, serve as sources of water for irrigating vegetable farms. The purposes of this study were to identify the impact of wastewater irrigation on the level of heavy metals in the soils and vegetables and to predict their potential mobility and bioavailability. Soil samples were collected from different distances from the canal. The average concentrations of the heavy metals in the soil were in the order zinc (Zn; 204 mg kg?1) > copper (Cu; 196 mg kg?1) > chromium (Cr; 175 mg kg?1) > lead (Pb; 131 mg kg?1) > nickel (Ni; 60 mg kg?1) > cadmium (Cd; 4 mg kg?1). The concentrations of all heavy metals in the study site were much greater than the background level in that area and exceeded the permissible levels of the Vietnamese standards for Cd, Cu, and Pb. The concentrations of Zn, Ni, and Pb in the surface soil decreased with distance from the canal. The results of selective sequential extraction indicated that dominant fractions were oxide, organic, and residual for Ni, Pb, and Zn; organic and oxide for Cr; oxide for Cd; and organic for Cu. Leaching tests for water and acid indicated that the ratio of leached metal concentration to total metal concentration in the soil decreased in the order of Cd > Ni > Cr > Pb > Cu > Zn and in the order of Cd > Ni > Cr > Zn > Cu > Pb for the ethylenediaminetetraaceitc acid (EDTA) treatment. The EDTA treatment gave greater leachability than other treatments for most metal types. By leaching with water and acid, all heavy metals were fully released from the exchangeable fraction, and some heavy metals were fully released from carbonate and oxide fractions. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the vegetables exceeded the Vietnamese standards. The transfer coefficients for the metals were in the order of Zn > Ni > Cu > Cd = Cr > Pb.  相似文献   

7.
The effect of added heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) on the rate of decomposition of glutamic acid was studied in four Dutch soil types in order to determine if such measurements would serve as sensitive indicators of heavy metal pollution in soil. The time required to reach the maximum respiration rate (referred to as the decomposition time) with glutamic acid was linearly related to increasing concentrations of Ni in a sandy loam soil.Changes in decomposition time were measured 18 months after addition of 55, 400 or 1000 mg kg? of Cd, Cr, Cu, Ni, Pb or Zn respectively to sand, silty loam, clay and sandy peat soils. A significant increase in the decomposition time occurred with a concentration of 55 mg kg?1 of Cd, Cu or Zn in the sand soil. At 400mgkg?1 adverse effects in the various soils are distinct. The sensitivity of the decomposition time of glutamic acid as a method to measure soil pollution is discussed.  相似文献   

8.
Use of biosolids in agriculture to improve crop production and soil quality have created concerns due to content of heavy metals that may affect surface or ground water quality. A column leaching study was conducted to evaluate the leaching potential of copper (Cu), lead (Pb), zinc (Zn), cdmium (Cd), cobalt (Co), chromium (Cr), and nickel (Ni) from two typical agricultural sandy soils in South Florida (Spodosol and Alfisol) with increasing application of pelletized biosolids (called PB) at the rates of 0, 1.25, 5.0, 10.0 g kg?1, respectively together with chemical fertilizer (CF). Elevated PB rate resulted in reduced leaching loss of Cu, Pb, Zn, Cd, Co, Ni from Spodosol, but resulted in increased loss of Pb, Zn, Cd, and Co from Alfisol. Significant reduction in Cu loss occurred in both soils, which can be attributed to the strong binding of Cu with organic matter from the applied PB. Percentage of Cd loss as of total Cd was 13% – 41%, the highest in all the heavy metals, whereas loss of Pb as of total Pb was less than 6.6%, though the concentrations of Pb, Cd, Co, and Ni in leachate were mostly above the limits of U.S. EPA drinking water standards or the national secondary drinking water standards. These results indicate that soil properties, PB application rates, and chemical behavior of elements jointly influence the leachate total loads of heavy metals in sandy soils applied with biosolids. Application of CF together with BP at a rate higher than 10.0 g kg?1 for sandy soils may pose potential threats to water quality due to enhanced leachate loads of Cr and Ni in Spodosol and Pb, Zn, Cd, Co and Ni in Alfisol.  相似文献   

9.
This study is aimed at ascertaining the chemical partitioning ofCu, Zn, Pb, Ni, Cr and Cd in sewage sludge and agricultural soils repeatedly amended with sludge. The operationally determined speciation was investigated by using selective five steps sequential extraction method for partitioning these metals into different chemicalforms, likely to be released in solution under various environmental conditions. It provides qualitative evidence regarding the form of the association of metals and indirectly of their bioavailability. It can help to explain the process by which metals are eliminated from sewagesludge and also indicate the impact of the use of sludge on agriculturalsoils, as amendments. Data obtained by extraction procedure showed different metal distribution trend among the fractions in sewage sludgeand sludge-amended soils. Comparison of distribution pattern of metals in sludge and sludge-applied soils shows that there is possible redistribution of metals among the different phases. The sum of the metal content in the fractions compared well with the total metal content in sewage sludge, the ratios averaging 1.02, 1.04, 1.07, 0.94, 1.06, and 1.12 for Cu, Zn, Pb, Ni, Cr, and Cd, respectively. The metal recovery efficiency in sludge-amended soils was found to be: 108±6%, 102±5%, 115±8%, 111±4%, 104±7%and 124±28% for Cu, Zn, Pb, Ni, Cr and Cd, respectively.  相似文献   

10.
新乡市大棚菜田土壤重金属积累特征及污染评价   总被引:4,自引:0,他引:4  
采用微波消解-ICP-AES技术,测定不同种植年限大棚菜田土壤样品中As、Pb、Zn、Cd、Cr、Mn、Ni、Cu等重金属的含量,研究不同种植年限与大棚菜田土壤重金属累积的相关性以及大棚菜田土壤重金属累积特征,并利用地积累指数法进行污染评价。结果表明:大棚菜田土壤重金属Zn、Pb、Ni、Mn和Cu的含量与种植年限具有极显著相关性;大棚菜田土壤中重金属Cd和Cr的含量与种植年限不相关。重金属元素间相关性分析表明,Zn与Pb、Cd、Ni、Mn、Cr、Cu,Pb与Cd、Ni、Mn、Cr、Cu,Cd与Ni、Mn、Cr,Ni与Mn、Cr、Cu,Mn与Cr、Cu具有污染同源性,Cu与Cd、Cr不具有污染同源性。地积累指数法污染评价结果显示Cd的污染等级达到了6级,已构成了极严重污染;Zn和Cu的污染等级达到2级,已构成了中度污染;Pb、Mn的污染等级达到1级,已经构成了轻~中度污染;As、Ni、Cr均未构成污染。  相似文献   

11.

To study the availability of sludge-borne Zn, Cu, Cd, Ni and Pb over time, a field study was conducted. Anaerobically digested sewage sludge (dried on sandbeds) from Huntsville and Chicago were applied to a Decatur silty clay loam soil (clayey, kaolinitic, thermic, Rhodic Paleudult), pH 6.2, for 5 consecutive yr. The sludges were applied at rates of 0, 20 (annual application for 5 yr) and 100 mt ha?1 (single application). Corn (Zea mays L.) and sudangrass (Sorghum sudanenses) were grown on the sludge-treated plots as test crops in 1987. Plant tissue samples were collected at different growth stages. Soil samples collected from the sludge-treated plots were extracted for Zn, Cu, Cd, Ni and Pb by 0.1 M HCI, DTPA, Mehlich 1 and Mehlich 3 extractants. Statistically, Mehlich 1, Mehlich 3, DTPA and 0.1M HCI extractants all gave highly significant correlations with the plant accumulation of Zn, Cu, Ni and Cd, with DTPA giving the highest at any growth stage for both corn and sudangrass, but they gave poor correlations for Pb. Zinc removed by four extractants was more highly correlated with Zn accumulation by corn (r=0.72** to 0.93** p=0.01) and sudangrass (r=0.50** to 0.96**, p=0.01) than other metals. Based on higher significant linear correlation coefficients (r), DTPA would be the extractant of choice for both crops; however the advantage to using the Mehlich 3 extractant is that, with a shorter shaking time of 5 min (compared to 2 hr for DTPA), it may be better suited for routine analysis of large numbers of soil samples.

  相似文献   

12.
The leaching of heavy metals from plant growth medium, admixed with different amounts of compost (prepared from sewage sludge and yard waste) at pH 5, 6 and 7 was determined over a six-month period. Twelve-week old rhododendron cuttings were planted in 2-L containers and rainfall was supplemented with irrigation to supply two centimeters of water per day. Leachates collected over each two to four week period were analyzed for Cd, Cr, Cu, Ni, Pb and Zn using atomic spectrometry. The concentrations of Cd, Cu, Ni and Zn in the leachates increased with increasing proportions of compost in the medium and decreased with increasing time of leaching. Decreasing media pH dramatically increased the concentrations of Cd, Ni and Zn in the leachates, but had no effect on the Cu concentrations. For example, as the proportion of the compost in the pH 5 medium increased from 0 to 100 percent, the concentrations of metals (μg L?1) in the leachates collected during the first two weeks increased from 1 to 33 (Cd), 10 to 123 (Cu), 8 to 113 (Ni) and 300 to 24,000 (Zn). Corresponding increases at pH 7 were 0.4 to 0.8 (Cd), 14 to 141 (Cu), 8 to 28 (Ni) and 100 to 400 (Zn) μg L?1. The concentrations of Cr and Pb in the leachates remained below the detection limits regardless of media pH and amounts of compost.  相似文献   

13.
A field study was conducted to determine the plant uptake of metals in soils amended with 500 Mg ha?1 of municopal sewage sludge applied 16 yr previously. Results showed that metals were available for plan uptake after 16 yr, but that liming greatly reduced the plant availability of most metals. The application of sludge also resulted in high rates nitrification and subsequent lowering of the soil pH before the uptake study was started. The sludge-amended soil (a mesic Dystric Xerochrept) was adjusted with lime one month prior to planting from an unlimed pH of 4.6 to pH 5.8, 6.5 and 6.9. Food crops grown were: (i) bush bean (Phaseolus vulgaris L. cv. Seafarer), (ii) cabbage (Brassica oleracea L. v. capitata L. cv. Copenhagen market), (iii) maize (Zea mays L. cv. FR37), (iv) lettuce (Lactuca sativa L. cv. Parris Island, (v) (Solanum tuberosum L. cv. (vi) tomato (Lycopersicum esculentum L. cv. Burpee VF). With the exception of maize, yields were significantly reduced in the unlimed sludge-amended soil. However, liming increased yields above the growth level of the unlimed untreated soil for cabbage, maize, lettuce, potato tuber and tomato fruit. Soluble and exchangeable of Cd. Ni and Zn were also reduced after liming the sludge-amended soil. In both limed and unlimed soils, the majority of the soil Cu was found in insoluble and unavailable soil fractions. To evaluate trace metal uptake, the edible portion of each crop was analyzed for Cd, Cu, ni and Zn. Liming redoced uptake of Cd, Ni and Zn in most crops, but generally did not change Cu, This study shows the benefit of pH adjustment in reducing relative solubility and plant uptake of metals as well as increasing crop yield in acid soils.  相似文献   

14.
Metal loads to sediments of Lake Simcoe were partitioned into three components, which were attributable to natural background, accelerated erosion, and point + atmospheric sources. These loads were calculated over time using metal concentration profiles together with pre-settlement sedimentation rates based on sonar and time-variable sedimentation rates based on 210Po profiles in cores. Concentrations of metals significantly higher than pre-settlement concentrations were observed in all cores in the case of Pb, back to 80 yr BP on average, and in at least 75% of cores, back to 60 yr BP for Cd and Zn and 30 to 45 yr BP for Cu, Ni, and Cr. Total metal loads increased 3 × for Cu and Ni, 4 × for Zn and Cr, 11 × for Cd and nearly 20 × for Ph from pre-1800 to 0 to 10 yr BP. At present about 90% of the anthropogenic loads of Pb and Cd, and 60 to 70% of the anthropogenic Cu, Ni, Zn, and Cr, are from point + atmospheric sources, the balance being from increased erosion. The direct atmospheric input of Cd is relatively high, approximately 77% of point + atmospheric inputs, while inputs of Cr and Ni are low at 1% and 9%, and inputs of Cu, Zn, and Pb are intermediate at 20 to 40% of point + atmospheric inputs. Two significant findings on spatial distribution of metals were the large increases in metal loads to Cook Bay following the drainage of 33 km2 of marshes for agricultural use and the widespread dispersal of Cr from point source(s) in Kempenfelt Bay.  相似文献   

15.
Abstract

The objective of this study was to determine the effects of nitrogen fertilizer sources of ammonium sulphate and municipal sewage sludge on yield, N content and uptake of the maize (Zea mays L.). Nutrient and heavy metals were determined in soil and plant. The experiment with three sludge rates (256, 513 and 1026 kg total N ha?1 or 9.5, 18.0 and 38.1 t ha?1 sludge), two nitrogen rates (80 and 160 kg N ha?1) and zero-N control were conducted on a clay loam soils under irrigated conditions in Eastern Anatolia region in Turkey. Treatments were arranged in a randomized complete block design with four replications. Yield, N content and total N uptake of maize increased significantly with sludge application. 9.5 t and 19.0 t ha?1 sewage sludge applications did not significantly affect heavy metal content of leaf and grain. However, 38.1 t ha?1 sludge applications increased leaf Pb and Zn. DTPA-extractable Cd, Cu, Fe, Pb and Zn concentrations of the soil increased at applications of 38.1 t ha?1 sewage sludge, whereas applications of 9.5 t and 19.0 t ha?1 sludge only resulted in elevated levels of Cu and Zn, We conclude that if sewage sludge is to be used in production of maize, applications rate up to 19 t ha?1 could be accepted. However, this means also that the N requirement of maize crop is not covered by the sludge; therefore, the rest of nitrogen could be supplied as inorganic N.  相似文献   

16.
Heavy metals in soil of a sewage sludge experimental field The total amounts of Zn, Cd, Pb, Cu, Cr and Ni were determined in different depths of soils which have obtained sewage sludges in amounts between 180 and 1620 dt dry matter/ha. The elements Zn, Cd. Pb and Cu have been most enriched in the first twenty cm of the soils. The contents of Zn, Cd and Pb in the depth of 40–60 cm also showed a significant increase. The treshold values for Zn and Cd in soils were almost attained respectivly slightly exceeded in the first twenty cm of the soil which has obtained 1440 dt dry matter sewage sludge per ha.  相似文献   

17.
High Cd and Ni concentrations in sandy soils were built up in a field experiment, receiving an unusually metal-polluted sewage sludge between 1976 and 1980, at Bordeaux, France. The study evaluates the availability of metals and their after effects on maize at one point in time, the 8th year following termination of sludge application (1988). Plant parts (leaves, stalks, roots, grains) and soil samples were collected from plots which received 0 (Control), 50 (S1) and 300 Mg sludge DW ha?1 (S2) as cumulative inputs. Dry-matter yield, plant metal concentrations, total, and extractable metals in soils were determined. Metal inputs resulted in a marked increase in total and extractable metals in soils, except for extractable Mn and Cu with either 0.1 N Ca(NO3)2 or 0.1 N CaCl2. Total metal contents in the metal-loaded topsoils (0–20 cm depth) were very often lower, especially for Cd, Zn, and Ni, than the expected values. Explanation was partly given by the increases of metal contents below the plow layer, particularly for Cd at the low metal loading rate, and for Cd, Ni, and Cu at the high one (Gomez et al., 1992). In a control plot beside a highly metal- polluted plot, Cd, Zn, and Ni concentration in soil increased whereas the concentration of other metals was unchanged; lateral movement, especially with soil water, is plausible. Yield of leaves for plants from the S2 plot was reduced by 27%, but no toxicity symptoms developed on shoots. Yields of stalks for plants in both sludge-treated plots numerically were less than the controls but the decrease was not statistically significant. Cd and Ni concentrations increased in all plant parts with metal loading rate while Mn concentrations decreased. Leaf Cd concentration in plants from sludge-treated plots (i.e. 44 and 69 mg Cd kg?1 DM for S1 and S2) was above its upper critical level (i.e. dry matter yield reduced by 10%: 25μg Cd g?1 DM in corn leaves, Macnicol and Beckett, 1985). Yield reduction at the high metal-loading rate was probably due to 3 main factors: Mn deficiency in leaves, the accumulation of Ni especially in roots, and the increase of Cd in leaves. The amount of metal taken up by plants from the control plot ranked in the following order (mole ha?1): Fe(22)? Mn(7)>Zn (5.6)?Cu (0.7), Ni (0.6), Cd (0.4). For sludge-treated plots, the order was (values for S1 and S2 in mole ha ?1): Fe (16, 15)>Zn (7.9, 7.7)>Ni (4.3, 4.7)>Cd (1.9, 2.1)>Cu (1.0,1.2), Mn (1.5, 1.1). Zn and Cd had the greatest offtake percent from the soil to the above ground plant parts. Cd or Ni uptake by maize were correlated with extractable metals by unbuffered salts (i.e. 0.1 N Ca(NO3)2 and 0.1 N CaCl2). It is concluded that part of the sludge-borne Cd and Ni can remain bioavailable in this sandy soil for a long period of time (e.g. 8 yr) after the termination of metal-polluted sludge application.  相似文献   

18.
Land treatment is increasingly being utilized as a method of waste disposal for both sewage effluent and sludges. While there has been considerable attention directed toward the fate of metallic constituents of sewage sludges, there have been fewer studies of the fate and mobility of metals appled to soils in sewage effluent. This study was undertaken utilizing secondarily treated sewage effluent amended to contain less than 1 mg l?1 each of Cd, Cu, Ni, Pb, and Zn. The effluent was applied weekly for a period of 1 yr on large undisturbed monoliths of four diverse soils enclosed in lysimeters and sprigged to common bermudagrass (Cynodon dactylon L.). Soil samples were collected periodically and extracted with DTPA to measure plant available metals. Vegetation was harvested, weighed, subsampled and analyzed for total metal content. Total plant uptake of Cd, Cu, Pb, and Ni during the year was less than 1% of that applied. Vegetative uptake of Zn was as high as 2%. Metal uptake was greatest in the soil with the lowest initial pH. Heavy metal concentrations in plant tissue exhibited a cyclic trend. A similar increasing cyclic trend was evident in the DTPA extractable metals in the surface 0 to 12.5 cm of the treated soils. Decreases in plant and DTPA extractable metals occurred when the soils dried, allowing O2 to enter. Vegetative concentrations of Cd, Cu, and Ni exceeded normal ranges of 0.2 to 0.8, 4 to 15, and 1.0 mg kg?1, respectively, for vegetation while Pb and Zn were near normal. Only Cd concentration of vegetation posed a threat to grazing animals.  相似文献   

19.
The bioavailability and plant uptake of heavy metals (HM), as well as finding the most reliable methods for the prediction of availability, continues to be one of the most crucial problems in agricultural and environmental studies. In agricultural soils from two regions in Kosovo, known for its metal pollution, we collected 60 soil and plant samples (wheat, corn, potatoes, and grass). Heavy metals were extracted from soil with aqua regia (pseudototal concentration), NH4OAc‐EDTA (potential bioavailable), and NH4NO3 (mobile fraction), plant samples were digested with HNO3/H2O2 (microwave assisted extraction). The pseudo total content of Cd, Pb, and Zn showed high value in Mitrovice (mean: Cd–2.92, Pb–570.15, and Zn–522.86 mg kg?1), whereas in Drenas region Ni and Cr showed high value with a mean 258.54 and 203.22 mg kg?1. Also, the potential bioavailability and mobile form of these metals were increased in Mitrovice (mean: Cd–1.59, Pb–217.05, Zn–522.86 mg kg?1, respectively Cd–0.17, Pb–0.64, and Zn–15.45 mg kg?1), compared to Drenas. Cd and Pb were elevated in potato tubers (mean Cd–0.48 and Pb–0.85 mg kg?1). The TF was higher for micronutrients (Zn and Cu) than for non‐essential metals (Cd and Pb). Multiple regression analysis showed a good model for prediction of Cd, Pb and Zn content in plant with significance 99.9%, whereas this model was not significant for Cu, Cr, and Ni. Soil pH played a significant role in the content of Cd and Zn in wheat and potato plants. Clay content also showed significance in Cd concentration in wheat and potato plants, while carbon content was significant for Cd in grass plants, as well as for Zn in wheat and grass plants.  相似文献   

20.
This paper contributes to increase the knowledge of the contents and sources of heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) to agricultural soils in Castellón province (Spain), a representative area of the European Mediterranean region. The surface horizons of 77 agricultural soils under vegetable crops were sampled and heavy metals were analysed by atomic absorption spectroscopy (AAS) after microwave extraction using the USEPA 3051A method. Mean heavy metal contents were similar to those obtained in other areas of this region. However, heavy metal contents (e.g. Cr, Pb) in some soils were above the maximum limit set in the 86/278/CEE Directive. Multivariate analysis (correlation analysis and principal component analysis – PCA) was performed so as to identify the sources of heavy metals to soils. Co, Fe and Ni were highly correlated amongst them (r?>?0.800; p?<?0.01), whereas Cr and Mn were less correlated with Co, Fe and Ni (r?>?0.500; p?<?0.01). Other relationships among heavy metals (i.e. Cu, Pb and Zn) were also identified, although correlation coefficients were not so high as those among Co, Fe and Ni (r?<?0.500; p?<?0.01). Contents of Co, Fe, Mn and Ni were interpreted to be mainly associated with parent rocks corresponding to the first principal component (PC1). On the other hand, Cd, Cu, Pb and Zn were interpreted to be mainly related to anthropogenic activities and comprised the second (Pb and Zn) and the third (Cd and Cu) principal components (PC2 and PC3, respectively), designated as anthropogenic components. Remarkably, Cr appears to be related in the study area to both the lithogenic and the anthropogenic components. Lithogenic elements were highly correlated with soil properties. Positive relationships with CEC (r?>?0.200; p?<?0.05) and clay (r?>?0.400; p?<?0.01), and negative relationships with carbonates (r?>??0.400; p?<?0.01) and sand (r?>??0.300; p?<?0.01) were observed. Anthropogenic elements were less correlated with soils properties, since these elements are generally more mobile because they form more soluble chemical species associated to anthropogenic sources. Particularly, no correlation was found between Cd and Zn and soil properties. These findings extend results achieved in other parts of the region, highlighting the need to set soil quality standards in order to declare soils affected by anthropogenic pollution, particularly in the case of anthropogenic metals such as Cd, Cu and Pb, and also Cr and Zn in some areas. Further knowledge from other areas in this region would improve the basis for proposing such standards at regional level, which is a priority objective in Europe according to the European Thematic Strategy for Soil Protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号