首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early establishment of seedlings in reclaimed oil sand areas is often limited by low nutrient and water availability due to factors such as strong understory vegetation competition. Management practices such as nursery fertilization and field weed control could help early establishment of planted seedlings and reclamation success. We investigated the effect of nursery nutrient loading and field weed control on the growth, nitrogen (N) retranslocation within seedling components, and plant N uptake from the soil for white spruce (Picea glauca [Moench] Voss) seedlings planted on a highly competitive reclaimed oil sands site for two years. Exponential fertilization during nursery production increased the root biomass but not the nutrient reserve in the seedling. In the field experiment, on average across the treatments, 78 and 49% of the total N demand of new tissue growth in the first and second year were met by N retranslocation, respectively. Though exponential fertilization did not affect N retranslocation, it increased the percent height and root collar diameter growth. Weed control increased not only the growth of seedlings by increasing soil N availability, but also N retranslocation within the seedlings in the second year after outplanting. We conclude that vegetation management by weed control is feasible in improving the early growth of white spruce seedlings planted on reclaimed soils and facilitate tree establishment in the oil sands region. Optimization of the nursery exponential N fertilization regime for white spruce may further help with early revegetation of reclaimed oil sands sites.  相似文献   

2.
容器苗指数施肥研究综述   总被引:12,自引:1,他引:11  
容器苗作为主要的造林材料广泛用于林地更新和荒山的植被恢复, 但其造林成活率及生长表现常受杂草和土壤肥力的影响。指数施肥作为一种新型的容器苗培育方式, 将施肥量与植物指数生长期间的需肥量紧密结合, 并通过营养载荷在幼苗体内建立营养库, 从而降低了幼苗对种植地营养水平的依赖, 有利于提高幼苗的造林成活率。文中介绍了指数施肥的原理, 及其对苗期和种植后幼苗生长的影响, 旨在为容器苗指数施肥在我国的推广提供理论基础。  相似文献   

3.
Red pine seedlings were grown for 16 weeks under contrasting fertilizat (conventional, exponential) and moisture (wet, moist, dry) regimes to assess preconditioning effects of treatments on biomass production, nutrient uptake and allocation, and water relations. Growth, nutrient status, and water relations were affected more by moisture availability than by fertilization regime. Exponential fertilization under limited irrigation lowered shoot/root mass ratio, increased root nutrient reserves, and enhanced drought avoidance compared to conventional fertilization regimes. Drought treatments decreased nutrient uptake in the shoots of both fertilization regimes by 24%, but increased nutrient accumulation in the roots by 39% in the exponential regime compared to 17% in the conventional. These results may explain improved outplanting performance noted for exponentially fertilized container stock.  相似文献   

4.
Containerized coastal Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were grown with conventional soluble fertilizer and supplemented with one of four slow-release fertilizers (SRF treatments) or unsupplemented (control treatment). Seedlings were outplanted to two sites in 1998. At the time of outplanting, SRF incorporated into the growing medium resulted in larger seedlings with higher foliar nutrient concentrations as compared to conventionally fertilized seedlings. After four growing seasons, SRF-amended seedlings at both sites had significantly greater height, basal stem diameter, and stem volume, with increases up to 19, 21, and 73%, respectively, as compared to conventionally fertilized seedlings. Additionally, three stock sizes were compared at one of the sites. Increasing stock size resulted in increased growth during the first two seasons, enabling larger stock to maintain their size advantage. Seedling responses to SRF are attributed to larger initial size, increased internal nutrient reserves at planting, and continued fertilization after planting.  相似文献   

5.
We tested the effects of exponential nutrient loading and springtime carbon loading during nursery culture on the field performance of black spruce (Picea mariana (Mill.) B.S.P.). Seedlings were grown from seed with a conventional, fixed dose fertilizer (10 mg N seedling−1) or an exponential nutrient loading regime (75 mg N seedling−1). The following spring, seedlings were exposed for two weeks to either ambient (370 ppm) or elevated levels of CO2 (800 ppm) and then planted in the field; seedling growth was followed for the next six years. Exponential nutrient loading increased seedling height, stem diameter and leader growth, with the largest increases in height and leader length occurring in the first three years after outplanting. Carbon loading increased seedling height and leader length, but only in seedlings that had been exponentially nutrient loaded. A combination of carbon and nutrient loading increased shoot height 26%, stem diameter 37% and leader length 40% over trees that received neither treatment. These results demonstrate that the growth enhancement seen under exponential nutrient loading is maintained under field conditions for at least six years. Carbon loading just before outplanting was a useful supplement to nutrient loading, but was ineffective in the absence of nutrient loading.  相似文献   

6.
Aspen (Populus tremuloides Michx) has great potential as a reclamation species for mining sites in the boreal forest, but planting stock has shown poor field performance after outplanting. In this study we tested how different aspen seedling characteristics and planting times affect field outplanting performance on reclamation sites. We produced three different types of aspen planting stock, which varied significantly in seedling size, root-to-shoot ratio (RSR), and total non-structural carbohydrate (TNC) reserves in roots, by artificially manipulating shoot growth during seedling production. All three stock types were then field-planted either in late summer, late fall, or early spring after frozen storage. Seedlings were outplanted onto two reclaimed open-pit mining areas in the boreal forest region of central and east-central Alberta, Canada, which varied significantly in latitude, reclamation history, and soil conditions. Overall, height growth was better in aspen stock types with high RSR and TNC reserves. Differences in field performance among aspen stock types appeared to be more strongly expressed when seedlings were exposed to more stressful environmental site conditions, such as low soil nutrients and moisture. Generally, aspen seedlings planted with leaves in the summer showed the poorest performance, and summer- or fall-planted seedlings with no shoot growth manipulation had much greater stem dieback after the first winter. This indicates that the dormancy and hardening of the stem, as a result of premature bud set treatments, could improve the outplanting performance of aspen seedlings, particularly those planted during summer and fall.  相似文献   

7.
Nutrient loading of nursery seedling stock of species with an indeterminate growth strategy is challenging and poorly understood. Here, we explore the use of two potential techniques for nutrient loading of trembling aspen (Populus tremuloides Michx.) seedlings: (1) exponential fertilization and (2) early shoot growth termination in order to divert assimilated nutrients and carbon to storage rather than to growth. In the first study, aspen seedlings were treated with either exponential or constant fertilization rates, both of which supplied the same amount of nutrients over the growing season. Exponential fertilization resulted in overall poor planting stock form (stunted seedling growth and weak root development) and produced only marginal improvements of nutrient status. As a result, the exponential fertilization regime studied cannot be recommended as a treatment for aspen seedlings. In the second study we treated seedlings with a 2 × 2 factorial combination of fertilization and shoot growth inhibitor (SGI) applications with the fertilizer treatments varying in terms of mid-season fertilizer concentrations. Seedlings with SGI application had much higher tissue nutrient and carbon reserve concentrations than seedlings without a SGI application. In addition, nutrient uptake appeared to be more efficient in SGI treated seedlings, which could potentially result in significant reductions of nutrient application rates during aspen seedling production in nurseries. Overall, early shoot growth termination using a SGI appears to be an effective technique to produce nutrient loaded aspen seedlings.  相似文献   

8.
Increased planting of hard mast oak species in the Lower Missouri River floodplain is critical as natural regeneration of oak along the Upper Mississippi and Lower Missouri Rivers has been limited following major flood events in 1993 and 1995. Traditional planting methods have limited success due to frequent flood events, competition from faster growing vegetation and white-tailed deer herbivory. Results of early growth response of swamp white oak (Quercus bicolor Willd.) seedlings in relation to initial acorn mass and size, and early rapid shoot growth for seedlings produced by containerized root production method (RPM™), are presented. Containerized RPM™ seedlings grown in the greenhouse under optimal conditions demonstrate that seed size had no discernable impact on first-year root or shoot size. Seedling survival for the first two years and acorn production for the first three years after outplanting are presented, comparing use of containerized RPM™ swamp white oak seedlings to nursery stock. Flood tolerant precocious RPM™ oak seedlings in the floodplain provide a source of food for acorn-consuming wildlife ten to fifteen years sooner than oaks originating from natural regeneration, direct seeding or traditional bare root planting. Compared to bare root nursery stock that produced no acorns, some RPM™ swamp white oak seedlings averaged 4.3, 5.2, and 6.3 acorns/seedling in the first three years after fall outplanting. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.

Competitive effects of dense herbaceous vegetation (ground cover) can inhibit forest restoration on mine sites. Here we review the evidence of ground cover interactions with planted tree seedlings on coal surface mines of the eastern US, discuss recent research into these interactions, and draw conclusions concerning ground cover management when restoring forests on reclaimed coal mines. Reclaimed mine sites have a high potential to support productive forests, however forest establishment is inhibited by reclamation practices that included soil compaction, and the seeding of competitive ground covers. In the first few years after tree planting, a dense ground cover of grass and legume species commonly seeded on mine sites often affect growth and survival negatively. Herbaceous vegetation providing less extensive and competitive ground coverage may either facilitate or inhibit tree establishment, depending on site conditions. The use of quality planting stock promotes the competitive ability of seedlings by improving nutrient status and the ability to capture available resources. Herbaceous species have contrasting functional characteristics, and thus compete differently with trees for available resources. Negative interactions with trees are more frequently reported for non-native cool-season grasses than for native warm-season grasses, while the effects of legumes change over time. Further research is needed to fully understand the mechanisms of tree/ground cover interactions. The development of seeding mixes that can control erosion, facilitate survival and growth of planted trees, and allow establishment by unplanted native species would aid forest restoration on eastern US, coal mines.

  相似文献   

10.
Fertilization is essential to seedling production in nursery culture, but excessive fertilization can contaminate surface and ground water around the nursery. The optimal fertilization practice is that which maximizes seedling growth and minimizes nutrient loss. We tested three fertilization strategies: (1) constant fertilization (2) a three-stage rate, and (3) exponential fertilization on Liriodendron tulipifera and Larix leptolepis containerized seedlings. Growth performance, nutrient uptake, and nutrient loss in leaching were measured. Height, root collar diameter, and dry weight of both species were not significantly different among treatments even though the nutrient supply of the exponential treatment was half that of the constant and three-stage treatments. Generally, nutrient losses in leached solutions were higher in constant and three-stage than the exponential treatment. Nutrient use efficiency was calculated as the ratio of the nutrient content of the seedlings to the amount of nutrient applied to the containers. The nitrogen use efficiency in the constant, three-stage, and exponential treatments was 63, 61, and 85% for yellow poplar, respectively, and 35, 30, and 53% for larch. Similar results were obtained for phosphorus and potassium. Thus, the exponential treatment had the highest nutrient use efficiency as well as the least nutrient loss. Adjusting fertilization rates can reduce soil and water contamination around the nursery without compromising growth performance, which reduces both producer’s investments and environmental impacts.  相似文献   

11.
Zaczek  James J.  Steiner  Kim C.  Bowersox  Todd W. 《New Forests》1997,13(1-3):177-191
A northern red oak plantation was established in 1988 in a recently clearcut mixed oak stand to evaluate outplanting performance relative to type of planting stock (1--0, 2--0, 1--1, 2--1, 2-year-old containerized, and direct-seeded) and other cultural factors (undercutting in the nursery, raising stock in an extended growing season in Alabama vs a local Pennsylvania nursery, top-clipping at planting time, and tree shelters). Six years after outplanting, seedlings grown from 2-year-old containerized stock were tallest (averaging 3.3 m) and had excellent survival. Among other treatments, 2--0 bareroot stock, especially if undercut in the nursery and top-clipped at planting, performed best and averaged 3.0 m height and 100% survival. Remaining treatments, especially 1--0, were smaller and had reduced survival. Seedlings from direct-seeding were as tall as most 1--0 treatments. Undercutting, top-clipping, nursery transplanting, raising stock in different nurseries, and tree shelters minimally affected the height or survival of seedlings. Seedlings above average in height 3 years after outplanting when fencing was removed and herbiciding ceased, were most likely to survive after 6 years.  相似文献   

12.
Scots pine (Pinus sylvestris L.) seedlings were grown in containers filled with peat, using two different fertilizers and three different fertilizer regimes. Seedling shoot and root growth and shoot content of nitrogen, potassium and phosphorus were followed in the nursery and after outplanting in the field. Attempts to regulate growth rate by an exponential nutrient supply were not successful, but the root/shoot ratio was influenced by the fertilization regime. Internal nitrogen concentration was stable only for seedlings with low relative growth rate, while seedlings with high nutrient supply in the nursery showed strong nutrient dilution in the shoot after planting.  相似文献   

13.
Three different stock sizes of containerized black spruce (Picea mariana [Mill.] B.S.P.) seedlings were planted in an abandoned agricultural field. The small planting stock was of a conventional type produced in 110 cm3 containers. The experimental medium and large stock types were produced in 340 and 700 cm3 containers, respectively. Gas exchange, xylem water potential and dry masses were measured six times during each of the first two growing seasons in field plots with and without vegetation control. During the first growing season, the effect of planting shock masked most physiological and growth differences among seedling types. During the second growing season, in plots with vegetation control, small and medium seedlings had similar values of physiological variables and of growth as measured by relative growth rates (RGR), but the large seedlings showed lower values of both net photosynthesis and of RGR, a difference attributed to low initial quality of the root system in the larger seedlings. In plots without vegetation control, the trend was identical, but differences were not significant; the greater height of the larger seedlings, and the resulting greater access to light, compensated for their lower initial quality. The similarity in response between the medium and the small seedlings shows that a fourfold increase in shoot size (1.68–6.82 g) in the initial size and a doubling of the shoot : root ratio (2.17–4.54) of the planting stock did not result in increased planting shock or reduced growth in these containerized conifer stock types. The results also show the importance of the interaction between stock height and the vertical light profile created by the competing vegetation in the final assessment of stock performance.  相似文献   

14.
Abstract

Exponential nutrient loading has been used to improve nursery fertilizer uptake efficiency of conifer seedlings, but the technique has received little attention in the culture of temperate deciduous hardwoods. This study examined responses of northern red oak (Quercus rubra L.) and white oak (Q. alba L.) seedlings to modified exponential nitrogen loading during bareroot nursery culture using a broad range of nutrient supply from 0 to 3.35 g nitrogen (N) per plant per season for 18 weeks in Indiana, USA. Seedling growth and nutritional parameters followed a curvilinear pattern that ranged from deficiency to toxicity with increased fertilization consistent with trends depicted in the proposed model for nutrient loading. Fertilization increased plant dry mass by 113–260% for red oak and 49–144% for white oak. Severe nutrient deficiency occurred under indigenous soil fertility, and limited phosphorus and potassium uptake were found to inhibit seedling growth at higher N supply. The sufficiency and optimum rates were determined to be 0.84 and 1.68 g N per seedling per season, respectively, under the current cultural conditions. Fertilization at 1.68 g N per plant increased N content by 40% in red oak and 35% in white oak. This approach may be used to help refine nursery fertilization practices in hardwood culture to produce high-quality seedlings for field planting.  相似文献   

15.
Betula alnoides is a fast-growing hardwood species grown in large plantations in Southeast Asia and South China. Nitrogen requirements for producing robust seedlings, growth and nutrient dynamics were investigated using exponential fertilization treatments. Root collar diameter, height, dry mass and nutrient contents of seedlings increased exponentially in all fertilization treatments as time progressed. Moreover, with water soluble fertilizer (Plant Products plus microelements N–P2O5–K2O: 20–20–20), 300 mg N seedling?1 was adequate. Vector analysis revealed that P was the most responsive nutrient element, followed by N and K. Dilutions of N and K were evident in the plants without N addition, which induced initial P sufficiency and then luxury consumption probably due to the antagonistic interaction between N and P. However, deficiencies of N, P and K were mostly observed in all exponential regimes during the experiment because seedling growth rate exceeded nutrient uptake rate, inferring that further study on improving the nutrient uptake efficiency is needed. Analysis of relationships among nutrient supply, dry mass, N content and N concentration demonstrated that 100–400 mg N seedling?1 induced sufficiency to luxury consumption of nitrogen without significant change in dry mass, and 400 mg N seedling?1 is recommended to apply for nutrient loading of seedlings before outplanting. The findings will help improve seedling quality and enhance the production of robust seedlings for plantation forestry of this species.  相似文献   

16.
The low availability of nitrogen (N) is believed to be one of the major limiting factors of forest regeneration in Iceland and frequently under Boreal conditions. Lutz spruce (Picea x lutzii Littl.) seedlings were nutrient loaded using four fertilization regimes in the end of nursery rotation in autumn 2008 and planted in the following spring, with or without a single dose of fertilizer, on two treeless sites in N-Iceland with contrasting soil fertility. Measurements were made after one growing season. The highest loading level without additional field fertilization increased new needle mass by 122% and 152%, for the poor and more fertile site, respectively. The highest loading level with field fertilization increased new needle mass equally, by 188% and 189%, for the poor and more fertile site, respectively. Retranslocation of N, from old needles to current needles, increased with more loading. However, it was clear that nutrient loading could not replace field fertilization, as the seedlings generally showed an additive response to field fertilization and nutrient loading; doing both always gave the best results in seedling performance. As the study only covers field establishment during the first year, the long-term effect of nutrient loading of Lutz spruce cannot be predicted. However, it was concluded that loading might provide an additional input for faster plantation establishment during the first growing season after planting.  相似文献   

17.
Planting stock selection is an integral part of plantation management, as forest nursery practices influence the physiological status of the seedlings and their capacity to cope with resource availability on different planting sites. We thus compared the 11th-year dimensions and survival of large white spruce (Picea glauca) and black spruce (P. mariana) seedlings produced as 2 + 2 bareroot or 2 + 0 container stock (cell volume of 350 cm3), used to reduce the need for competition control. Using complete split-block designs, we evaluated the seedling competitive potential and response to mechanical release on two sites of contrasting ecological fertility and vegetation dominance in Quebec, Canada. We found that large spruce seedlings can be successfully established on high-competition sites in a context where chemical herbicides cannot be used. These stock types had a limited impact on survival and growth, and both stock responded similarly to mechanical vegetation control. In this context, the choice of stock type should prioritize the highest quality large seedling based on operational considerations such as availability and ease of transportation. Mechanical site preparation was not necessary to promote seedling growth and survival on these sub-boreal sites.  相似文献   

18.
Holm oak (Quercus ilex L.) seedlings were exponentially (E) nutrient loaded using incremental increases in fertilizer addition or conventionally (C) fertilized using a constant fertilizer rate during nursery culture. The fertility treatments (mg N plant−1) were control (0), 25E, 100E, and 100C. Subsequently, 1-year-old plants were transplanted under simulated soil fertility gradients in a greenhouse to evaluate effects of nutrient loading and post-transplant fertility on seedling performance. Post-transplant fertility consisted of fertilizing plants at two rates (0 vs. 200 mg N plant−1). A water-soluble fertilizer 20-20-20 was supplied in both nursery and post-transplant experiments. Nutrient loading increased plant N content by 73% in 100E and by 75% in 100C relative to controls, although no significant differences were detected between constant and exponential fertilization regimes at the 100 mg N plant−1 rate. When transplanted, nutrient loading promoted post-transplant root growth relative to shoot, implicating potential to confer competitive advantage to loaded holm oak seedlings after trans-planting. In contrast, post-transplant fertility increased new shoot dry mass by 140% as well as N, P and K content relative to controls. Results suggest that holm oak seedlings can be successfully nutrient loaded in the nursery at higher fertility rates, improving its potential to extend new roots, but alternative fertilization regimes and schedules that better fit nutrient availability to the growth rhythm and conservative strategy of this species must be tested.  相似文献   

19.
沙旱生植物容器育苗技术   总被引:2,自引:0,他引:2       下载免费PDF全文
从育苗时间的确定、选定育苗设施、繁殖材料(种子或插穗)处理、容器的选择、育苗基质的配制、育苗、温湿度控制、喷施营养液、容器苗的移植等多方面系统地总结了容器育苗的主要技术内容;介绍沙旱生容器育苗造林的成功经验.  相似文献   

20.
Growth and nutrient dynamics of bare-root white spruce (Picea glauca (Moench) Voss) seedlings were monitored for three years in a nursery and for one season after planting to assess effects of three nursery fertilization regimes. Nitrogen (totaling 0, 650, and 1300 kg N ha(-1) for 3 years) was applied conventionally in equal amounts during the growing season. The high-N treatment, representing a nutrient loading regime, was also applied seasonally at exponentially increasing rates as a fourth treatment. By the end of the 3-year nursery rotation, the N treatments had stimulated growth by 104-180% and nutrient uptake by as much as 381, 224 and 145% for N, P and K, respectively, inducing large accumulations of N and P in both conventionally and exponentially loaded seedlings. Compared with exponentially loaded seedlings, the concentrations of nutrients were less in conventionally loaded seedlings although their biomass was larger (31%). High nutrient reserves in the seedlings at the end of the nursery rotation resulted in increased biomass production (40-190%) after planting, which was related to the ability of the seedlings to retranslocate internal reserves for new growth, despite little or no net uptake of nutrients during the first season after planting. Compared with conventionally loaded seedlings, retranslocation was greater in exponentially loaded seedlings, which had accumulated larger and more readily available nutrient reserves during the nursery phase. The shortness of this study limits its usefulness for predicting the persistence of the loading response after planting, but we postulate that the high nutrient status of loaded seedlings at the end of the nursery rotation will contribute to future growth through increased nutrient storage and retranslocation, thus prolonging the loading response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号