首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Timmer  V.R. 《New Forests》1997,13(1-3):279-299
Reforestation efforts in Ontario have become increasingly more reliant on containerized planting stock since these seedlings are less costly to produce and plant than bare-root stock. Container seedlings, however, tend to be more susceptible to competing vegetation when planted on weed-prone sites often requiring release by chemical herbicides. We have developed cultural techniques to improve the competitiveness of containerized seedlings by promoting initial outplanting performance thus reducing the need for early vegetation control. The approach is based on two new preconditioning practices, exponential fertilization and nutrient loading, which induce a steady-state build up of nutrient reserves in seedlings for outplanting. Exponential nutrient loading integrates these practices with high dose fertilization inducing luxury consumption. Steady-state culture corresponds better with the competitive outplanting environment, since stable internal nutrient accumulation in the greenhouse phase conforms with steady-state nutrient uptake of natural exponentially growing vegetation in the field, and exponential nutrient delivery to container-restricted root systems also better simulates nutrient flux reached by expanding roots in a field soil with constant nutrient availability. Combined with nutrient loading, the higher nutrient reserves and improved nutrient balance in seedlings contribute to enhanced stress resistance and increased growth performance. This paper reviews the theory and practice of exponential nutrient loading during seedling culture, presents results of growth and nutritional responses of seedlings planted on competitive sites, and suggests appropriate criteria for quality testing of nutrient loaded stock.  相似文献   

2.
This research examined the first year growth characteristics of cold stored and transplanted nursery-produced aspen (Populus tremuloides) seedlings (container and bareroot (BR)) and compared it to the growth of seedlings that had not been transplanted (established from germinants in the field) and therefore had an unrestricted root system (UR). Prior to planting, nursery-produced seedlings were placed in cold storage (−3°C) and root growth potential (RGP) and total non-structural carbohydrate (TNC) root reserves were tested at 0, 10, 75 and after 150 (container) and 190 days (BR) of storage. Both container and BR stock had much lower root to shoot ratios (RSRs) and root carbohydrate reserves compared to UR seedlings after 170 days. During storage, root reserves in container stock declined faster than in the BR and UR seedlings. RGP in all nursery stock was the highest after 75 days of storage, while longer storage resulted in shoot dieback and reduced root growth. After the first growing season, UR seedlings were one tenth the size of the nursery stock; however, in the second growing season they had no stem dieback and grew twice the height and stem diameter. The higher RSRs and root reserves in the UR seedlings was likely caused by early bud set in its first year of growth. This suggests that inducing bud set earlier in the growing regime might allow seedlings to increase root mass and carbohydrate reserves.  相似文献   

3.
Increased planting of hard mast oak species in the Lower Missouri River floodplain is critical as natural regeneration of oak along the Upper Mississippi and Lower Missouri Rivers has been limited following major flood events in 1993 and 1995. Traditional planting methods have limited success due to frequent flood events, competition from faster growing vegetation and white-tailed deer herbivory. Results of early growth response of swamp white oak (Quercus bicolor Willd.) seedlings in relation to initial acorn mass and size, and early rapid shoot growth for seedlings produced by containerized root production method (RPM™), are presented. Containerized RPM™ seedlings grown in the greenhouse under optimal conditions demonstrate that seed size had no discernable impact on first-year root or shoot size. Seedling survival for the first two years and acorn production for the first three years after outplanting are presented, comparing use of containerized RPM™ swamp white oak seedlings to nursery stock. Flood tolerant precocious RPM™ oak seedlings in the floodplain provide a source of food for acorn-consuming wildlife ten to fifteen years sooner than oaks originating from natural regeneration, direct seeding or traditional bare root planting. Compared to bare root nursery stock that produced no acorns, some RPM™ swamp white oak seedlings averaged 4.3, 5.2, and 6.3 acorns/seedling in the first three years after fall outplanting. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Nutrient loading of nursery seedling stock of species with an indeterminate growth strategy is challenging and poorly understood. Here, we explore the use of two potential techniques for nutrient loading of trembling aspen (Populus tremuloides Michx.) seedlings: (1) exponential fertilization and (2) early shoot growth termination in order to divert assimilated nutrients and carbon to storage rather than to growth. In the first study, aspen seedlings were treated with either exponential or constant fertilization rates, both of which supplied the same amount of nutrients over the growing season. Exponential fertilization resulted in overall poor planting stock form (stunted seedling growth and weak root development) and produced only marginal improvements of nutrient status. As a result, the exponential fertilization regime studied cannot be recommended as a treatment for aspen seedlings. In the second study we treated seedlings with a 2 × 2 factorial combination of fertilization and shoot growth inhibitor (SGI) applications with the fertilizer treatments varying in terms of mid-season fertilizer concentrations. Seedlings with SGI application had much higher tissue nutrient and carbon reserve concentrations than seedlings without a SGI application. In addition, nutrient uptake appeared to be more efficient in SGI treated seedlings, which could potentially result in significant reductions of nutrient application rates during aspen seedling production in nurseries. Overall, early shoot growth termination using a SGI appears to be an effective technique to produce nutrient loaded aspen seedlings.  相似文献   

5.
Three different stock sizes of containerized black spruce (Picea mariana [Mill.] B.S.P.) seedlings were planted in an abandoned agricultural field. The small planting stock was of a conventional type produced in 110 cm3 containers. The experimental medium and large stock types were produced in 340 and 700 cm3 containers, respectively. Gas exchange, xylem water potential and dry masses were measured six times during each of the first two growing seasons in field plots with and without vegetation control. During the first growing season, the effect of planting shock masked most physiological and growth differences among seedling types. During the second growing season, in plots with vegetation control, small and medium seedlings had similar values of physiological variables and of growth as measured by relative growth rates (RGR), but the large seedlings showed lower values of both net photosynthesis and of RGR, a difference attributed to low initial quality of the root system in the larger seedlings. In plots without vegetation control, the trend was identical, but differences were not significant; the greater height of the larger seedlings, and the resulting greater access to light, compensated for their lower initial quality. The similarity in response between the medium and the small seedlings shows that a fourfold increase in shoot size (1.68–6.82 g) in the initial size and a doubling of the shoot : root ratio (2.17–4.54) of the planting stock did not result in increased planting shock or reduced growth in these containerized conifer stock types. The results also show the importance of the interaction between stock height and the vertical light profile created by the competing vegetation in the final assessment of stock performance.  相似文献   

6.
The carbohydrate reserve of bareroot Scots pine (Pinus sylvestris L.) seedlings was evaluated as means of describing seedling quality and capacity to withstand stress during nursery lifting, outplanting and acclimatization at the planting site. Carbohydrate concentrations in needles were followed through four spring storage treatments and the postplanting success and growth of seedlings monitored at two sites. The reduction in total glucose concentration in needles was affected by storage time and temperature. Depletion of carbohydrate reserves decreased needle growth, reduced the number of terminal buds, disturbed leader shoot formation, and consequently reduced shoot length. The depletion of reserves below a threshold concentration of ~2 % total glucose during storage resulted in significant seedling mortality. A simple model for estimating the depletion of carbohydrate reserves based on dark respiration was evaluated as a measure of the accumulated strain during the storage. The application of carbohydrate analyses as a routine test of seedling quality in a nursery is not currently feasible because of the insensitivity and laboriousness of the method.  相似文献   

7.
Detailed root and shoot development of bareroot and container Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedling stocktypes were compared during the first growing season after outplanting. The study was installed in raised beds with ideal environmental conditions and at a field reforestation site. Survival at both sites was 98% and did not differ between stocktypes. Seedlings were excavated in spring (5, 8, 12, and 16 weeks after planting) and in fall (35, 40, and 45 weeks after planting). In spring, container seedlings had more numbers of new roots and greater new root and shoot biomass than bareroot seedlings at both sites. In fall, bareroot seedlings consistently averaged more new root growth (though nonsignificant) than container seedlings suggesting that stocktype differences may not continue long-term. Container seedlings had significantly greater water percent than bareroot seedlings at the field site (all sample dates) and the raised bed site (weeks 5, 8, and 40 only). Regardless of environmental conditions or season, seedlings at both sites maintained water percent between 60 and 70% of fresh weight. Seedlings grown in the raised beds had much greater growth than those grown in the field. However, relative growth patterns for the two stocktypes were very similar on each site. The data generated establish baseline differences between stocktypes for root initiation, growth, and allometry during the first year after planting. Challenges associated with root development research are discussed.  相似文献   

8.
Why seedlings survive: influence of plant attributes   总被引:4,自引:2,他引:2  
Seedling survival and successful forest restoration involves many silvicultural practices. One important aspect of a successful forest restoration program is planting quality seedlings with high survival capability. Thus the nursery needs to create seedlings with plant attributes that allow for the best chance of success once a seedling is field planted. Since the mid-twentieth century, research foresters have critically examined plant attributes that confer improved seedling survival to field site conditions. This review describes the value of commonly measured seedling quality material (i.e. shoot height, stem diameter, root mass, shoot to root ratio, drought resistance, mineral nutrient status) and performance (i.e. freezing tolerance and root growth) plant attributes defined as important in answering the question of why seedlings survive after planting. Desirable levels of these plant attributes can increase the speed with which seedlings overcome planting stress, become ‘coupled’ to the forest restoration site, thereby ensuring successful seedling establishment. Although planting seedlings with these desirable plant attributes does not guarantee high survival rates; planting seedlings with desirable plant attributes increases chances for survival after field planting.  相似文献   

9.
Heiskanen  Juha  Rikala  Risto 《New Forests》1998,16(1):27-42
Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth.) seedlings were grown in containers filled with growth media based on medium-textured sphagnum peat, coarse perlite and fine sand. The seedlings were then planted into fine and coarse sandy soils in 2.2 l pots, which were subjected to two water-content treatments (only one for birch). After the seedlings had grown five weeks in a greenhouse, rooting into the surrounding soil and shoot growth were measured. Addition of perlite and sand to peat medium slightly affected rooting; thus suggesting minor effects on seedling establishment. However, nitrogen concentration of the seedlings varied between growth media and correlated positively with rooting into the soil. The particle size and water content of the soil affected considerably rooting of the seedlings. Seedling height at the time of planting did not affect rooting or shoot growth. The fact that the fewest out-grown roots occurred in the dry fine sandy soil, suggests that dry soil together with high strength and resistance to root penetration reduce rooting and water uptake by container seedlings most and may thus cause water and nutrient stresses to seedlings after outplanting.  相似文献   

10.

Ruil (Nothofagus alessandrii) is an endangered keystone species from the Mediterranean climate zone of Chile. Ruil’s fragile state of conservation urges development of restoration programs, but specific protocols for nursery production and field establishment that ensure plant survival are largely unknown. Therefore, we examined the effect on nitrogen (N) fertilization and container size during nursery production in combination with the use of mesh shelters after outplanting on survival and growth during the first growing season in the field. First year outplanting survival of nursery-grown container seedlings was enhanced when seedlings were given nitrogen (N) during nursery production and deployed with mesh tree shelters in the field. The volume of the container had no effect on outplanting survival and growth. Increasing N from zero to 200 mg N L?1 provided sufficient N levels, resulting in increased seedling height, root-collar diameter, shoot biomass, and total seedling N and phosphorous concentrations. Additional N provided by the 400 and 600 mg N L?1 treatments underwent luxury consumption by the seedlings with no further benefits in field performance. Improved growth in the nursery, along with the use of mesh tree shelters after outplanting, especially during the typical summer drought, may be responsible for increased survival during the first growing season. Increasing the performance of nursery-grown ruil seedlings is essential to restoring this endangered, vulnerable, and foundation species within the highly biodiverse, yet seriously threatened endemic Maulino Costero Forest of the Mediterranean climate of central Chile.

  相似文献   

11.
The planting environment of Mediterranean areas is highly challenging as summer drought and winter frost jeopardize survival, and soil infertility limits establishment success. We review the potential for seedling nutrient loading to alleviate these post-planting stresses. A growing body of evidence indicates that nitrogen (N) rich seedlings have improved field performance in Mediterranean environments, due to their ability to grow new roots rapidly and out-compete weeds. In addition, frost resistance during hardening is crucial for relatively cold inland nurseries; recent research shows a positive relationship between N and shoot frost resistance though a knowledge gap exists regarding the influence of nutrition on root frost resistance. Some new evidence also implicates phosphorus as an important driver of seedling response in the Mediterranean due to its influence on root growth and physiology. Nutrient status influences other functional attributes critical to survival in Mediterranean areas, such as drought tolerance, root hydraulic conductivity, and mycorrhization. In light of the apparent benefits of high nutrient reserves for seedling performance in Mediterranean areas, we also review techniques for nursery nutrient loading. Exponential fertilization can be applied when species’ growth patterns match this application regime. However, many Mediterranean species exhibit episodic growth indicating that constant or fall fertilization could be more effective in reaching loading. In particular, late-season fertilization has shown good potential to avert nutrient dilution in the fall and increase frost resistance. Several needs for future research are identified, with special emphasis on the necessity to match fertilization regimes to species ecological traits and planting conditions.  相似文献   

12.
We tested the effects of exponential nutrient loading and springtime carbon loading during nursery culture on the field performance of black spruce (Picea mariana (Mill.) B.S.P.). Seedlings were grown from seed with a conventional, fixed dose fertilizer (10 mg N seedling−1) or an exponential nutrient loading regime (75 mg N seedling−1). The following spring, seedlings were exposed for two weeks to either ambient (370 ppm) or elevated levels of CO2 (800 ppm) and then planted in the field; seedling growth was followed for the next six years. Exponential nutrient loading increased seedling height, stem diameter and leader growth, with the largest increases in height and leader length occurring in the first three years after outplanting. Carbon loading increased seedling height and leader length, but only in seedlings that had been exponentially nutrient loaded. A combination of carbon and nutrient loading increased shoot height 26%, stem diameter 37% and leader length 40% over trees that received neither treatment. These results demonstrate that the growth enhancement seen under exponential nutrient loading is maintained under field conditions for at least six years. Carbon loading just before outplanting was a useful supplement to nutrient loading, but was ineffective in the absence of nutrient loading.  相似文献   

13.
Early establishment of seedlings in reclaimed oil sand areas is often limited by low nutrient and water availability due to factors such as strong understory vegetation competition. Management practices such as nursery fertilization and field weed control could help early establishment of planted seedlings and reclamation success. We investigated the effect of nursery nutrient loading and field weed control on the growth, nitrogen (N) retranslocation within seedling components, and plant N uptake from the soil for white spruce (Picea glauca [Moench] Voss) seedlings planted on a highly competitive reclaimed oil sands site for two years. Exponential fertilization during nursery production increased the root biomass but not the nutrient reserve in the seedling. In the field experiment, on average across the treatments, 78 and 49% of the total N demand of new tissue growth in the first and second year were met by N retranslocation, respectively. Though exponential fertilization did not affect N retranslocation, it increased the percent height and root collar diameter growth. Weed control increased not only the growth of seedlings by increasing soil N availability, but also N retranslocation within the seedlings in the second year after outplanting. We conclude that vegetation management by weed control is feasible in improving the early growth of white spruce seedlings planted on reclaimed soils and facilitate tree establishment in the oil sands region. Optimization of the nursery exponential N fertilization regime for white spruce may further help with early revegetation of reclaimed oil sands sites.  相似文献   

14.
It has become apparent that some interventions are required to aid the regeneration of woody species in the Sudanian savanna. Direct seeding has been ineffective, thus planting high quality seedlings may be a viable alternative. In this study, we examined the stock quality of two valuable Sudanian savanna species, Acacia macrostachya and Pterocarpus erinaceus. Different nursery production periods were tested as well as the species’ field performance under well-watered and stressed conditions. The results showed that older seedlings (9-month) were morphologically distinct from younger ones (3-month), particularly in the case of P. erinaceus. Eighteen months after planting out, survival and growth of seedlings were not affected by initial seedling size; this was the result of the high root to shoot ratio of seedlings in all age groups at the time of planting. Seedling mortality as high as 30% was observed and attributed to both drought stress and other factors such as herbivory. Regression analyses revealed that initial shoot height was a poor predictor of field performance for both species, but initial root collar diameter accounted for 25% of the variation in diameter of P. erinaceus in the field. We conclude that initial seedling size does not affect survival and growth in the field provided that all sizes of seedling have a high root to shoot ratio at the time of planting. The prediction of field performance could be improved by developing a model that incorporates a wide range of root collar diameter.  相似文献   

15.
Root characteristics and field performance of container and bare-root seedlings of red oak (Quercus rubra L.) were compared during the first growing season after planting. Sixty seedlings of each stock type were planted on a clearfell and weed-free site near Restoule, Ontario. Twenty-four additional seedlings from each stock type were compared at the start of the study in terms of shoot and root parameters. Measurement of root and shoot parameters were repeated at three dates during the first growing season in the field. The root systems of container stock had a larger number of first order lateral long roots and were significantly more fibrous than bare-root stock. These differences were sustained throughout the first growing season. In terms of field performance, container seedlings had 100% survival and achieved significant increases in both biomass and shoot extension. Bare-root seedlings suffered 25% mortality, significant shoot dieback and more variable growth. The mean relative growth rate (RGR) of container seedlings increased throughout the study period to a maximum of 30 mg/g/day, whereas the mean RGR of bare-root stock remained close to or below zero. Overall, the container seedlings proved less prone to transplanting shock than the bare-root seedlings, most likely due to favourable root architecture and the pattern of root development. Further work may be warranted in container design, growing regimes and root architecture to fully realise the potential of container systems for the production of high quality red oak seedlings across a range of site conditions.  相似文献   

16.
In order to determine the effect of stocktype and cultivation treatment on the field performance (survival and growth) and physiological status of Picea abies in cutaway peatlands, small bare-root, large bare-root and containerised seedlings were planted in a deep ploughed and a control site. Survival after 2 years was good across all treatment (>90%) except for the large bare-root seedlings growing in the control site (84%). For all the morphological characteristics assessed in this study, there was no significant interaction between stocktype and cultivation treatment indicating that the growth response to site cultivation was not stocktype dependent. After two growing seasons, all Norway spruce seedlings performed better in the deep ploughed site and displayed also better nutritional and physiological status. Regardless of cultivation treatment, mean height, diameter and volume increment were significantly smaller for the large bare-root seedlings while the small bare-root seedlings displayed the greatest growth rates. In order to promote early height growth in container and small bare-root stock, large diameter is important. Other initial characteristics such as foliar nitrogen content may also have a strong influence on first year field performance. The physiological status of the seedlings during the first year after outplanting was assessed using chlorophyll fluorescence (CF) measurements. CF measurements detected a higher level of stress for the large-bare root stock (low Fv/Fm). On the other hand, small bare-root stock displayed highest maximum potential photochemical activity which corresponded to greatest growth rates. Container seedlings demonstrated higher capacity for photosynthetic electron transport during the first five months after planting suggesting that they recovered from planting stress quicker and optimised better light interception and utilization than bare-root stock. It can be concluded that intensive management systems including deployment of best-adapted stocktype and site cultivation can be used to enhance early height growth of Norway spruce on cutaway peatlands.  相似文献   

17.
KERR  G. 《Forestry》1994,67(4):297-312
With the increased availability of cell grown broadleaved plantingstock on the UK market there has been a need to evaluate itsplace in amenity and forestry planting. The results of threeexperiments using oak and beech seedlings grown in three typesof modular cell or as undercut bare-rooted stock are described.Plants were subjected to poor plant handling, planting outsidethe normal season, cold storage and different planting methods. The results demonstrate that, one season after outplanting,cell grown stock was more resistant to poor standards of planthandling, and being planted outside the normal planting season,compared with bare-rooted stock. On the other hand, there wereno significant differences between the stock types due to coldstorage or planting method. The difficulties of conducting trials between stock types arediscussed. The development of a Plant Quality Index which describesthe morphological and physiological features of good plantingstock, and the assessment of complete establishment systemsis advocated as a better approach.  相似文献   

18.
To assess the effects of seedling spacing on one-year-old seedling morphology in the nursery, seeds of three provenances of Fraxinus angustifolia were sown at five different seedling spacings within rows of two different spacings in the seedbed. Subsequent growth performance of one-year-old seedlings was assessed by planting in the forest. Within row spacings were: 4.3, 5.0, 6.3, 8.3, and 12.5 cm, and there were five rows at 20 cm apart, or three rows at 33 cm apart across the 1.2 m wide seedbeds. Both spacings within and between rows significantly affected shoot height, root collar diameter, root dry weight and shoot dry weight, but not root/shoot ratio. Wider spacings produced larger seedlings, but only the wider spacing within rows significantly increased fine and coarse root mass. Provenances showed significant differences in diameter, root/shoot ratio, and fine and coarse roots, and they also showed interactions with row spacings in height and diameter measurements. One year after outplanting, diameter growth was significantly related to provenance, and diameter growth was 88% greater for trees from 33 cm nursery row spacing than those from 20 cm nursery row spacing.  相似文献   

19.
The field performance of conifer and hardwood species inoculated with different inoculation treatments was evaluated 5 or 3 years after outplanting in the field trials established in the Canadian Prairie Provinces. In conifer trials, the growth of white spruce, black spruce, lodgepole pine, and larch seedlings observed on different sites varied greatly to different inoculation treatments depending on plant and fungal species involved. Five years after outplanting, most of the introduced fungi were replaced by several indigenous ectomycorrhizal fungal species except for Laccaria bicolor strain. Survival rates of most of the inoculated seedlings were not significantly different from control seedlings naturally colonized by other resident fungi. In hardwood trial, the effects of nursery inoculation of different poplar clones, aspen and balsam poplar were very limited. Growth and survival data were combined into seedling volume and plot volume index (PVI) for measurement of total growth response of seedlings. Our results demonstrated that certain inoculated plant-fungus combinations have played a positive role during the initial establishment of these seedlings in the field, which was reflected on significantly greater stem volume and PVI compared to non-inoculated control seedlings. The results from this study provided useful information on field evaluation for potential benefits of mycorrhizal inoculation in nursery.  相似文献   

20.
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings of a single seed source were grown in a bare-root nursery for two years to produce five different stock types by varying spacing and transplanting treatments. They were then planted in the forest together with one-year-old container seedlings of the same seed source, which constituted a sixth treatment. Stem volume mean relative growth rate (R(v)) was low immediately after planting for all stock types except the container seedlings, and increased over the following 7.6 years. An 8-week greenhouse test of the six stock types showed that dry weight mean relative growth rate (R(w)) generally decreased with seedling dry weight, but this effect was less obvious after planting, because only the three smaller stock types showed a decrease in R(w) with size. In another experiment, bare-root Douglas-fir seedlings were grown at five different spacings in a nursery for two years, and seedlings from each spacing treatment were sorted into large or small by height. The resulting 10 treatments were planted in the forest and stem volumes determined over 6.7 years. The linear effect of nursery spacing on stem volume was no longer evident 3.6 years after planting, but large seedlings had greater stem volume than the small seedlings throughout the 6.7 years of the study. There was no indication that R(v) declined with time, but small seedlings had higher R(v) than large seedlings. Relative growth rates of two-year-old Douglas-fir were depressed for a year or two after planting, but then remained relatively constant, or increased during the ensuing 5 years. Relative growth rates of smaller seedlings were greater than those of larger seedlings so that relative biomass differences decreased with time, and the time advantage (the time necessary for small seedlings to reach the present biomass of large stock) of larger stock decreased. Absolute size differences increased with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号