首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT The prevalence of brown stem rot (caused by Phialophora gregata), Heterodera glycines, and Phytophthora sojae in the north central United States was investigated during the fall of 1995 and 1996. Soybean fields were randomly selected using an area-frame sampling design in collaboration with the National Agricultural Statistics Service. Soil and soybean stem samples, along with tillage information, were collected from 1,462 fields in Illinois, Iowa, Minnesota, Missouri, and Ohio. An additional 275 soil samples collected from Indiana were assessed for H. glycines. For each field, the incidence and prevalence of brown stem rot was assessed in 20 soybean stem pieces. The prevalence and recovery (expressed as the percentage of leaf disks colonized) of P. sojae and the prevalence and population densities of H. glycines were determined from the soil samples. The prevalence of brown stem rot ranged from 28% in Missouri to 73% in Illinois; 68 and 72% of the fields in Minnesota and Iowa, respectively, showed symptomatic samples. The incidence of brown stem rot was greater in conservation-till than in conventional-till fields in all states except Minnesota, which had few no-till fields. P. sojae was detected in two-thirds of the soybean fields in Ohio and Minnesota, whereas 63, 55, and 41% of the fields in Iowa, Missouri, and Illinois, respectively, were infested with the pathogen. The recovery rates of P. sojae were significantly greater (P 相似文献   

2.
Metribuzin efficacy and dissipation were determined in two silty clay loam soils following preplant (PP), pre-emergence (PRE) and split (PP+PRE) application to tilled and no-till soybeans in rotation with corn at Clay Center and Lincoln, Nebraska. A similar experiment was conducted in tilled and no-till soybeans in rotation with wheat at Lincoln. Corn and wheat residue in no-till plots reduced the amount of metribuzin that reached the soil by approximately 54 and 89%, respectively. No differences in weed control or soybean yield were observed between tillage treatments or time of metribuzin application in the corn-soybean rotation. However, both weed control and yield were reduced in the wheat-soybean rotation. Most of the metribuzin remained at the 0–5 cm depth, and dissipation was exponential. The mean metribuzin half-life at the 0–5 cm depth across locations, tillage treatments, application time and rates was 11 days. The metribuzin half-life was 4–19 days following PP application and 3–17 days following PRE application. The metribuzin concentration did not exceed 65 μg kg?1 at the 5–10 cm or 10–20 cm depths in any treatment, indicating that little metribuzin had leached from the surface soil after PP or PRE application. The finding of a higher metribuzin concentration at 5-20 cm depth in tilled plots than in no-till could be attributed to higher initial soil concentrations in the absence of crop residue.  相似文献   

3.
黑龙江省大豆疫霉根腐病调查与病原分离   总被引:10,自引:0,他引:10  
1996年对黑龙江省东部和中部大豆产区23个市、县的大豆苗期疫霉根腐病进行了调查、研究,应用PBNIC疫霉选择性培养基分离大豆疫霉根腐病病原菌,从牡丹江、穆棱、林口和佳木斯豆田具疫霉根腐症状的大豆植株上分离到大豆疫霉根腐病菌,并从根腐病株上单独或与大豆疫霉菌同时分离到终极腐霉菌,研究进一步证实我国黑龙江省有大豆疫霉根腐病。调查发现,大豆疫霉根腐病和终极腐霉根腐病主要发生在土质粘重、土壤含水量高或易积水的田块。  相似文献   

4.
ABSTRACT The dynamics of Heterodera glycines spatial patterns were studied under different tillage systems in two naturally infested soybean fields in Iowa from 1994 to 1997. At each location, there were four different tillage treatments (conventional tillage, reduced tillage, ridge tillage, and no tillage). Soil samples were taken from 98 contiguous quadrats (5.2 m(2)) per plot in the fall of 1994, before any tillage was performed, and in the spring of the following 3 years shortly after planting. Cysts were extracted from soil samples by elutriation and counted, and eggs were extracted from cysts and enumerated. Spatial patterns of H. glycines populations were characterized by geostatistical analysis and variance-to-mean (VM) ratios. Semivariance values were calculated for cyst and egg densities and semivariograms were constructed. In general, there was greater spatial dependence among cyst populations than egg populations. In one field with a strongly aggregated initial H. glycines population, tillage practices resulted in changes in spatial patterns of H. glycines populations, characterized by spherical-model semivariogram parameters (sill, nugget effect, and range of spatial dependence). These parameters indicated increasing aggregation over time in no tillage and ridge tillage treatments, but decreasing aggregation in reduced and conventional tillage treatments. There was an increase of 350% in sill values (maximum semivariance) for cyst populations after 3 years of no tillage, but in the conventional tillage treatment, sill values remained unchanged or decreased over time as tillage was implemented. Semivariograms for cyst and egg population densities revealed strong anisotropy (directional spatial dependence) along soybean rows, coincident with the direction of tillage practices. VM ratios for cyst counts increased each year in the no tillage and ridge tillage treatments, but decreased for 2 years in reduced tillage and conventional tillage treatments. Final VM ratios for cyst and egg counts were highest in the no tillage treatment. In a second field, with low initial aggregation of H. glycines populations, there was little measurable change in semivariogram parameters after 3 years of no tillage, but in the conventional tillage treatment, populations became less aggregated, as the range, sill, and the proportion of the sill explained by spatial dependence decreased for cyst population densities. Our results indicated that in soybean fields with initially aggregated populations of H. glycines, no tillage and ridge tillage systems promoted aggregation of the nematode population, whereas conventional and reduced tillage systems resulted in a less aggregated spatial pattern.  相似文献   

5.
ABSTRACT Genetic variation and variation in aggressiveness in Phialophora gregata f. sp. sojae, the cause of brown stem rot of soybean, was characterized in a sample of 209 isolates from the north-central region. The isolates were collected from soybean plants without regard to symptoms from randomly selected soybean fields. Seven genotypes (A1, A2, A4, A5, A6, M1, and M2) were distinguished based on DNA fingerprinting with microsatellite probes (CAT)(5) and (CAC)(5), with only minor genetic variation within the A or M genotypes. Only the A1, A2, and M1 genotypes were represented by more than one isolate. The A genotypes dominated in the eastern Iowa, Illinois, and Ohio samples, whereas the M genotypes were dominant in samples from western Iowa, Minnesota, and Missouri. In growth chamber experiments, isolates segregated into two pathogenicity groups based on their aggressiveness toward soybean cvs. Kenwood and BSR101, which are relatively susceptible and resistant, respectively, to brown stem rot. In both root dip inoculation and inoculation by injecting spores into the stem near the ground line (stab inoculations), isolates of the A genotypes caused greater foliar symptoms and more vascular discoloration than isolates of the M genotypes on both cultivars of soybean. All isolates caused foliar symptoms in both cultivars and in three additional cultivars of soybean with resistance to brown stem rot. Greater differences between the A and M genotypes were seen in foliar symptoms than in the linear extent of xylem discoloration, and greater differences were seen in Kenwood than in BSR101. Inoculation of these genotypes into five cultivars of soybean with different resistance genes to brown stem rot showed a genotype x cultivar interaction. A similar distinction was found in an earlier study of the adzuki bean pathogen, P. gregata f. sp. adzukicola, and consistent with the nomenclature of that pathogen, the soybean pathogens are named the aggressive race (race A) and the mild race (race M) of P. gregata f. sp. sojae.  相似文献   

6.
Understanding drivers of weed density and diversity is essential for the development of weed management strategies. Here, we compared temporal changes in weed density and diversity under no-till (NT) and conventional (CONV) tillage systems in cotton–maize rotations on loam, clay loam and sandy loam soils immediately after transition to NT in Kadoma, Zimbabwe. The effect of tillage system on weed density varied through the growth season and was dependent upon soil type and species composition of the weed community. Although weed responses to tillage system varied amongst species, we identified general trend effects on weed density on specific soils. At 3 weeks after crop emergence (WACE), weed density on loam soils was 76% and 96% higher in NT than in CONV during the 2009/2010 and 2010/2011 seasons, respectively, and on clay loam soils it was 37% and 33% higher in NT than CONV, respectively. Weed densities in NT and CONV were similar across all soil types at 6 WACE during the 2009/2010 and 2010/2011 seasons and at 9 WACE in 2009/2010. Tillage system did not affect weed density during the growth season on sandy loam soils. Weed diversity (Shannon index) was at least 75% higher in NT than CONV on loam and clay loam soils at 3 WACE during both seasons. It is likely these increases in weed densities following conversion to NT will exacerbate already prevalent weed management problems in the smallholder sector. Earlier weeding is recommended to suppress weed emergence and reduce likely associated crop yield losses.  相似文献   

7.
Eleftherohorinos  I.  Dhima  K.  Vasilakoglou  I. 《Phytoparasitica》2004,32(3):274-285
Petri dish bioassays, based on root response of corn grown in soil or in perlite, were used to study the activity, adsorption, mobility and field persistence of sulfosulfuron in a silty clay loam and a sandy loam soil. Both bioassays indicated that activity of sulfosulfuron increased with increasing herbicide concentration, and to a slightly greater degree in sandy loam soil than in silty clay loam soil. More sulfosulfuron was adsorbed on the sandy loam (not biologically available) than on the silty clay loam soil. Consequently, slightly greater amounts of sulfosulfuron were leached through the silty clay loam than through the sandy loam soil. Biologically available sulfosulfuron was not detected at depths below 40 cm after application in sandy loam, but this was not the case for the silty clay loam soil. In 2002, all sulfosulfuron rates showed field persistence of less than 5 months. On the other hand, in 2003, biologically available sulfosulfuron was detected in the 0–10-cm soil depth 150 days after application. http://www.phytoparasitica.org posting May 6, 2004.  相似文献   

8.
Workneh F  Yang XB 《Phytopathology》2000,90(12):1375-1382
ABSTRACT Since the early 1990s, Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, has caused considerable damage to soybean production in the north-central United States. To determine the extent of its distribution and associated factors, investigations were conducted in 1995 and 1996 in Illinois, Iowa, Minnesota, Missouri, and Ohio. Investigations also were conducted in 1997 and 1998 in Iowa, Minnesota, and Missouri. In each state, soybean fields were randomly selected in collaboration with the National Agricultural Statistics Service. From each field, 20 soybean stems 20 cm long (from the base) in 1995 and 1996 and full-length stems in 1997 and 1998 were sampled in a zigzag pattern. During the 4-year period, stem samples were collected from 1,983 fields and assessed for the presence or absence of the disease. Of the five states, Sclerotinia stem rot was most prevalent in north-central Iowa and southern Minnesota. Sclerotinia stem rot was not detected in Missouri during the 4-year investigation period. The disease was most prevalent in 1996 and least prevalent in 1995. The prevalence of the disease was strongly related to cumulative departures from normal maximum and minimum temperatures in July and August. The disease was more prevalent when yearly temperatures were below normal than when they were above normal. In 1996, a year with a cooler-than-normal summer, the disease was detected farther south than in 1995. In both years, the prevalence of the disease was exponentially related to latitudinal positions of the fields (R(2) = 0.93 and 0.83 for 1995 and 1996, respectively) reflecting the effect of the north-south variations in temperature. During the 4-year period, there was no relationship between precipitation and the prevalence of the disease. The lack of relationship may suggest that there was no shortage of moisture since it is one of the primary factors for disease development. The prevalence of Sclerotinia stem rot was less in no-till than in minimum-till or conventional-till fields (P = 0.001 and 0.007, respectively) and greater in minimum-till than in conventional-till fields (P = 0.07). Fields that had Sclerotinia stem rot, however, did not differ in incidence of the disease regardless of the tillage system.  相似文献   

9.
Wang Y  Zhang W  Wang Y  Zheng X 《Phytopathology》2006,96(12):1315-1321
ABSTRACT Root and stem rot caused by Phytophthora sojae is one of the most destructive diseases of soybean (Glycine max) worldwide. P. sojae can survive as oospores in soil for many years. In order to develop a rapid and accurate method for the specific detection of P. sojae in soil, the internal transcribed spacer (ITS) regions of eight P. sojae isolates were amplified using polymerase chain reaction (PCR) with the universal primers DC6 and ITS4. The sequences of PCR products were aligned with published sequences of 50 other Phytophthora species, and a region specific to P. sojae was used to design the specific PCR primers, PS1 and PS2. More than 245 isolates representing 25 species of Phytophthora and at least 35 other species of pathogens were used to test the specificity of the primers. PCR amplification with PS primers resulted in the amplification of a product of approximately 330 bp, exclusively from isolates of P. sojae. Tests with P. sojae genomic DNA determined that the sensitivity of the PS primer set is approximately 1 fg. This PCR assay, combined with a simple soil screening method developed in this work, allowed the detection of P. sojae from soil within 6 h, with a detection sensitivity of two oospores in 20 g of soil. PCR with the PS primers could also be used to detect P. sojae from diseased soybean tissue and residues. Real-time fluorescent quantitative PCR assays were also developed to detect the pathogen directly in soil samples. The PS primer-based PCR assay provides a rapid and sensitive tool for the detection of P. sojae in soil and infected soybean tissue.  相似文献   

10.
Rhizoctonia spp. cause substantial yield losses in direct-seeded cereal crops compared with conventional tillage. To investigate the mechanisms behind this increased disease, soils from tilled or direct-seeded fields were inoculated with Rhizoctonia spp. at population densities from 0.8 to 250 propagules per gram and planted with barley (Hordeum vulgare). The incidence and severity of disease did not differ between soils with different tillage histories. Both R. solani AG-8 and R. oryzae stunted plants at high inoculum densities, with the latter causing pre-emergence damping-off. High inoculum densities of both species stimulated early production of crown roots in barley seedlings. Intact soil cores from these same tilled and direct-seeded fields were used to evaluate the growth of Rhizoctonia spp. from colonized oat seeds. Growth of R. oryzae was not affected by previous tillage history. However, R. solani AG-8 grew more rapidly through soil from a long-term direct-seeded field compared to tilled soils. The differential response between these two experiments (mixed, homogenized soil versus intact soil) suggests that soil structure plays a major role in the proliferation of R. solani AG-8 through soils with different tillage histories.  相似文献   

11.
大豆胞囊线虫Heterodera glycinesIchinohe病害是大豆生产中的毁灭性病害,对世界大豆生产造成重大损失。采用根染色法和常规土壤线虫分类鉴定技术研究了连作和轮作两种耕作方式下大豆胞囊线虫群体数量和土壤线虫群落结构的变化。结果表明,连作使大豆田土壤中胞囊和根系上各龄期胞囊线虫数量显著增加(95.6→335.5),而轮作积累很少(10.3→31.8),感病品种中J2的侵入数量决定了大豆胞囊线虫形成胞囊的数量(22.8→95.6,129.4→335.5)。玉米-玉米-大豆的轮作方式使胞囊积累最少(10.3)。轮作大豆田土壤线虫总数高于连作,主要由于轮作大豆田土壤线虫的优势属Helicotylenchus和优势营养类群植物寄生线虫PP的相对丰度高于连作,但大豆胞囊线虫的相对丰度正相反,连作(33.65%)高于轮作(0.91%),说明Heterodera glycines可以作为土壤线虫的关键属种用以指示土壤发病的严重程度。研究中重要的优势属和关键属种cp值均为3,说明其繁殖和抗干扰能力比较强。研究证明土壤线虫优势营养类群、优势属种和关键属种可以有效地指示农业土壤健康状况和大豆田的大豆胞囊线虫病害的发生程度。  相似文献   

12.
ABSTRACT After outbreaks of potato brown rot in three different fields in the Netherlands, the fate of the brown rot pathogen, Ralstonia solanacearum biovar 2, was monitored in soil by immunofluorescence colony staining (IFC) supported by R. solanacearum division-2 specific polymerase chain reaction. In selected areas of all fields, the R. solanacearum population densities were initially on the order 10(4) to 10(6) per g of topsoil. These population densities then declined progressively over time. In two fields, however, the pathogen persisted for periods of 10 to 12 months. The survival of a selected R. solanacearum biovar 2 isolate, strain 1609, in three soils, a loamy sand and two different silt loam soils, was further studied in soil microcosm experiments. The effects of temperature and soil moisture content were assessed. At 12 or 15 and 20 degrees C, a gradual decline of the population densities was observed in all three soils, from the established 10(5) to 10(6) CFU g(-1) of dry soil to significantly reduced levels, occasionally bordering the limit of detection (10(2) CFU g(-1)of dry soil), in periods of approximately 90 to 210 days. Soil type affected the rate of population decline at 20 degrees C, with the greatest decline occurring in loamy sand soil. In all three soils, the survival of IFC-detectable R. solanacearum 1609 cells at 4 degrees C was severely impaired, reflected in an accelerated decline of CFU counts, to undetectable numbers. Moreover, indications were found for the occurrence of viable but nonculturable strain 1609 cells in the loamy sand as well as in one silt loam soil under these conditions. In addition, a single freezing-thawing cycle caused a significant additional reduction of the culturable R. solanacearum 1609 populations in the three soils, though detectable populations remained. Moderate soil moisture fluctuations of approximately pF 2 did not affect the survival of R. solanacearum 1609 in soil. Severe drought, however, drastically reduced the populations of strain 1609 CFU in all three soils.  相似文献   

13.
ABSTRACT Six herbicides were evaluated for their effects on Pythium root rot and growth of sugarcane in greenhouse experiments and on in vitro mycelial growth rate of Pythium arrhenomanes. Pendimethalin and atrazine were most inhibitory to mycelial growth, but neither reduced root rot severity. Asulam, atrazine, and metribuzin were not phytotoxic to sugarcane and did not affect root rot symptom severity in clay loam or silt loam field soils. Atrazine and metribuzin increased shoot number, and atrazine increased total shoot weight for treated plants in silt loam soil. Glyphosate, pendimethalin, and terbacil were phytotoxic to sugarcane. These herbicides increased root rot severity, but the extent to which growth reductions resulted from increased disease severity or from direct herbicide injury was not clear. Adverse effects on plant growth and root rot severity were greater in clay loam than in silt loam soil. The results suggest that sugarcane injury from some herbicides is compounded by increased severity of root rot.  相似文献   

14.
A polymerase chain reaction (PCR)-based method was developed to detect DNA of Fusarium solani f. sp. glycines , the cause of soybean sudden death syndrome. Two pairs of primers, Fsg1/Fsg2 designed from the mitochondrial small subunit ribosomal RNA gene, and FsgEF1/FsgEF2 designed from the translation elongation factor 1-α gene, produced PCR products of 438 and 237 bp, respectively. Primer specificity was tested with DNA from 82 F. solani f. sp. glycines , 55 F. solani non-SDS isolates, 43 isolates of 17 soybean fungal pathogens and the oomycete Phytophthora sojae , and soybean. The sensitivity of primer Fsg1/Fsg2 was 10 pg while that of FsgEF1/FsgEF2 was 1 ng when using F. solani f. sp. glycines total genomic DNA or down to 103 macroconidia g−1 soil. Nested PCR increased the sensitivity of the PCR assay 1000-fold to 10 fg using primers Fsg1/Fsg2, and 1 pg using primers FsgEF1/FsgEF2. F. solani f. sp. glycines DNA was detected in field-grown soybean roots and soil by PCR using either single pairs of primers or the combination of two pairs of primers. The occurrence of F. solani f. sp. glycines was determined using nested PCR for 47 soil samples collected from soybean fields in 20 counties of Illinois in 1999. F. solani f. sp. glycines was detected in soil samples from all five Illinois Agricultural Statistic Districts including 100, 89, 50, 92 and 50% of the samples from East, Central, North-east and West Districts, respectively.  相似文献   

15.
河西灌区马铃薯茎基腐病的发生规律与防治技术研究   总被引:1,自引:0,他引:1  
本文首次报道马铃薯茎基腐病在田间表现为立枯型、萎蔫型、根腐型、黄化型4种症状类型,一般在苗期至现蕾期、开花期至结薯期为发病高峰期;明确了河西灌区种植的大多数品种对茎基腐病无明显抗性;发病程度与多种因素有关,灰钙土发病较重,其次为壤土,沙土发病较轻;土壤pH与含水量较高发病重;植株密度较高发病重;连作年限越长发病越重;与油菜、茄科蔬菜连作发病较重;高温有利于该病发生;经药剂种薯、土壤、灌根处理表明:以代森锰锌、菌核净和敌磺钠种薯和土壤处理,代森锰锌、井•1亿活枯草芽孢菌、菌核净灌根处理,防效达50.3%~65.9%。  相似文献   

16.
ABSTRACT Phytophthora sojae, which causes Phytophthora root and stem rot of soybean, is a serious disease worldwide and is managed primarily by deploying cultivars with resistance. Thirty-two soybean plant introductions (PIs), all but three of which were from South Korea, were proposed as new sources of single-gene resistance to P. sojae. The objective of this study was to characterize the inheritance of resistance to P. sojae in these PIs. Twenty-two soybean populations from crosses of these PIs and the susceptible cv. Williams were inoculated with P. sojae OH17 (vir 1b, 1d, 2, 3a, 3b, 3c, 4, 5, 6, 7), and OH25 (vir 1a, 1b, 1c, 1k, 7). These isolates were selected because they are virulent on soybeans with all known Rps genes and many Rps gene combinations. Thirteen of the twenty-two populations had consistent segregation responses following inoculations between the two generations. In two PIs, resistance was conferred by two genes to OH17 and three genes to OH25. Resistance to both isolates was conferred by a single gene in PI 398440 although the individual families were not resistant to the same isolates. The data suggest that six of the populations have three-Rps gene combinations as previously proposed, while another four may have either a novel Rps gene or a four-Rps gene combination. Based on this phenotypic analysis, novel and uncharacterized Rps genes may be present in this material. More importantly, these PIs may serve as sources of novel Rps genes that can be used to more effectively manage Phytophthora root and stem rot.  相似文献   

17.
Laboratory studies on the formation of bound residues and on the degradation of the triazole fungicide propiconazole were conducted in two different soils. Soils treated with 14C-propiconazole were incubated at 22 degrees C and extracted exhaustively with a solvent at each sampling date until no further propiconazole was extracted. The solvent-extractable residues were used to measure propiconazole remaining in the soil, and the extracted soils were used to investigate bound residues of propiconazole. Mineralization of propiconazole was investigated by measuring [14C]carbon dioxide evolved from the soil samples. Formation of bound residues of propiconazole was higher in silty clay loam soil than in sandy loam soil, giving approximately 38 and 23% of the applied 14C, respectively. In contrast, the rates of degradation and mineralization of propiconazole were lower in silty clay loam soil than in sandy loam soil. Decreased extractability of the 14C residues with incubation time was observed with increased formation of bound residues. When the propiconazole remaining in the solvent-extractable residues was quantitatively measured by high-pressure liquid chromatographic analysis, the half-life value in sandy loam soil was about 315 days, while the half-life in silty clay loam soil exceeded the duration of the 1 year experimental period. Increased formation of bound residues was observed as propiconazole degraded with incubation time, suggesting that degradation products are involved in the formation of bound residues. Our study suggests that the formation of bound residues of propiconazole contributes to the persistence of this fungicide in soil.  相似文献   

18.
基于实测扩散率资料和土壤水分特征曲线,利用FlexPDE软件对膜孔灌溉的土壤水分运动进行模拟,探索恒定水头条件下膜孔灌溉土壤水分入渗特性和剖面水分分布特征。结果表明:FlexPDE软件模拟粉粘壤土(处理2、3)和砂壤土(处理1、4)的含水率与实测之间的平均相对误差分别为5.930%、8.340%、9.600%和14.040%,其中粉粘壤土模拟与实测土壤含水率相对误差小于5%、10%和20%的比例分别为40%、68%和84%,砂壤土相对误差小于5%、10%和20%的比例分别为12%、40%和72%,粉粘壤土的模拟效果较砂壤土理想;基于模拟获取的土壤储水量与土壤实测累积入渗量呈线性关系,相关系数均大于0.9,且二者与入渗时间呈幂函数关系,随入渗时间增加而增大,但增速逐渐变缓;利用FlexPDE预测分析膜孔间距、膜孔直径和入渗水深对粉粘壤土膜孔灌溉单向交汇时刻、水分分布和储水量的影响,发现膜孔间距对于交汇初期土壤的水分分布影响较大,膜孔直径对于土壤交汇时间以及储水量影响显著。  相似文献   

19.
Digitaria ciliaris seed banks in untilled and tilled soybean fields   总被引:1,自引:0,他引:1  
We gained an understanding of the vertical distribution and seasonal dynamics of Digitaria ciliaris (Retz.) Koeler seed banks in untilled and tilled soybean fields using studies on naturally established seed banks and on seeds stored in the field. In untilled fields, D. ciliaris seeds were highly concentrated on or near the soil surface from late autumn to spring, whereas only a few seeds were found on the soil surface in the following summer. One year after tillage, there was a high concentration of the seeds on the soil surface. In the tilled fields, seeds were distributed uniformly throughout the soil profile and were present all year long, with only a few seeds found in the following summer. A study of seeds that were artificially buried or stored on the soil surface verified that D. ciliaris seeds were extremely short-lived in the field and could not form a large, persistent seed bank, even when the seeds were buried by tillage. Tillage contributes to suppression of D. ciliaris seedling emergence by reducing the number of seeds that are on or near the soil surface. Furthermore, D. ciliaris seeds showed a greater need for light in order to germinate throughout the year, even when they were stored on the soil surface. Particularly, light was critical for germination during summer. The light requirement for germination should be one reason why viable D. ciliaris seeds on the soil surface are carried over into the next season in untilled fields.  相似文献   

20.
ABSTRACT Analyses of multiple field experiments indicated that the incidence and relative abundance of root-colonizing phlD+ Pseudomonas spp. were influenced by crop rotation, tillage, organic amendments, and chemical seed treatments in subtle but reproducible ways. In no-till corn plots, 2-year rotations with soybean resulted in plants with approximately twofold fewer phlD+ pseudomonads per gram of root, but 3-year rotations with oat and hay led to population increases of the same magnitude. Interestingly, tillage inverted these observed effects of cropping sequence in two consecutive growing seasons, indicating a complex but reproducible interaction between rotation and tillage on the rhizosphere abundance of 2,4-diacetlyphloroglucinol (DAPG) producers. Amending conventionally managed sweet corn plots with dairy manure compost improved plant health and also increased the incidence of root colonization when compared with nonamended plots. Soil pH was negatively correlated to rhizosphere abundance of phlD+ pseudomonads in no-till and nonamended soils, with the exception of the continuous corn treatments. Chemical seed treatments intended to control fungal pathogens and insect pests on corn also led to more abundant populations of phlD in different tilled soils. However, increased root disease severity generally was associated with elevated levels of root colonization by phlD+ pseudomonads in no-till plots. Interestingly, within a cropping sequence treatment, correlations between the relative abundance of phlD and crop stand or yield were generally positive on corn, and the strength of those correlations was greater in plots experiencing more root disease pressure. In contrast, such correlations were generally negative in soybean, a difference that may be partially explained by difference in application of N fertilizers and soil pH. Our findings indicate that farming practices can alter the relative abundance and incidence of phlD+ pseudomonads in the rhizosphere and that practices that reduce root disease severity (i.e., rotation, tillage, and chemical seed treatment) are not universally linked to increased root colonization by DAPG-producers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号