首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
玉米粒长是培育优良玉米品种的重要选择性状。选取粒长性状表现差异显著的玉米自交系铁7922和E28,及其组建的6个世代群体P1、F1、P2、B1、B2和F2为材料,运用主-多基因混合模型遗传分析方法进行分析,研究玉米粒长的遗传规律。结果表明:粒长性状在F1表现为超亲优势,符合两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传的E-1-0模型,主基因遗传率为41.22%~80.58%,多基因遗传率为17.68%~24.95%,环境因素决定粒长表型变异的19.42%~41.10%,控制玉米粒长性状的主基因效应高于多基因效应,并且主基因的加性累积效应明显,该性状在育种中可以通过世代累积进行选择。  相似文献   

2.
不结球白菜维生素C含量主基因+多基因遗传分析   总被引:6,自引:0,他引:6  
林婷婷  王建军  王立  陈暄  侯喜林  李英 《作物学报》2014,40(10):1733-1739
以高维生素C含量不结球白菜自交系乌塌菜和低维生素C含量不结球白菜自交系二青杂交获得的6个世代(P1、P2、F1、B1、B2和F2)株系为材料, 应用植物数量性状主基因+多基因混合遗传模型, 对不结球白菜中维生素C含量进行遗传分析。结果显示, 不结球白菜中维生素C含量受1对加性主基因+加性-显性多基因控制, 其中2011年结果中, 主基因的加性效应为13.15, 在B1、B2、F2世代中主基因的遗传率分别为54.38%、38.58%和18.69%, 多基因的遗传率分别为24.69%、36.92%和40.7%; 2013年结果中, 主基因的加性效应为6.04, 在B1、B2、F2世代中主基因的遗传率分别为1.88%、6.41%和45.04%, 多基因的遗传率分别为39.67%、16.57%和16.91%。可见, 不结球白菜维生素C性状受环境影响较大, 在不结球白菜高维生素C含量品种选育过程中, 要注重环境影响, 并可以通过分子标记辅助选择, 对性状进行改良。  相似文献   

3.
甜荞极易倒伏, 而株高和茎粗是影响甜荞倒伏的重要性状。以高秆健壮品种酉荞2号和矮秆纤细品种乌克兰大粒荞为亲本配制正、反交组合, P1、P2、F1、B1、B2和F2群体株高和茎粗的遗传分析表明, 株高和茎粗的最适遗传模型均为2对加性-显性-上位性主基因+加性-显性多基因模型。株高正交组合中2对主基因加性效应均为-1.39, 显性效应分别为-6.59和-7.91, B1、B2和F2群体主基因遗传率分别是45.73%、63.49%和81.12%, 多基因遗传率分别是27.41%、0.95%和0; 反交组合中2对主基因加性效应值均为-1.63, 显性效应分别为-7.03和-4.19, B1、B2和F2群体中主基因遗传率是41.51%、66.18%和81.81%, 多基因遗传率分别是11.19%、0和0。茎粗正交组合中2对主基因加性效应均为0.03, 显性效应分别为-0.50和-0.08, B1、B2和F2群体中主基因遗传率分别是37.26%、48.80%和72.10%, 多基因遗传率分别是11.18%、0和0; 反交组合中2对主基因加性效应均为-0.15, 显性效应分别为-0.30和-0.16, B1、B2和F2群体中主基因遗传率是76.22%、47.12%和82.51%, 多基因遗传率分别为0、14.53%和0。可见, 株高的主基因+多基因遗传率在80%以上, 可在低世代进行选择; 茎粗的主基因+多基因遗传率在80%以下, 采取合理的栽培措施可以提高荞麦抗倒伏能力。  相似文献   

4.
胡丹 《作物杂志》2022,38(4):83-53
甜荞茎秆纤细和中空是造成甜荞极易倒伏的重要原因,茎秆重心高度和抗折力是影响甜荞倒伏的重要指标。以抗倒伏品种酉荞2号和易倒伏品种乌克兰大粒荞为亲本来配置正、反交组合。P1、P2、F1、B1、B2和F2群体茎秆重心高度和抗折力的遗传分析表明,茎秆重心高度最佳遗传模型为1对加性-显性主基因+加性-显性-上位性多基因模型和2对加性-显性-上位性主基因+加性-显性多基因模型,以加性效应为主,主基因遗传率大于多基因遗传率,环境变异大于遗传变异,可见环境对甜荞茎秆重心高度影响极大,可通过栽培措施降低甜荞茎秆重心高度,提高抗倒伏能力。茎秆抗折力最佳遗传模型为2对加性-显性-上位性主基因+加性-显性-上位性多基因模型和2对加性-显性-上位性主基因+加性-显性多基因模型,以加性效应为主,2对主基因间存在明显的基因互作效应,主基因遗传率大于多基因遗传率,在F2世代没有检测到多基因遗传率,主基因遗传率在F2世代最高,为88.94%,选择率高,可在早期世代进行选择来提高育种效率。  相似文献   

5.
穞稻与粳稻恢复系C堡籽粒灌浆速率的特征及遗传分析   总被引:3,自引:2,他引:1  
张启武  江建华  姚瑾  洪德林 《作物学报》2009,35(7):1229-1235
穞稻是一种分蘖力强、灌浆期短的较原始的亚洲栽培稻粳稻类型。大穗型杂交粳稻F1单株有效穗数偏少、部分籽粒充实度欠佳,为克服该缺点,本研究调查了穞稻(P1)与粳稻恢复系C堡(P2)及其正反交F1、B1、B2和F2 6个世代各6个灌浆时段的灌浆速率,并运用世代平均数分析方法和主基因+多基因混合遗传模型6个世代联合分析的方法,对平均灌浆速率进行了遗传分析。结果表明: (1)以正反交没有发现平均灌浆速率的细胞质效应。(2)P1、P2及其F1灌浆速率最大的时段都是开花后8~14 d。(3)穞稻全灌浆期28 d,比C堡短14 d;平均灌浆速率比C堡快50%。(4)世代平均数分析显示平均灌浆速率遗传符合加性-显性-上位性模型。主基因+多基因混合遗传模型分析显示平均灌浆速率受2对加性-显性-上位性主基因+加性-显性-上位性多基因共同控制,以主基因遗传为主。  相似文献   

6.
普通丝瓜果皮颜色性状的遗传研究   总被引:1,自引:1,他引:0  
对普通丝瓜的果皮颜色性状进行遗传分析,旨在为果皮颜色控制基因的挖掘及外观品质改良提供理论依据。以绿果皮丝瓜材料YX014和白果皮高代自交系丝瓜材料LJ-01为亲本,配制成P1、P2、F1、F2、B1、B2等6个世代,通过目测的方法对6个世代单株的丝瓜果皮色性状观察和分级处理,应用植物数量性状主基因+多基因混合遗传模型对丝瓜果皮色性状进行遗传规律分析。结果表明,普通丝瓜果皮颜色的最佳遗传模型为B-1,即符合2对主基因控制并表现为加性-显性-上位性遗传模型。B1、B2和F2分离世代的主基因遗传率较高,分别为96.4%、99.1%和99.4%。此外,2对主基因的加性效应分别为-2.50和0.00,显性效应分别为0.50和0.48,说明第一对主基因在加性效应中占主导地位,且为负向效应,2对主基因的显性效应近似相等。控制普通丝瓜果皮色的主效基因的遗传力较高,普通丝瓜果皮色遗传改良可以在早期分离世代时进行。  相似文献   

7.
对冬瓜果肉叶绿素含量遗传规律进行分析,以期为冬瓜果肉颜色控制基因的挖掘和果肉颜色的改良育种奠定基础。以冬瓜果肉白色纯化自交系(LT-1)为P1,果肉绿色纯化自交系(LT-2)为P2,构建四代遗传群体(P1、P2、F1、F2),利用主基因+多基因混合模型的遗传分析方法,通过分析主基因和多基因对冬瓜果肉种的叶绿素含量影响,探究冬瓜果肉叶绿素含量的遗传规律。结果表明,冬瓜果肉中叶绿素含量是由2对加性—显性—上位性主基因+加性显性多基因遗传模型调控,F2分离群体中的主效基因遗传率为82.0696%,第一对主基因的加性效应da为-1.477,显性效应ha为-1.465,且显性度ha/da接近1,第二对主基因的加性效应db和显性效应hb分别为-0.835、-0.715,显性度ha/da...  相似文献   

8.
果实形状是园艺作物商品性的主要指标之一。明确茄子果实形状的遗传规律可为开发相关分子标记以及选育消费者喜欢的果形新品种提供依据。本研究以卵圆茄BC01和长条茄Rf为亲本,构建P1、P2、F1、F2世代遗传群体,利用主基因+多基因混合遗传模型分析方法对果实纵径、横径和果形指数进行遗传分析。结果表明,茄子果实纵径、横径和果形指数之间呈极显著相关性,F2代的果实纵径、横径和果形指数均呈双峰偏态分布。果实纵径由1对加性-显性主基因控制,遗传效应以加性效应控制为主,主基因起增效作用,在F2代的遗传率为73.41%;果实横径由2对等加性主基因控制,主基因起减效作用,在F2代的遗传率为90.99%;果形指数由1对加性主基因控制,在F2代的遗传率为81.46%。  相似文献   

9.
玉米叶绿素含量基因效应分析   总被引:1,自引:0,他引:1  
为了研究控制玉米叶绿素含量的遗传规律,以叶绿素含量存在显著差异的2个普通玉米自交系组配的P1、P2、F1、BC1、BC2、F2 6个世代为试验材料,运用主基因+多基因遗传模型分析方法,探明玉米叶绿素含量的遗传模型,并进行遗传参数估计。结果表明,F1叶绿素含量杂种优势表现为正向离中亲优势,无超亲优势;玉米叶绿素含量的遗传受2对加性-显性-上位性主基因+加性-显性多基因共同控制,以主基因遗传为主,非加性效应大于加性效应;2对主基因与多基因的加性效应均为减效,显性效应均为增效,上位性效应累计为正向;BC1、BC2、F2叶绿素含量主基因的遗传率分别为74.58%、78.62%、20.84%,多基因的遗传率分别2.84%、7.69%、68.11%。  相似文献   

10.
分枝角度是油菜株型重要性状,是油菜品种高产及适合机械化收获理想株型的基本组成之一。为明确油菜分枝角度的遗传,本研究选用油菜分枝角度大的松散型材料6098B和分枝角度小的紧凑型材料Purler配制杂交组合,采用主基因+多基因混合遗传模型方法对该组合6世代(P1、P2、F1、F2、BCP1和BCP2)的分枝角度进行了遗传分析。结果表明,上部第一分枝(顶枝)和基部第一分枝(基枝)角度的最适合遗传模型均为D-0 (1对加性-显性主基因+加性-显性-上位性多基因)。顶枝角的主基因加性效应值为4.939º,显性效应值为–4.156º,主基因遗传率在BCP1、BCP2和F2中分别是34.08%、1.40%和14.99%,多基因遗传率分别为24.43%、61.72%和63.98%;而基枝角的主基因加性效应值为2.217º,显性效应值为–1.941º,主基因遗传率在BCP1、BCP2和F2中分别是7.86%、1.24%和4.84%,多基因遗传率分别为66.46%、58.49%和73.96%。结果发现油菜分枝角度明显存在主效基因,为油菜分枝角度的遗传改良奠定了基础。  相似文献   

11.
中植棉2号抗黄萎病的主基因+多基因遗传特性分析   总被引:2,自引:1,他引:1  
以感病品种861为父本、抗病品种中植棉2号为母本配制杂交组合,构建6个世代群体(P_1、P_2、F_1、B_1、B_2和F_2),并在田间病圃进行抗病性鉴定,利用主基因 ̄多基因混合遗传模型的多世代联合分析法研究陆地棉抗黄萎病遗传特性。结果表明,中植棉2号抗性遗传符合E-1遗传模型,即2对加性 ̄显性 ̄上位性主基因+加性 ̄显性多基因遗传模型。2对主基因遗传以显性效应为主,且第2对主基因的显性效应比第1对主基因的显性效应大,多基因遗传以加性效应为主。B_1、B_2和F_2的主基因遗传率分别为68.24%、30.71%和82.09%,多基因遗传率分别为0、24.96%和0,环境方差占总表型方差的17.01%~44.33%。  相似文献   

12.
本研究选用蓖麻YC2×YF1高、矮秆组合的2组6世代群体(P1、P2、F1、B1、B2和F2),对株高性状进行了主基因+多基因混合遗传模型分析。结果表明,蓖麻株高受1对主基因和多基因共同控制。2组群体在B1、B2和F2三个分离世代中主基因遗传率分别为37.05%/49.57%、30.51%/34.48%和43.98%/43.64%;主穗位高和主茎节数均受2对主基因和多基因共同控制,且主基因的互作效应显性效应加性效应。3个分离世代中,2组群体主穗位高主基因遗传率分别为67.91%/92.72%、86.89%/92.13%和60.18%/66.87%,主茎节数主基因遗传率分别为91.83%/91.50%、35.22%/63.37%和85.76%/94.58%。主茎节长由多基因控制,遗传率分别为47.64%/47.64%、38.87%/38.87%和25.25%/52.71%。以上遗传模式决定了蓖麻杂种后代株高、主穗位高和主茎节长的正向超亲遗传,而主茎节数则倾向于低值亲本。因此,主穗位高和主茎节数可以作为株高的早期间接选择指标。  相似文献   

13.
对穗长平均优势较大的通玉179的F1(PH6WC×29,Reid)进行了单倍体自然加倍规模化育种,并组建六世代群体,就穗长、行粒数、穗行数、穗粒数进行了六世代和DH世代最适模型的遗传参数分析。结果表明,六世代分离世代穗长多基因遗传力为0;行粒数、穗行数和穗粒数主基因遗传力范围分别为56.80%~97.82%、0~58.59%和65.08%~93.70%。DH世代穗长、行粒数、穗行数和穗粒数主基因遗传力分别为99.21%、96.35%、98.24%和93.36%。以上说明常规育种母本系选育应以行粒数为首要目标,从而达到最大穗粒数。DH育种应以穗长为目标,同时兼顾穗行数,有效实现最大穗粒数的育种目标。  相似文献   

14.
为明确棉花杂种F1铃重超亲优势的遗传基础,利用数量性状主基因+多基因混合遗传P1、P2、F1和F2群体联合分析方法,分析了铃重有超亲优势的3个组合L178×L029(Ⅰ)、L178×L057(Ⅱ)与L029×GP72(Ⅲ)的铃重与铃壳率。结果表明:3个组合F1铃重的超亲优势和铃壳率的负向中亲优势表现稳定。组合Ⅰ和ⅡF2群体的铃重与铃壳率呈极显著负相关。铃重和铃壳率均呈2对主基因+多基因遗传,但主基因作用方式在组合间有所不同。铃重超亲优势主要来自多基因显性效应,而组合Ⅲ的主基因显性×显性互作对铃重的超亲优势也有很大作用。组合Ⅰ和Ⅲ铃壳率的负向中亲优势主要来自于主基因显性效应,组合Ⅱ铃壳率的负向优势主要来自于多基因显性效应。因此,改良铃重和铃壳率时可通过轮回选择或修饰回交聚集增效基因来实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号