首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
酶法催化蓖麻油生产生物柴油的研究   总被引:1,自引:0,他引:1  
[目的]优化酶法催化蓖麻油生产生物柴油的条件。[方法]从种植蓖麻试验地土壤中分离出1株脂肪酶产生菌(Pseudomonassp.)H-4,以其发酵液制备的固定化酶为催化剂,催化蓖麻油与甲醇转酯化生产生物柴油,研究该酶的转酯能力。[结果]薄层检测和气相色谱检测表明,该脂肪酶具有催化蓖麻油与甲醇发生酯交换反应制备蓖麻油酸甲酯的功能。随着反应时间的延长,酯交换率不断升高。甲醇分3次加入,酯交换率最高(78%)。反应温度40℃,酯交换率最高(81%)。酶添加量0.6 g,酯交换率最高(85%)。[结论]在醇油摩尔比3∶1,甲醇分3次加入,固定化酶添加量0.6 g,反应温度40℃,150 r/min条件下反应10 h,油脂的酯交换率达85%。  相似文献   

2.
主要考察了水的添加量、催化剂用量、醇油摩尔比、有机溶剂的添加、反应时间、反应温度、甲醇流加方式对生物柴油转化率的影响.结果表明,脂肪酶基因工程菌NJY-1-69产脂肪酶制备生物柴油的最佳工艺条件:水的添加量为0.15%,醇油摩尔比为3∶1,催化剂用量14%,反应温度30 ℃,反应时间36 h,甲醇流加方式是分3次加入,获得的生物柴油最高转化率为89%.  相似文献   

3.
菜籽油的深加工研究——碱催化制备生物柴油   总被引:1,自引:0,他引:1  
聂玉静  程正载  雷锐  颜晓潮 《安徽农业科学》2009,37(28):13453-13455
[目的]探索制备生物柴油(RME)及甘油的工艺条件。[方法]以菜籽油、工业甲醇为原料,利用氢氧化钠为催化剂与乙酸甲酯通过酯交换反应制备生物柴油(RME),通过正交试验优化制备工艺条件,依次考察反应温度、NaOH浓度、醇油摩尔比及反应时间对菜籽油转化率的影响。[结果]随NaOH加入量增加,产量相应减少;甲醇用量在24ml对产量的影响达到最大;酯交换反应的温度不宜太高,时间也不宜过长。最佳酯交换反应条件是:反应温度为60℃,NaOH用量为油重的1.0%,醇油摩尔比为6:1,反应时间为120min,在此条件下菜籽油转化率最高,达到94.81%。红外分析检测显示,所得产物为生物柴油。[结论]该产品性能达到0#柴油指标,说明用该法生产生物柴油是可行的。  相似文献   

4.
固体酸碱非均相催化含酸油脂生产生物柴油研究   总被引:1,自引:0,他引:1  
高登征  王力  刘丽华 《安徽农业科学》2010,38(3):1131-1132,1153
先用硫酸钛催化油中游离脂肪酸和甲醇酯化生成脂肪酸甲酯,再用多孔氧化钙催化油中的甘油三酯和甲醇进行酯交换,对固体酸碱非均相催化含酸油脂生产生物柴油进行了研究,结果表明,硫酸钛对酯化反应具有很强的催化活性,优化条件下,酯化率达到97.1%;而多孔氧化钙活性高,用量少,酯交换转化率达96.1%:该2步催化法具有不产生酸化废水,成本低,转化率高,催化剂可回收等优点。  相似文献   

5.
用餐饮业废弃油脂制备生物柴油的研究   总被引:1,自引:1,他引:0  
利用餐饮业废弃油脂在甲醇气相进料情况下合成生物柴油,研究了反应温度、醇油摩尔比、催化剂用量和反应时间的变化对合成生物柴油的影响。采用正交试验得出餐饮业废弃油脂酯交换的最佳反应条件为反应温度95℃,醇油摩尔比20∶1,催化剂(AR级浓硫酸)用量7%(占油重的7%,下同),反应时间14 h,在此反应条件下生物柴油产率可达到95%以上。  相似文献   

6.
传统油脂共轭反应制备共轭亚油酸多采用有机溶剂,这种工艺存在溶剂残留等潜在问题。研究了红花油以水为溶剂的碱性异构化合成共轭亚油酸反应,考察了反应温度、时间、水油比、油碱比对共轭反应的影响,得到工艺条件的数学模型。反应的最佳条件为反应温度214℃,反应时间4.9h,水油比=4.3,油碱比=1.3。在此条件下,反应转化率可达到97.64%。  相似文献   

7.
水溶剂红花油合成共轭亚油酸研究--(Ⅰ)工艺优化研究   总被引:2,自引:1,他引:1  
传统油脂共轭反应制备共轭亚油酸多采用有机溶剂,这种工艺存在溶剂残留等潜在问题。研究了红花油以水为溶剂的碱性异构化合成共轭亚油酸反应,考察了反应温度、时间、水油比、油碱比对共轭反应的影响,得到工艺条件的数学模型。反应的最佳条件为:反应温度214℃,反应时间4.9h,水油比=4.3,油碱比=1.3。在此条件下,反应转化率可达到97.64%。  相似文献   

8.
正交试验法制备生物柴油最佳反应条件的选择   总被引:1,自引:0,他引:1  
生物柴油可以由菜籽油与甲醇在碱催化剂的作用下通过酯交换反应制得。为解决生物柴油酯交换过程中的产物与催化剂分离问题,制备了负载型固体碱催化剂,观察了反应条件如醇油比、催化剂用量、反应温度、反应时间等的变化对生物柴油转化率的影响。采用正交试验方法找出菜籽油酯交换反应的最佳反应条件为醇油摩尔比18∶1,催化剂用量8%,反应温度65℃,反应时间7 h。在此反应条件下生物柴油转化率可达到98%以上。  相似文献   

9.
以预处理后菜籽油脚料为油源,甲醇为酯化剂,分别经硫酸催化的预酯化和碱催化下的酯交换反应和系列分离精制工艺,合成了生物柴油。红外光谱表征了产物结构,经GC/MS分析测定,减压蒸馏后的生物柴油中的脂肪酸甲酯的含量超过98%。通过正交试验确定了预酯化最佳工艺条件:反应温度65℃,反应时间60 min,醇油质量比1.0∶1.0,催化剂H2SO4用量3.0%(质量百分比),该条件下,预酯化的酯化率达到85.5%;而碱催化下的酯交换最佳工艺条件为:反应温度60℃,醇油质量比0.4∶1.0,催化剂NaOH用量1.0%(质量百分比),反应时间60 min。  相似文献   

10.
利用[C4MIm]HSO4离子液体为催化剂,对其催化文冠果种仁油超临界甲醇酯交换法制备生物柴油进行了研究.考察了醇油摩尔比、反应温度、反应时间、反应压力、催化剂用量及催化剂重复使用对酯交换反应的影响.结果表明,在300℃,醇油摩尔比42∶1,反应时间25 min,反应压力11 MPa,催化剂用量为0.5wt%的优化工艺条件下,产物中甲酯收率可达92.33%,催化剂可重复多次使用.  相似文献   

11.
The transesterification reaction conditions of tung oil with methanol have been studied in this article, with immobilized lipase NOVO435 as catalyst. The response surface methodology was used to optimize the transesterification reaction of tung oil in a nonsolvent system. The optimal conditions were rotation rate 200 r/min, molar ratio of methanol to oil 2.2: l, reaction temperature 43℃, and the catalyst amount 14% (based on the weight of oil). After reacting for 18 h, 67.5% of the oil was converted to its corresponding methyl esters (the theoretical ester conversion was 73.3%). The lipase was washed by organic solvents after each reaction and was reused again. The esters conversion of tung oil was decreased by 6% after the lipase was reused for 120 h. The theoretical amount of methanol was added in two steps, 85% ester conversion was obtained after 36 h of reaction (theoretical ester conversion was 100%). The molar ratio of methanol to oil, the catalyst amount, the reaction temperature, and reaction time were all highly significant factors, and there was a relative significant interaction between every two factors.  相似文献   

12.
对黑核桃内生真菌HJ1油脂制备生物柴油的关键技术进行研究。利用单因素试验和验证试验优化反应条件。用气相色谱-质谱联用仪(Thermo Finnigan Trace DSQ)对油脂的成分进行分析。选择甲醇为萃取剂进行降酸处理,根据植物油脂酸值测定法GB/T5530-1985进行酸值测定。采用均相碱催化酯交换法制备生物柴油,并用气相色谱内标法对所制备生物柴油的脂肪酸甲酯的组成和含量进行测定。较好的工艺条件是:醇-油摩尔比8∶1,催化剂浓度1%,反应温度60 ℃,反应时间2 h。在此条件下,甲酯含量超过98%,生物柴油得率超过66%。结果表明,HJ1油脂制备的生物柴油可以被发展为石化柴油代替品之一。  相似文献   

13.
黄艳芹 《安徽农业科学》2010,38(31):17806-17807,17809
[目的]制备离子液体1-甲基-3-丁基咪唑硫酸氢盐,并以其催化大豆油制备生物柴油。[方法]以大豆油和甲醇为原料,离子液体为催化剂制备生物柴油。考察醇油物质的量比、反应时间、反应温度和离子液体用量对酯交换反应的影响以及离子液体的稳定性。[结果]在醇油物质的量比14:1、反应时间12h、反应温度100℃和离子液体用量为大豆油质量的8%时,生物柴油的收率可以达到90%。[结论]离子液体的稳定性好,可以重复使用。  相似文献   

14.
[目的]研究用核桃仁提取的油制取生物柴油的方法和工艺.[方法]采用核桃油在催化剂KOH作用下与甲醇发生酯交换反应制备生物柴油.研究了醇油摩尔比、催化剂质量分数、反应时间、反应温度等对反应产率的影响.[结果]当醇油摩尔比8:1、反应时间90min、用量为原料油质量的1.0;、反应温度60℃时,生物柴油转化率最高为97.2;.[结论]制取的核桃生物柴油主要性能基本达到国家0#柴油的标准,为核桃油开发生物质能源提供了科技支撑.  相似文献   

15.
KOH/Al2O3催化大豆油酯交换反应制备生物柴油   总被引:4,自引:0,他引:4  
[目的]用固体碱催化剂催化酯交换反应制备生物柴油,以减少对环境造成的污染。[方法]以层析用中性氧化铝为载体,负载KOH并经高温焙烧处理制得KOH/Al2O3催化剂,催化大豆油酯交换反应制备生物柴油,系统地研究了催化剂的制备、酯交换反应等条件对大豆油转化率的影响。[结果]该催化剂对大豆油与甲醇酯交换反应有很高的催化活性。试验结果显示,当KOH负载量为10%,500℃焙烧3h,催化剂用量5%,醇油摩尔比12:1,酯交换反应仅2h,大豆油的转化率高达98.63%。[结论]KOH/Al2O3催化剂对大豆油与甲醇发生酯交换反应有很高的催化活性,且生产工艺简单,产品后处理方便,具有很大的应用价值。  相似文献   

16.
以纳米γ-Al2O3粉体为载体,应用等体积浸渍CH3COOCs制备Cs2O/γ-Al2O3催化剂,并通过TPD-CO2、XRD、TEM等手段对催化剂的碱性、结构和表面形貌进行表征,并将其用于催化红麻籽油制生物柴油反应.通过催化剂活性评价结果,分析了纳米固体超强碱制备过程及酯交换反应过程中各种因素的影响.结果表明,催化剂的粒径为10-25 nm,负载量为2mmol.g-1时,催化剂具有强碱性,其活性最好.甲醇与红麻籽油的摩尔比为9∶1,催化剂用量为油料的2.5%,反应时间3 h,转化率可达到90.7%.  相似文献   

17.
李梅  夏建陵  黄坤  连建伟 《安徽农业科学》2011,39(34):21208-21209,21216
[目的]研究工业级茶油制备生物柴油的适宜条件。[方法]以茶油精炼副产物提取的工业级油脂为原料,采用碱催化酯交换法制备生物柴油,研究了工艺条件对工业级茶油转化率的影响。[结果]选择酸度不大于1、酸值小于2的工业级茶油,在甲醇用量为原料油重量的20%,KOH用量为原料油重量的0.8%的条件下,于60℃反应1.5 h,茶油转化率可达94.33%。利用红外光谱和气相色谱-质谱联用对生物柴油的结构进行了分析和表征,其主要成分为棕榈酸甲酯、亚油酸甲酯、油酸甲酯。[结论]该研究确定了工业级茶油制备生物柴油的适宜条件。  相似文献   

18.
棉籽油制备生物柴油的工艺条件优化研究   总被引:3,自引:0,他引:3  
以棉籽油与甲醇为原料,在催化剂(NaOH)的作用下,通过甲醇酯交换反应制备生物柴油。采用单因素和正交试验,考察醇油比、催化剂用量、反应温度、反应时间对生物柴油收率的影响。确定最佳反应条件为醇油比6:1,催化剂用量1.1%,反应温度55℃,反应时间55min。在此条件下,产率不低于95.89%。  相似文献   

19.
氧化钙催化菜籽油酯交换制备生物柴油   总被引:1,自引:0,他引:1  
汤颖  汪济  张群正  孟梅 《安徽农业科学》2009,37(23):10858-10859
[目的]考察氧化钙固体碱对菜籽油与甲醇的酯交换反应性能以及催化剂的耐水性。[方法]以市售氧化钙直接作为催化剂,详细考察催化剂用量、反应时间、催化剂粒度等因素对反应性能的影响。通过在反应体系中加入水来考察催化剂的耐水性。[结果]催化剂粒度为160~200目,在65℃条件下,催化剂用量为5%,反应3h,生物柴油的转化率可以达到90.1%,此时催化剂的耐水量为0.5%。[结论]市售氧化钙对菜籽油与甲醇的酯交换反应具有良好的活性,并且具有一定的耐水性,能够直接用作生物柴油的制备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号