首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 923 毫秒
1.
Detection of dead or defoliated spruces using digital aerial data   总被引:8,自引:0,他引:8  
The purpose of this study was to develop a method for detecting dead and defoliated spruces and defoliated stands in remote-sensing material using a semi-automatic pattern-recognition technique, spectral properties of trees, and different degrees of defoliation. The study material included two mapped defoliation stands in the municipality of Juupajoki (61°50′N, 24°18′E) in southern Finland. The ground truth data were collected during 1996–1997. The aerial color infrared (CIR) photographs, scaled to 1:5000, were taken on 28 June 1995 and on 19 June 1997. The degree of defoliation was visually estimated for every conifer in the defoliation stands. Individual trees in the digital aerial photographs were segmented using a robust segmentation method based on the recognition of tree crown patterns at a sub-pixel accuracy. The images were filtered with a Gaussian N×N smoothing operator, and local maxima above a threshold level were segmented using a directional derivate with some constraints. The segments were placed into defoliation classes using linear Fisher classification models, the parameters of which were estimated by cross-validation. Discriminant analysis was used to find variables for the segment classification. Defoliated tree segments and stands were classified satisfactorily. The accuracy of the pattern-recognition method proved adequate for detecting dead or heavily defoliated trees and heavily defoliated stands. The method described provides an interesting approach to using digital aerial data for automatically detecting severely defoliated spruce stands or individual trees.  相似文献   

2.
在海南省琼海县进行了不同林龄、不同采伐方式对大叶相思萌芽更新影响的研究,同时比较了保留不同萌条数量的萌芽林生长表现。结果表明:(1)林龄对伐桩萌芽率没有显著影响,但对伐桩存活率及萌条的径、高生长影响显著或极显著。林龄越大,萌芽更新效果越差;(2)皆伐和隔行采伐对大叶相思伐桩的萌芽率、萌条数量和存活率均无显著影响,但对萌条的径、高生长影响极显著。试验证明对大叶相思林分施以隔行采伐通过萌芽更新建立复层  相似文献   

3.
Time series of carbon fluxes in individual Scots pine (Pinus sylvestris L.) trees were constructed based on biomass measurements and information about component-specific turnover and respiration rates. Foliage, branch, stem sapwood, heartwood and bark components of aboveground biomass were measured in 117 trees sampled from 17 stands varying in age, density and site fertility. A subsample of 32 trees was measured for belowground biomass excluding fine roots. Biomass of fine roots was estimated from the results of an earlier study. Statistical models were constructed to predict dry mass (DW) of components from tree height and basal area, and time derivatives of these models were used to estimate biomass increments from height growth and basal area growth. Biomass growth (G) was estimated by adding estimated biomass turnover rates to increments, and gross photosynthetic production (P) was estimated by adding estimated component respiration rates to growth. The method, which predicts the time course of G, P and biomass increment in individual trees as functions of height growth and basal area growth, was applied to eight example trees representing different dominance positions and site fertilities. Estimated G and P of the example trees varied with competition, site fertility and tree height, reaching maximum values of 22 and 43 kg(DW) year(-1), respectively. The site types did not show marked differences in productivity of trees of the same height, although height growth was greater on the fertile site. The G:P ratio decreased with tree height from 65 to 45%. Growth allocation to needles and branches increased with increasing dominance, whereas growth allocation to the stem decreased. Growth allocation to branches decreased and growth allocation to coarse roots increased with increasing tree size. Trees at the poor site allocated 49% more to fine roots than trees at the fertile site. The belowground parts accounted for 25 to 55% of annual G, increasing with tree size and decreasing with site fertility. Annual G and P per unit needle mass varied over the ranges 1.9-2.4 and 3.5-4.0 kg(DW) kg(-1), respectively. The relationship between P and needle mass in the example trees was linear and relatively independent of competition, site fertility and age.  相似文献   

4.
Managed forests often differ substantially from undisturbed forests in terms of tree structure and diversity. By altering the forest structure, management may affect the C stored in biomass and soil. A survey of 58 natural stands located in the south-westernmost limit of European beech forests was carried out to assess how the C pools are affected by the changes in tree structural diversity resulting from past management. The mean tree density, basal area and the number of large trees found in unmanaged forests were similar to those corresponding to virgin beech forests in Central Europe, whereas large live trees were totally absent from partially cut stands. Analysis of the Evenness index and the Gini coefficient indicated high structural diversity in the three stand types. The results of the Kolmogorov–Smirnov test used to compare the diameter distributions of each group revealed significant differences between stand types in terms of distributions of total tree species and of Fagus sylvatica.

The mean C stocks in the whole ecosystem – trees, litter layer and mineral soil – ranged from 220 to 770 Mg ha−1 (average 380 Mg ha−1). Tree biomass (above and belowground), which averaged 293 Mg C ha−1, constituted the main C pool of the system (50–97%). The statistical test (Kolmogorov–Smirnov) revealed differences in the distribution of C pools in tree biomass between unmanaged and partially cut stands. As a consequence of the presence of large trees, in some unmanaged stands the C stock in tree biomass was as high as 500–600 Mg C ha−1. In the partially cut stands, most of the C was mainly accumulated in trees smaller than 20 cm dbh, whereas in unmanaged stands the 30% of tree C pool was found in trees larger than 50 cm dbh. Furthermore, many unmanaged stands showed a larger C pool in the litter layer. The C content of mineral soils ranged from 40 to 260 Mg C ha−1 and it was especially high in umbrisols. In conclusion, the implementation of protective measures in these fragile ecosystems may help to maintain the highly heterogeneous tree structure and enhance the role of both soils and trees as long-term C sinks.  相似文献   


5.
利用三维激光扫描系统测量立木材积的方法   总被引:3,自引:0,他引:3  
介绍三维激光扫描系统的组成及工作原理,并采用该方法对立木进行扫描,测量立木材积。与伐倒木实测数据进行对比,可以看出扫描数据完全能满足林业测量的精度要求,其扫描获得的立木材积数据完全可以替代传统方法测算的立木材积数据,使用立木模型建立材积表不再需要实地大量伐木,节省大量人力、物力及财力。应用三维激光扫描技术进行立木材积测定能较好的避免传统测定方法的不足,在未来的林业数字化测量中有广阔的应用前景。  相似文献   

6.
Forest volume, the major component of forest biomass, is an important issue in forest resource monitoring.It is estimated from tree volume tables or equations. Based on tree volume data of 1840 sample trees from Chinese fir (Cunninghamia lanceolata) plantations in Guizhou Province in southwestern China, parallel one- and two-variable tree volume tables and tree height curves for central and other areas were constructed using an error-in-variable modeling method. The results show that, although the one-variable tree volume equations and height curves between the central and other areas were significantly different, the two-variable volume equations were sufficiently close, so that a generalized two-variable tree volume equation could be established for the entire province.  相似文献   

7.
Time equations are derived for felling with chainsaw, skidding with cable wheeled skidder, loading with grapple hydraulic loader and trucking of logs within a cut-to-length harvesting method. The continuous time study method was applied to collect data for felling, skidding, loading and a transportation model. Multiple regression analysis via SPSS software was applied to develop the time models. Felling time was found to be highly dependent on diameter at breast height. Skidding distance, winching distance, slope of the trail and piece volume were significant variables for the skidding time prediction model. The loading time model was developed considering piece volume. Transportation distance and load volume were used as independent variables in modeling the transportation time. The net production of felling was estimated at 12 trees/h (56.65 m3/h). The net production rates for skidding, loading and traveling averaged 18.51, 41.90 and 3.32 m3/h respectively. The total cost of harvesting from stand to mill was estimated 19.70 €/m3. The skidding phase was the most expensive component of the cut-to-length method. The bucking and delimbing components were less costly than the other logging phases. The results of this study can be used for harvesting planning and productivity optimization.  相似文献   

8.
We quantified structural features and the aboveground biomass of the deciduous conifer, Metasequoia glyptostroboides (Hu and Cheng) in six plantations in central Japan. In order to derive biomass estimates we dissected 14 M. glyptostroboides trees into three structural components (stem wood, branch wood and foliage) to develop allometric equations relating the mass of these components and of the whole tree to diameter at breast height (DBH). We found robust relationships at the branch and whole tree level that allow accurate prediction of component and whole tree biomass. Dominant tree height was similar within five older (>40 years) plantations (27–33 m) and shorter in a 20-year-old plantation (18 m). Average stem diameter varied from 12.8 cm in the youngest stand to greater than 35 cm in the oldest stand.

Metasequoia have relatively compact crowns distributed over the top 30% of the tree although the youngest stand had the deepest crown relative to tree height (up to 38%). At the individual tree level in older stands, 87% of the aboveground biomass was allocated to the stem, 9% to branch wood and 4% to foliage. We found little difference in the relative distribution of above ground biomass among the stands with the exception of lower foliage biomass in larger diameter trees. Total aboveground biomass of the older stands varied twofold, ranging from a maximum of 450 Mg ha−1 in a 42-year-old stand to a minimum of 196 Mg ha−1 in a 48-year-old stand. Total above ground biomass of the 20-year-old stand was 176 Mg ha−1.  相似文献   


9.
以不同年龄、不同密度的樟子松(Pinus sylvestris var.mongolica)人工林为研究对象,基于8块标准地40株标准木的树干解析、枝解析的生物量数据,通过比较分析,研究不同大小树木因子(胸径、树高、冠幅等)与单木各分量(树干、枝、叶)生物量之间的关系,应用统计分析软件建立樟子松单木各部分生物量的回归模...  相似文献   

10.
Forest edge quantification by line intersect sampling in aerial photographs   总被引:1,自引:0,他引:1  
There is a need for accurate and efficient methods for quantification and characterisation of forest edges at the landscape level in order to understand and mitigate the effects of forest fragmentation on biodiversity. We present and evaluate a method for collecting detailed data on forest edges in aerial photographs by using line intersect sampling (LIS). A digital photogrammetric system was used to collect data from scanned colour infrared photographs in a managed boreal forest landscape. We focused on high-contrast edges between forest (height ≥ 10 m) and adjoining open habitat or young, regenerating forest (height ≤ 5 m). We evaluated the air photo interpretation with respect to accuracy in estimated edge length, edge detection, edge type classification and structural variables recorded in 20 m radius plots, using detailed field data as reference. The estimated length of forest edge in the air photo interpretation (52 ± 8.8 m ha−1; mean ± standard error) was close to that in the field survey (58 ± 9.3 m ha−1). The accuracy in edge type classification (type of open habitat) was high (88% correctly classified). Both tree height and canopy cover showed strong relationships with the field data in the forest, but tree height was underestimated by 2.3 m. Data collection was eight times faster and five times more cost-effective in aerial photographs than in field sampling. The study shows that line intersect sampling in aerial photographs has large potential application as a general tool for collecting detailed information on the quantity and characteristics of high-contrast edges in managed forest ecosystems.  相似文献   

11.
林龄、采伐方式对大叶相思萌芽更新的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
在海南省琼海县进行了不同林龄、不同采伐方式对大叶相思萌芽更新影响的研究,同时比较了保留不同萌条数量的萌芽林生长表现,结果表明:(1)林龄对伐桩萌芽率没有显著影响,但对伐桩存活率及萌条的径、高生长影响显著或极显著。林龄越大,萌芽更新效果越差;(2)皆伐和隔行采伐对大叶相思伐桩的萌芽率、萌条数量和存活率均无显著影响,但对萌条的径、高生长影响极显著。试验证明对大叶相思林分施以隔行采伐通过萌芽更新建立复层林分是可行的;(3)保留不同数量萌条对萌芽林早期(1.5年生)的径、高生长有极显著影响,但对后期(4.5年生)的生长影响不显著。每棵植株伐桩保留4根萌条的萌芽林生物产量最高,更新效果最好。  相似文献   

12.
The objective of this study was to analyse the within-tree allocation of biomass and to develop biomass functions for above- and below-ground components of European beech in Denmark. Separate functions were developed for stem, branches, below-ground stump and root system, total above-ground biomass and total tree biomass. For each of these components or aggregate components, models were also developed for the average basic density of wood and bark. To enhance the versatility of the models, a function for estimating the biomass expansion factor (BEF) was also developed. The functions were based on 66 trees measured for total biomass. Model performance was evaluated based on 74 trees measured only for above-ground biomass. The trees were sampled in 18 different forest stands covering a wide range of tree sizes and stand treatments. Models were estimated using a linear mixed-effects procedure to account for within-stand correlations. The functions for biomass and BEFs included only diameter at breast height and total tree height for individual trees as predictor variables. Inclusion of additional variables reflecting site quality or stand density did not improve model performance. The functions for basic density included individual tree diameter, tree height and quadratic mean diameter as predictor variables, indicating an effect of stand density on the basic density of wood and bark.  相似文献   

13.
基于森林清查资料的中国森林植被碳储量   总被引:19,自引:0,他引:19  
利用第七次全国森林资源连续清查数据,以回归模型估计法作为乔木林生物量的主要计算方法,以树种含碳率作为生物量转换为碳储量的系数,从单木归并到样地,从样地加权平均至省级区域,估算乔木林碳储量;以加权平均转换系数估算疏林地、散生木和四旁树的碳储量,以模型法估算竹林、灌木林的碳储量。结果表明:中国森林植被碳储量主要集中在西南和东北两大区;乔木林是中国森林植被碳储量的主体;人工林碳储量在中国乔木林碳储量中比例超过15%;阔叶树的碳储量和碳密度均大于针叶树。  相似文献   

14.
Mangroves play important roles in providing a range of ecosystem services, mitigation of strong waves, protection of coastlines against erosion, maintenance of water quality, and carbon sink in the context of global warming. For trees in mangrove forests in southern Ranong Province, Thailand, we investigated the allometric relationship between crown area derived from high-resolution satellite data and stem diameter and used the resulting model to estimate aboveground biomass. We used QuickBird panchromatic and multispectral data acquired for the study area on 15 October 2006 as the high-resolution satellite data. Individual tree crowns were extracted from the satellite image of panchromatic data by using the watershed method, and the species were identified by using the maximum-likelihood method for the multispectral data. Overall classification accuracy for species identification was 88.5 %. The biomass derived from our field survey was plotted against aboveground biomass in the sample plots, estimated from the QuickBird data. The regression line through the origin between the satellite-estimated biomass and biomass based on the field data had a slope of 1.26 (R 2 = 0.65). Stand aboveground biomass estimated from the high-resolution satellite data was underestimated because of a lack of data on the biomass of suppressed trees and inappropriate segmentation of crowns of large trees into two or more trees.  相似文献   

15.
Decline of cavity-using wildlife species is a major forest management issue. One of the causes of this problem is the loss in cavity tree abundance, resulting from short rotation silviculture, stand-replacing disturbance events and timber harvesting in disturbed stands. Cavity tree availability cannot be guaranteed due to the stochastic nature of disturbance events. We developed a Markov model to predict future cavity tree availability under alternative tree felling and fire protection strategies using information on cavity tree dynamics and fire history. Stochastic dynamic programming was used to find a strategy that maximizes timber revenues less forest management costs, including the cost of an artificial nest-box program that must be implemented whenever cavity trees become critically scarce. The requirement to implement a nest-box program in such circumstances strongly influenced the optimal tree felling strategy and resulted in a higher probability of having cavity trees in the future. This reflected an increase in the retention of old growth forest and stands with fire-killed cavity trees as well as stands of younger trees to provide a future source of cavities. These results demonstrate the need to consider the costs of artificial habitat enhancement and the risk of future cavity tree scarcity in multiple-use forest management planning.  相似文献   

16.
A method for computing leaf area of isolated trees from perspective photographs was developed. The method is based on gap fraction inversion. Photographs are discretized into picture zones where gap fraction is computed from image processing. Canopy volume and leaf area density associated with each picture zone are computed from geometrical considerations and inversion of gap fraction equations. Total leaf area and the vertical profile of leaf area are computed from the product of associated volume and its density. The method has been implemented in software called Tree Analyser, written in C++. The method has been tested by comparison with direct estimation of leaf area of three-dimensional (3D) digitized trees of walnut, peach, mango, olive and rubber. Estimated leaf area was sensitive to picture discretization, individual leaf size and leaf inclination distribution. Optimal size of picture discretization was 17 times projected leaf size. Total leaf area was estimated by using a set of eight photographs taken around the tree in the main horizontal directions: deviation ranged from -11% in peach tree to +5% in rubber tree. The method allows fast and nondestructive monitoring of leaf area of individual tree canopies. The next version of the method will include the estimation of 3D leaf area distribution within the canopy.  相似文献   

17.
Adequate allometric equations are needed for estimating carbon pools of fast growing tree species in relation to international reporting of CO2 emissions and for assessing their possible contribution to increasing forest biomass resources. We developed models for predicting biomass, stem basic density and expansion factors of stem to above-ground biomass for five fast growing conifers. Data included destructive measurements of 236 trees from 14 sites, covering a wide range of growth conditions. To ensure model efficiency, models for predicting stem, crown and total above-ground biomass for the five species were estimated simultaneously using a linear, mixed effects model that allowed contemporaneous correlations between the different tree components. Models differed among species and included dbh and tree height. The models explained more than 98% of the variation in above-ground biomass and reflected differences in the allometry between tree species. Stem density differed among species but generally declined with increasing site index and dbh. The overall model for predicting stem basic density included dbh, H100 and site index and explained 66% of the total variation. Expansion factors decreased from 1.8–2.0 in small trees (dbh < 10 cm) to 1.1–1.2 for large trees (dbh > 25 cm), but differed among species. The overall model explained 86% of the variation and included quadratic mean diameter and dbh.  相似文献   

18.
林木竞争对臭冷杉生物量分配的影响   总被引:2,自引:0,他引:2  
用不同高度树干直径建立并比较臭冷杉各器官生物量方程,分析林木竞争对臭冷杉地上、地下生物量分配的影响。结果表明:臭冷杉不同高度树干直径中,胸径是预测各器官生物量的最可靠变量;利用不同高度树干直径建立各器官生物量方程均会高估小个体样木(直径≤10cm)的生物量,并且随着直径增大,预测误差也随之增大;臭冷杉地上生物量与地下生物量的比值(T/R)与树木年龄、单株生物量、整株生物量年均生长率及树高年均生长率间均没有显著相关性(P>0.05);随着竞争增强,臭冷杉树干生物量占单株生物量的比例逐渐减小,枝叶生物量比例逐渐增大,而粗根生物量比例则基本保持不变;胸径年均生长率、树高年均生长率及单株生物量年均生长率均随着竞争强度增大逐渐减小,而T/R值并不受林木竞争的影响。  相似文献   

19.
There has been little examination of the relationship between the stocking of live trees in forests and the associated attributes of dead tree resources which could inform large-scale efforts to estimate and manage deadwood resources. The goal of this study was to examine the relationships between the stocking of standing live trees and attributes of standing dead and downed dead trees using a national inventory of forests in the United States. Results indicated that from the lowest to the highest class of live tree relative stand density, the mean biomass/ha of live trees increased over 2000% while standing dead and downed dead trees biomass/ha increased 295 and 75%, respectively. Correlations between downed deadwood biomass and stand/site attributes increased as live tree stocking increased. The size/density attributes of standing and downed deadwood exhibited no relationship with standing live stocking possibly due to the confounding factors of decay and breakage. This study proposes a conceptual deadwood stocking model with standing live tree stocking as an axis along which deadwood accretion factors (e.g., disturbance, self-thinning, and senescence) and depletion factors (e.g., decay, harvest, and stagnation) ultimately determine deadwood stocking.  相似文献   

20.
Although decline of Aleppo pine was observed long ago and several climatic and biotic factors have been previously associated with this complex process, site factors involved in this decline remain poorly understood. The objective of the work described here was to identify site factors associated with canopy condition. Canopy condition was estimated both by a visual estimation of defoliation, and by an indirect estimation of leaf area index (LAI) and other stand‐ and light‐related parameters through the analysis of hemispherical photographs. A high percentage of damaged trees (81%) along with high levels of defoliation in plots (up to 53%) and trees (up to 85%) were recorded. Regression models showed that the site factors associated with defoliation were basal area, age, crown depth and elevation, while those associated with LAI were diameter at breast height, tree density and canopy openness. Analysis of hemispherical photographs proved to be a useful method for LAI estimation, but not for estimation of defoliation due to heterogeneous defoliation patterns caused by fungal pathogens detected in the study area. Soils and climatic conditions were common to all plots, so their influence could not be tested, but poor soil conditions and climatic restraints are known in this area, including low soil productivity, frequent summer droughts and high numbers of frost days. The results obtained suggest that several factors were associated with the decline of Pinus halepensis, including age, basal area, canopy openness, diameter, height and tree density. These factors can influence canopy condition, and thus, they might be acting as predisposing factors for the decline. The modulation of these factors is possible if suitable forest management strategies are applied, which could lead to a decrease of the decline incidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号