首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The generation and accumulation of reactive oxygen species (ROS), superoxide anion (O2) and hydrogen peroxide (H2O2), were studied in the interaction between wheat cv. ‘Suwon 11’ and two races of Puccinia striiformis f. sp. tritici (avirulent and virulent). Generation of O2 and H2O2 was analyzed histochemically using nitroblue tetrazolium (NBT) and 3,3-diamino-benzidine (DAB), respectively. At the pre-penetration stage during appressorium formation both stripe rust races induced H2O2 accumulation in guard cells. In the incompatible interaction, a rapid increase of O2 and H2O2 generation at infection sites was detected. The percentage of infection sites showing NBT and DAB staining was 36.1% and 40.0%, respectively, 12 h after inoculation (hai). At extended incubation time until 24 hai, percentage of infection sites showing H2O2 accumulation further increased, whereas those exhibiting O2 accumulation declined. The early infection stage from 12 to 24 hai coincided with primary haustoria formation in mesophyll cells. In contrast, in the compatible interaction, O2 and H2O2 generation could not be detected in most of the infection sites. In the incompatible interaction, intensive DAB staining was also determined in mesophyll cells, especially in cell walls, surrounding the infected cells 16–24 hai; thereafter, these cells contained fluorescing compounds and underwent hypersensitive response (HR). The number of necrotic host cells surrounding the infection sites increased continuously from 20 to 96 hai. It might be concluded that H2O2 accumulation during the early infection stage is associated with the occurrence of hypersensitive cell death and that resistance response is leading to arrest the avirulent race of the obligate stripe rust pathogen. In the compatible interaction at 96 hai, H2O2 accumulation was observed in mesophyll cells surrounding the rust lesion.  相似文献   

2.
向日葵与锈菌互作过程中活性氧的积累   总被引:1,自引:2,他引:1  
为了探讨向日葵品种与锈菌互作中活性氧的产生和积累与向日葵抗锈病性的关系,采用分光光度计法及联苯胺蓝(DAB)、氮兰四唑(NBT)染色法对过氧化氢(H2O2)及超氧阴离子自由基(O2-)诱导积累的过程进行了检测.结果表明:接种后抗、感病品种均出现H2O2和O2-双峰,侵染早期积累明显,最高峰出现在16 h,在抗病品种中活性氧产生和积累明显高于感病品种;在抗病品种中侵染位点活性氧的产生及积累较明显,接种后16h,侵染位点周围的染色范围较大,染色较深,H2O2及O2-的染色比例均达到最高,分别为65.5%和41%;而在感病品种的侵染位点没有检测到明显的活性氧积累.  相似文献   

3.
4.
Colletotrichum lagenarium is the casual agent of anthracnose disease of melons. Light and scanning electron microscopy were used to observe the infection process of C. lagenarium on the leaves of two melon cultivars differing in susceptibility. On both cultivars conidia began germinating 12 h after inoculation (hai), forming appressoria directly or at the tips of germ-tubes. By 48 hai appressoria had melanised and direct penetration of host tissue had begun. On the susceptible cultivar, infection vesicles formed within 72 hai and developed thick, knotted primary hyphae within epidermal cells. By 96 hai C. lagenarium produced highly branched secondary hyphae that invaded underlying mesophyll cells. After 96 hai, light brown lesions appeared on the leaves, coincident with cell necrosis and invasion by secondary hyphae. While appressoria formed more quickly on the resistant cultivar, fewer germinated to develop biotrophic primary or invasive necrotrophic secondary hyphae than on the susceptible cultivar. These results confirm that C. lagenarium is a hemibiotrophic pathogen, and that resistance in melons restricts colonisation by inhibiting the development of necrotrophic secondary hyphae.  相似文献   

5.
An exopolygalacturonase and three endopolygalacturonases were purified from mycelia of pear scab pathogens, Venturia pirina and Venturia nashicola. The molecular weight of the isolated exoPG from V. pirina was 43 kDa, and the endoPGs from V. nashicola were 42 kDa as estimated by SDS–polyacrylamide gel electrophoresis. The pH optimum of the exoPG activity from V. pirina was 5.0. TheKm and Vmaxvalues of the exoPG were 0.08 mg ml−1and 4.44 × 10−3 mmol reducing group min−1 mg protein−1. The N-terminal amino acid sequence of the exoPG from V. pirina was similar to that of the exoPG from Fusarium oxysporum f. sp. melonis, and the N-terminal amino acid sequences of the three endoPGs fromV. nashicola races 1, 2 and 3 were similar to other fungal endoPGs with a conserved motif of ASxxxTFTxAAAxxxG.  相似文献   

6.
为绿色持久防控苹果树腐烂病,该研究分析苹果树腐烂病菌Valsa mali的3个主要协同转运蛋白超家族(major facilitator superfamily,MFS)编码基因的氨基酸序列特征,利用实时荧光定量PCR (quantitative real-time PCR,RT-qPCR)技术分析这3个基因在苹果树腐烂病菌侵染阶段的表达水平,通过构建这3个基因的缺失突变体和回补菌株分析其在病原菌营养生长、致病力和非生物胁迫应答等方面的功能。结果表明,这3个基因的氨基酸序列均具有MFS保守结构域,将其命名为VmMFS1~VmMFS3; VmMFS1和VmMFS2的进化距离较近,均与VmMFS3的进化距离较远;在苹果树腐烂病菌侵染过程中VmMFS1~VmMFS3基因表达均显著上调;与野生型03-8菌株相比,VmMFS1~VmMFS3基因缺失突变体的菌落形态无明显差异,但生长速度下降; VmMFS1~VmMFS3基因缺失突变体的致病力均显著降低; VmMFS1~VmMFS3基因缺失突变体对H2O2胁迫的敏感性无明显变化,但对NaCl胁迫更敏感;基因回补后基因缺失突变体的表型缺陷能恢复到野生型菌株的水平。  相似文献   

7.
UV-B (0.4 W m−2) irradiation and dimethoate (100 and 200 ppm) treatments, singly and in combination, declined the growth, photosynthetic pigment contents and photosynthesis (O2 evolution and CO2-fixation) of cowpea (Vigna unguiculata). Contrary to this, low concentration of dimethoate (50 ppm) caused stimulation on these parameters, while together with UV-B it showed inhibitory effects. Carotenoids (Car) showed varied responses. It was found that carbon-fixation (14CO2) was more sensitive to both the stresses than photosynthetic oxygen evolution. Photosynthetic electron transport activity was reduced by both the stresses, however, 50 ppm dimethoate besides inhibiting photosystem II (PSII) and whole chain activity, showed slight stimulation in photosystem I (PSI) activity. The individual effect of two stresses on PSII activity was probably due to interruption of electron flow at oxidation side of PSII which extended to its reaction center following simultaneous exposure. A similar trend was also noticed in case of CO2 liberation (measured as 14CO2 release) in light and dark. Results suggest that dimethoate (100 and 200 ppm) and UV-B alone caused heavy damage on pigments and photosynthetic activity of cowpea, leading to the significant inhibition in growth. Further, the interactive effects of both the stresses got intensified. However, low concentration (50 ppm) of dimethoate showed stimulation, but in combination, it slightly recovered from the damaging effect, caused by UV-B.  相似文献   

8.
9.
The accumulation of H2O2 (oxidative burst) and the progress of pathogen development were studied in compatible and incompatible wheat‐brown rust interactions. The accumulation of H2O2 was detected in 98·7% of guard cells with appressoria 8 h post inoculation (hpi). The reaction in both susceptible and resistant plants declined 2–3 days post inoculation (dpi). The second phase of the oxidative burst was observed in the mesophyll and/or epidermis. In susceptible plants it began 4–5 dpi and was detected only in the epidermis. In resistant plants the response was observed in the mesophyll. In moderately resistant plants it was induced 1–3 dpi, and the percentage of infection units reached 80–90% 8 dpi. This corresponded with severe necrotic symptoms. In highly resistant plants, the oxidative burst was short and transient. The percentage of infection units with H2O2 accumulation reached its highest level (60–70%) 2 dpi, and decreased thereafter. Four days later, the low percentage and weak DAB staining indicated very low H2O2 accumulation. The localization and the time‐course changes of the oxidative burst correlated with the profiles of the micronecrotic response, haustorium mother cell formation and pathogen development termination. An early and localized induction of oxidative burst followed by its rapid quenching correlated with high resistance and almost no disease symptoms. The possible correlation of the oxidative burst and pathogen development patterns with the level and durability of resistance conferred by Lr genes are discussed.  相似文献   

10.
To ascertain if active oxygen species play a role in fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris, the degree of lipid peroxidation (malondialdehyde formation) and the activity levels of diamine oxidase (DAO), an apoplastic H2O2-forming oxidase, and several antioxidant enzymes, namely ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), guaiacol-dependent peroxidase (GPX) and superoxide dismutase (SOD), were determined spectrophotometrically in roots and stems of ‘WR315’ (resistant) and ‘JG62’ (susceptible) chickpea cultivars inoculated with the highly virulent race 5 of the pathogen. Moreover, APX, CAT, GPX and SOD were also analysed in roots and stems by gel electrophoresis and activity staining; and the protein levels of APX and SOD in roots were determined by Western blotting. In roots, infection by the pathogen increased lipid peroxidation and CAT and SOD activities, although such responses occurred earlier in the incompatible compared with the compatible interactions. APX, GPX and GR activities were also increased in infected roots, but only in the compatible interaction. In stems, infection by the pathogen increased lipid peroxidation and APX, CAT, SOD and GPX activities only in the compatible interaction, and DAO activity only in the incompatible one. In general, electrophoregrams agreed with the activity levels determined spectrophotometrically and did not reveal any differences in isoenzyme patterns between cultivars or between infected and non-infected plants. Further, Western blots revealed an increase in the root protein levels of APX in the compatible interaction and in those of SOD in both compatible and incompatible interactions. In conclusion, whereas enhanced DAO activity in stems, and earlier increases in lipid peroxidation and CAT and SOD activities in roots, can be associated with resistance to fusarium wilt in chickpea, the induction of the latter three parameters in roots and stems along with that of APX, GR (only in roots) and GPX (only in stems) activities are rather more associated with the establishment of the compatible interaction.  相似文献   

11.
Cells were isolated from the developing leaves of Ipomoea aquatica and Digitaria sanguinalis. The effects of phenoxy alkanoic acid herbicides on light-dependent 14CO2 fixation and oxygen evolution in these leaf cells were studied. (2,4-Dichlorophenoxy)acetic acid and (2,4,5-trichlorophenoxy) acetic acid (2,4,5-T and 2,4-D) caused a 20% stimulation of 14CO2 fixation at 0.8 × 10−5M and an inhibition at 1 × 10−4M in I. aquatica leaf cells. Temperature seemed to have a marked influence on such action. No effect or very little effect was observed in the leaf cells of D. sanguinalis. The nonactive (2,4,6-Trichlorophenoxy)acetic acid (2,4,6-T) caused a similar stimulation of CO2 fixation as 2,4-D and 2,4,5-T at low concentrations in I. aquatica leaf cells, but no inhibition was observed at high concentration. Increase of hight intensity increased the rate of CO2 fixation in both control and 2,4,6-T-treated cells; however, the percentage of stimulation remained the same. At stimulatory concentration, all three compounds did not cause any stimulation in either photosystem I and II or photosystem II-mediated oxygen evolution. At higher concentrations, the differential effects of 2,4-D and 2,4,5-T on the light-induced CO2 fixation and photosystem II-mediated oxygen evolution in the I. aquatica leaf cells and D. sanguinalis mesophyll (ms) cells may be attributed in part to their selective action against dicotyledonous plants.  相似文献   

12.
The aim of this study was to compare the defense responses of embryo axes of Pisum sativum L. cv. Kwestor with different sucrose levels to pathogenic fungi, i.e. systemic acting Fusarium oxysporum f. sp. pisi and locally acting Ascochyta pisi. Embryo axes were cultured on Heller medium for 96 h. Four variants were compared: these included inoculated embryo axes cultured with or without 60 mM sucrose (+Si and −Si) and non-inoculated embryo axes cultured with or without 60 mM sucrose (+Sn and −Sn). After inoculation of the pea embryo axes with pathogenic fungi a generally higher concentration of free radicals was detected by electron paramagnetic resonance (EPR), in comparison to non-inoculated embryo axes. The inoculation with F. oxysporum caused stronger generation of free radicals in −Si than in +Si embryo axes. A different response was observed after inoculation with A. pisi; starting from 48 h, the concentration of free radicals in +Si axes was found to be 1.5 times higher than in −Si embryo axes. The values of spectroscopic splitting coefficients for these radicals suggest that they are semiquinone radicals. The EPR method also revealed Mn2+ ion accumulation after 24 h of culture. Over time, high levels of these ions were recorded in +Si embryo axes inoculated with F. oxysporum, while in +Si embryo axes inoculated with A. pisi they decreased. Up to 48 h after inoculation with the pathogenic fungi, Mn2+ ion levels were higher in +Si embryo axes than in +Sn axes. The activity of superoxide dismutase (SOD, EC 1.15.1.1) increased in +Si embryo axes up to 72 h after inoculation with pathogenic fungi; however, it was generally lower than in +Sn axes. Catalase activity (CAT, EC 1.11.1.6) increased up to 72 h after inoculation with F. oxysporum and the values were higher than in the non-inoculated tissue. Especially high activity of this enzyme was noted in −Si embryo axes after inoculation with either F. oxysporum or A. pisi. Peroxidase activity (POX, EC 1.11.1.7) towards pyrogallol in embryo axes increased during culture; however, it was lower or similar to that in non-inoculated embryo axes. SOD, CAT and POX zymograms showed that the synthesis of new isoforms was induced after inoculation with pathogenic fungi. Peroxidase isozymes detected by the reaction with diaminobenzidine in native PAGE were intensely stained in +Si embryo axes after inoculation with pathogenic fungi. Respiratory activity of the inoculated tissues was considerably higher than in non-inoculated tissues. The respiration rate was generally much higher in +Si than in −Si embryo axes. Growth of −Si embryo axes was more significantly retarded as a consequence of inoculation than that of +Si embryo axes.These results indicate that, depending on the manner of influence of a pathogenic fungus, both similar and differing defensive strategies may be initiated and a raised sugar levels in pea tissues limit the development of F. oxysporum and A. pisi.  相似文献   

13.
It has been reported that Alternaria brassicae, the causal agent of gray leaf spot in Brassica plants, produces a host-specific or host-selective toxin (HSTs) identified as destruxin B. In this study, the role of destruxin B in infection of the pathogen was investigated. Destruxin B purified from culture filtrates (CFs) of A. brassicae induced chlorosis on host leaves at 50–100 μg ml−1, and chlorosis or necrosis on non-host leaves at 250–500 μg ml−1. Destruxin B was detected in spore germination fluids (SGFs) on host and non-host leaves, but not in a sufficient amount to exert toxicity to host plants. When spores of non-pathogenic A. alternata were combined with destruxin B at 100 μg ml−1 and inoculated on the leaves, destruxin B did not affect the infection behavior of the spores. Interestingly, SGF on host leaves allowed non-pathogenic spores to colonize host leaves. Moreover, a high molecular weight fraction (>5 kDa) without destruxin B obtained by ultrafiltration of SGF had host-specific toxin activity and infection-inducing activity. From these results, we conclude that destruxin B is not a HST and does not induce the accessibility of the host plant which is essential for colonization of the pathogen. In addition, the results with SGF imply that a high molecular weight HST(s) is involved in the host–pathogen interaction.  相似文献   

14.
The interaction of a novel pesticide, NMD (spiro[(2R,3R,4S)-4-benzyloxy-2,3-iso-propylidenedioxy-1-oxacyclopentane-5,5′-(2-nitromethylene-1,3-diazacyclohexane)]), with bovine serum albumin (BSA) has been investigated by using absorption, fluorescence, and circular dichroism (CD) spectroscopy methods. Quenching of the fluorescence of BSA has been observed in the presence of NMD. The binding parameters were determined using Stern–Volmer equation. From the thermodynamic parameters calculated according to the van’t Hoff equation, the enthalpy change ΔH, and entropy change ΔS were found to be −2.71 kJ mol−1 and 82.56 J mol−1 K−1, respectively. These values suggested that, apart from an initial hydrophobic association, the complex is held together by van der Waals interactions and hydrogen bonding. These results provided a quantitative understanding of the binding of NMD to BSA, which is important in understanding its toxicity in vertebrates.  相似文献   

15.
Plant pathogenic bacteria in recirculated greenhouse water were inactivated by two distinct photochemical approaches: photo-inactivation in the presence of 0.005% to 0.01% hydrogen peroxide (H2O2), and photocatalytic inactivation with 0.01% titanium dioxide (TiO2). In both processes photo-inactivation is achieved by exposure to sunlight. Total inactivation, with 6–8 log units decrease in viable counts, was achieved in the study of the phytopathogensErwinia carotovora (E.c.), Clavibacter michiganensis (C.m.) andPseudomonas syringae pv.tomato (P.t.) by 10 to 30 min solar irradiation, in the presence of 0.15 to 0.3 mM (50–100 mgl −1) H2O2. Different responses of the examined pathogens towards TiO2 photo-inactivation were noticed. Whereas 10 min of solar illumination in the presence of both 100 mgl −1 H2O2 and 100 mgl −1 TiO2 resulted in total inactivation ofP.t. andE.c., this treatment had no effect onC.m. However, with traces of H2O2 (e.g. 50–100 mgl −1), and in the absence of TiO2,C.m. was deactivated by 20 min of solar irradiation.P.t. was fully inactivated in the dark by H2O2 at 3,000 mgl −1 (0.3%), but not with H2O2 at ≤ 1000 mgl −1. Also, no inactivation occurred with solar illumination in the absence of H2O2. The mechanism of the bactericidal photoreaction and the special significance of plant pathogen inactivation by natural sunlight in the presence of trace levels of H2O2 is discussed. http://www.phytoparasitica.org posting May 20, 2005.  相似文献   

16.
以对霜霉病不同抗性的葡萄品种左优红和霞多丽为材料,利用分子生物学和植物生理学试验手段,结合药理学试验,探讨葡萄在应答霜霉病过程中葡萄多磷酸肌醇激酶基因(VvIPK2)和H2O2的作用机制。接种霜霉病菌后15 h葡萄叶片VvIPK2表达量是正常水平的12倍,接种后3 hH2O2含量达最大值,同时苯丙氨酸解氨酶和几丁质酶活性升高;多磷酸肌醇激酶(IPK2)抑制剂、外源H2O2及H2O2清除剂均能改变霜霉病菌所引起的抗性葡萄品种左优红叶片PAL和几丁质酶活性的变化,同时可以影响不同抗性品种叶片的感病情况;IPK2抑制剂对葡萄霜霉病菌引起的H2O2水平变化没有影响;清除H2O2可减弱葡萄霜霉病菌对VvIPK2表达量的诱导效应。研究表明H2O2位于IPK2的上游,通过调控PAL和几丁质酶活性参与葡萄应答霜霉病过程。  相似文献   

17.
为探索能够减轻或消除Mn2+对草甘膦拮抗效应的方法,以高羊茅为试材,将赤霉素(GA3)与草甘膦和硫酸锰(Mn2+质量分数为0.1%)混用,研究了赤霉素对Mn2+降低草甘膦药效的缓解作用。结果表明:赤霉素+草甘膦+硫酸锰处理组高羊茅比同剂量草甘膦+硫酸锰处理组叶色更黄,萎蔫更严重,与同剂量草甘膦单剂处理组比较接近,其中加入50 mg/L赤霉素处理组缓解草甘膦拮抗效应的效果最好。赤霉素+草甘膦+硫酸锰处理组高羊茅的干、鲜重及叶绿素含量均低于草甘膦+硫酸锰处理组,而丙二醛和莽草酸含量均明显高于草甘膦+硫酸锰处理组。处理后第6天,赤霉素+草甘膦+硫酸锰组莽草酸含量分别比草甘膦+硫酸锰组增加了49.8%(加入50 mg/L赤霉素)和28.8%(加入30 mg/L赤霉素),差异显著;处理后第2天,赤霉素+草甘膦+硫酸锰组丙二醛含量分别比草甘膦+硫酸锰组增加了54.1%(加入50 mg/L赤霉素)和52.9%(加入30 mg/L赤霉素),差异显著。研究表明,将赤霉素与锰肥和草甘膦混合喷施,将有可能在一定程度上缓解Mn2+对草甘膦的拮抗效应,保证草甘膦的除草效果。  相似文献   

18.
Hydrogen peroxide (H2O2) has been implicated in many stress conditions. Control of H2O2 levels is complex and dissection of mechanisms generating and relieving H2O2 stress is difficult, particularly in intact plants. Here the role of the mycorrhizal inoculation in chili plants challenged with Phytophthora capsici was investigated to study the effect on hypersensitive response. In the treatment without mycorrhiza (treatment T3) and with mycorrhiza (considered treatment T4) visible disorders were detected two days after inoculation with P. capsici, but in the next days T3 plants rapidly developed 25% more necrotic lesions on the leaves than T4 plants. Leaf necrosis correlated with H2O2 accumulation and the greater damage observed in T3 plants coincided with larger accumulation of H2O2 after 12 h of inoculation accompanied with an increase in POX (peroxidase) and SOD (superoxide dismutase) activity. T4-infected and mycorrhizal plants exhibited an earlier accumulation of H2O2 starting 6 h after inoculation with lower levels compared to T3 plants. Correlated with observed damage, POX and SOD activity measured in T4 plants indirectly suggest a smaller accumulation of ROS (reactive oxygen species) leading to a decrease in the wounds observed and slightly diminishing the advance of the pathogen. According to these findings, we conclude that mycorrhizal colonization contributes significantly in maintaining the redox balance during oxidative stress, but the exact mechanism is still uncertain.  相似文献   

19.
为了明确钙离子与东莨菪内酯联合作用的杀螨效果,进而为东莨菪内酯的开发利用提供参考,采用玻片浸渍法测定了钙离子(Ca2+)与东莨菪内酯混用对朱砂叶螨Tetranychus cinnabarinus雌成螨的杀螨毒力,并测定了活体和离体条件下对螨体内Ca2+-ATP酶活性的影响,对Ca2+的增效作用机理进行了初步分析。结果表明:Ca2+与东莨菪内酯联合使用能显著增强东莨菪内酯的杀螨效果,其中联合作用24和48 h的LC50值分别比东莨菪内酯单独处理降低20%和45%;对朱砂叶螨Ca2+-ATP酶活性的测定结果表明,无论在活体还是离体条件下,Ca2+与东莨菪内酯联用均能显著增强对Ca2+-ATP酶的抑制作用,而相同浓度的Ca2+单独作用则对Ca2+-ATP酶活性无影响,这也在一定程度上证明了Ca2+-ATP酶是东莨菪内酯的重要作用靶标之一。  相似文献   

20.
Preliminary studies with plant cell suspensions indicated that high concentrations of bacterial inoculum can significantly reduce the H2O2levels detected immediately following inoculation. Further investigation suggested that bacterial concentration is an important factor in H2O2-scavenging, and is often overlooked in both plant/pathogen interactions as well asin vitrosurvival studies.In vitrostudies withPseudomonasspp. characterized the relationship between H2O2-scavenging and culturability of bacteria. Because H2O2permeates membranes rapidly, the intracellular scavenging activity of the bacteria could be detected as a decrease in the external H2O2concentration. Therefore, the effective scavenging activity of a given suspension of bacteria was proportional to the bacterial concentration. The culturability of populations of bacteria exposed to H2O2concentrations which are intolerable to individual cells (≥100 μm) was also dependent on bacterial concentration. Studies with a catalase-deficient mutant ofP. putidaindicated that catalase, due to its high Km, had little effect on scavenging H2O2at the lower concentrations of H2O2(<100 μm) that are likely to be encountered in suspension cells and other plant tissues. Using high concentrations of bacteria (1×109cfu ml-1), there was little difference between the catalase-deficient mutant and various isolates ofPseudomonasspp. in the reduction of H2O2levels in suspension cells. The studies indicated that an additional scavenging system other than catalase exists in bacteria and this may play an important role in scavenging H2O2during plant/bacteria interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号