首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. G. Liu    N. Hou    L. K. Liu    J. C. Liu    X. S. Kang    A. M. Zhang 《Plant Breeding》2006,125(5):437-440
A new cytoplasmic male‐sterile (CMS) system for hybrid wheat breeding, YA‐type CMS line with the cytoplasmic mutant from the common wheat variety ‘CA8057’, was developed by the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. The pollen sterility of YA‐type CMS line was easily maintained but difficult to restore. Some sterile lines with desirable agronomic performance, such as msYA‐‘CA8057’ (BC17), msYA‐‘Yuandong 6’ (BC9), msYA‐‘Jin 411’ (BC9), msYA‐‘WL1’ (BC10), msYA‐‘Yanshi 9’ (BC10), msYA‐‘BPm16’ (BC9), msYA‐‘Jindong 8’ (BC9) and msYA‐‘Jinmai 33’ (BC9), were bred and a restorer line GR1 was screened with 26 new restorer lines being developed by transferring restorer genes from GR1. It was found that abnormal phenomena occurred at the uninucleate‐pollen stage and the abortive pollen was poor in starch content and other components. The variance analysis of agronomic traits in eight sterile lines indicated that there was no general negative effect of cytoplasm. The genetic analysis for fertility restoration showed that two pairs of independent major genes (designated YARf1YARf1YArf2YArf2) and some minor genes could be involved in the fertility restoration in restorer line GR1, and YARf1 was epistatic over YARf2 for the genetic effect of fertility restoration. As a new CMS system, the YA‐type CMS line was of potential value for hybrid wheat breeding and should be further studied.  相似文献   

2.
P.K. Singh    G.R. Hughes 《Plant Breeding》2006,125(3):206-210
Tan spot of wheat is caused by the fungus Pyrenophora tritici‐repentis. On susceptible hosts, P. tritici‐repentis induces two phenotypically distinct symptoms, tan necrosis and chlorosis. This fungus produces several toxins that induce tan necrosis and chlorosis symptoms in susceptible cultivars. The objectives of this study were to determine the inheritance of insensitivity to necrosis‐inducing culture filtrate of P. tritici‐repentis, race 2, and to establish the relationship between the host reaction to culture filtrate and spore inoculation with respect to the necrosis component. The F1, F2, and BC1F1 plants and F2:8 lines of five crosses involving resistant wheat genotypes ‘Erik’, ‘Red Chief’, and line 86ISMN 2137 with susceptible cultivars ‘Glenlea’ and ‘Kenyon’ were studied. Plants were spore‐inoculated at the two‐leaf stage. Four days later, the newly emerged uninoculated third leaf was infiltrated with a culture filtrate of isolate Ptr 92–164 (race 2). Reactions to the spore inoculation and the culture filtrate were recorded 8 days after spore inoculation. The segregation observed in the F2 and BC1F1 generations and the F2:8 lines of all crosses indicated that a single recessive gene controlled insensitivity to necrosis caused by culture filtrate. This gene also controlled resistance to necrosis induced by spore inoculation.  相似文献   

3.
R. Uptmoor    W. Wenzel    K. Ayisi    G. Donaldson    A. Gehringer    W. Friedt    F. Ordon 《Plant Breeding》2006,125(5):532-534
In order to define the variation of the genomic proportion of the recurrent parent [G(RP)] and its relation to yield, G(RP) of individual BC1 plants of two sorghum populations composed of a high‐yielding cultivar as recurrent parent (RP) and a donor with superior drought resistance or grain quality, respectively, was estimated using AFLPs and SSRs. G(RP) in BC1 ranged from 0.53 to 0.95 and averaged to 0.76 in the population (NP4453 × ‘SV‐2’) × ‘SV‐2’. G(RP) varied between 0.60 and 0.86 and averaged to 0.74 in the BC1 of (ICV‐219 × ‘SV‐2’) × ‘SV‐2’. Results show that plants with a G(RP) equivalent to BC2 (0.875) or BC3 (0.938), respectively, can be selected from BC1. Yield performance of BC1S1 families was tested in field trials carried out in South Africa. The correlation between yield and G(RP) in BC1 was low. Selection according to G(RP) did not result in an effective preselection for yield.  相似文献   

4.
The objective of this work was to develop homozygous common bean lines carrying angular leaf spot resistance genes derived from the cultivars ‘Mexico 54’, ‘MAR 2’ and ‘BAT 332’ through marker‐assisted selection. Molecular markers SCAR OPN02890, RAPD OPE04500 and OPAO12950 linked to the resistance genes of ‘Mexico 54’, ‘MAR 2’ and ‘BAT 332’, respectively, were used in segregating backcross‐derived populations to selection. DNA fingerprinting was used to select homozygous BC2F3 and BC1F3 resistant plants genetically closer to the recurrent parent. Two homozygous BC2F2:3 and two and five BC1F2:3 families derived from ‘Ruda’ vs. ‘Mexico 54’ (RM), ‘MAR 2’ (RMA) and ‘BAT 332’ (RB) crosses were selected, respectively. After only one (RMA, RB) or two backcrosses (RM), five and eight BC1F3 lines derived from RMA and RB, respectively, and seven BC2F3 lines derived from RM, with 14.9–16.6, 16.9–18.6 and 9.3–11.1% of relative genetic distances to the recurrent parent were selected. This is the first report of lines resistant to angular leaf spot carrying genes of the cultivars ‘Mexico 54’, ‘MAR 2’ and ‘BAT 332’ developed with the aid of molecular markers.  相似文献   

5.
Using monosomic lines of wheat cultivars ‘Palur’ and ‘Compal’ as recipient parents as well as disomic substitution lines of chromosomes 5A and 5D of the wheat cv. ‘Atlas 66’, F3-populations and BC1′- to BC3′-populations with limited and free recombination of the 20 and 21 parental chromosomes, respectively, were realized and tested in field trials in comparison to the corresponding recipient cvs. ‘Palur’ and ‘Compal’. F3- and BC'-populations with the homozygous chromosomes 5A and 5D of the wheat cv. ‘Atlas 66’ expressed higher and more stable grain protein values than the comparable populations with free recombination of the same chromosomes. The grain protein content of populations with limited recombination was significantly increased compared with the recipient cultivars. Some advantages of using intervarietal substitutions in wheat breeding are discussed.  相似文献   

6.
The development of soybean varieties that lack the β‐conglycinin α‐subunit is an attractive goal because the β‐conglycinin α‐subunit negatively influences the nutrition and gelation of tofu and is a major allergen. To remove this undesirable allergen and simultaneously improve the seed nutritional value and food‐processing quality, marker‐assisted background selection (MABS) was used in backcross breeding to incorporate cgy‐2, a null phenotype version of the gene encoding the β‐conglycinin α‐subunit, from the donor line ‘RiB’ into the genetic background of the Chinese cultivar ‘Dongnong47’ (DN47), a popular high‐oil superfine seed soybean cultivar from Heilongjiang Province, China. In each F2 (F2, BCnF2) generation of the breeding programme, the offspring that carried the introgressed cgy‐2 were identified by sodium dodecyl sulphate–polyacrylamide gel electrophoresis and rescreened by MABS using simple sequence repeat markers to accelerate recurrent parent genome recovery. Of the 49 advanced backcrossing breeding lines (ABLs), the three best lines, ABL1, ABL2 and ABL3, were selected from the BC1, BC2 and BC3 populations, respectively. The ABLs were evaluated for desirable agronomic characteristics, yield‐related traits, amino acid composition, free amino acid composition and tofu‐processing quality in the mature seeds. All of the ABLs lacked the α‐subunit but grew and reproduced normally without deleterious effects on physiological processes such as seed development and germination. The free amino acid content of ABL1 was significantly higher than that of ‘DN47’, with arginine (Arg) being particularly enriched. Compared to the recurrent parent ‘DN47’, the total protein content of the three ABLs was higher, the amino acid composition of the seed proteins was markedly modified and the yield and hardness of the tofu that was made from the ABLs were significantly increased. MABS combined with stringent phenotypic selection in a backcross breeding programme is a feasible strategy for the genetic engineering of seed protein components to produce allergenic subunit‐deficient variant alleles.  相似文献   

7.
The wheat progenitors and other wild relatives continue to be important sources of genes for agronomically desirable traits, which can be transferred into durum wheat (Triticum turgidum; 2n = 4x = 28; AABB genomes) cultivars via hybridization. Chromosome pairing in durum × alien species hybrids provides an understanding of genomic relationships, which is useful in planning alien gene introgression strategies. Two durum cultivars, ‘Lloyd’ and ‘Langdon’, were crossed with diploid wheatgrass, Thinopyrum bessarabicum (2n = 2x = 14; JJ), to synthesize F1 hybrids (2n = 3x = 21; ABJ) with Ph1. ‘Langdon’ disomic substitution 5D(5B) was used as a female parent to produce F1 hybrids without Ph1, which resulted in elevation of pairing between durum and grass chromosomes – an important feature from the breeding standpoint. The F1 hybrids were backcrossed to respective parental cultivars and BC1 progenies were raised. ‘Langdon’ 5D(5B) substitution × Th. bessarabicum F1 hybrids were crossed with normal ‘Langdon’ to obtain BC1 progeny. Chromosome pairing relationships were studied in F1 hybrids and BC1 progenies using both conventional staining and fluorescent genomic in situ hybridization (fl‐GISH) techniques. Multicolour fl‐GISH was standardized for characterizing the nature and specificity of chromosome pairing: A–B, A–J and B–J pairing. The A–J and B–J pairing will facilitate gene introgression in durum wheat. Multicolour fl‐GISH will help in characterizing alien chromosome segments captured in the durum complement and in their location in the A and/or B genome, thereby accelerating chromosome engineering research.  相似文献   

8.
Y. Kaneko    S. W. Bang  Y. Matsuzawa 《Plant Breeding》2000,119(2):137-140
The specific monosomic addition line of radish, Raphanus sativus, carrying the e chromosome of Brassica oleracea (2n = 19, e‐type MAL) with the genetic background of the late‐bolting cv.‘Tokinashi’ was produced by successive backcrossing of the original e‐type MAL of radish that showed early bolting in the genetic background of the cv. ‘Shogoin’. The early‐bolting trait specific to the e‐type MAL was constantly expressed in the backcrossed progenies (BC2, BC3 and BC4), whereas the reverted radish‐like plants (2n =18) were gradually converted to bolting as late as ‘Tokinashi’. The added e‐chromosome expressed an epistatic effect against the genome of Japanese radish. Its early‐bolting trait was dominant to the late‐bolting trait of ‘Tokinashi’ which may be under the control of a few genes. Moreover, e‐type specific RAPD markers detected in eight primers were invariably transmitted in the backcrossed progenies by ‘Tokinashi’. From the analysis of the characteristics to the e‐type MAL and e‐type specific RAPD markers, it is suggested that the e‐added chromosome of kale (B. oleracea) was transmitted from generation to generation without any recombination with the radish chromosome. The gene(s) for the early‐bolting trait detected in this study may be useful for breeding work in radish, especially in the tropical areas.  相似文献   

9.
The genetic basis of grain-filling duration (GFD, days from anthesis to maturity) in six spring wheat hybrids involving nine varieties (‘Son-alika’/‘Bobwhite’, ‘Sonalika’/‘Glennson 70’, ‘Lelija’/‘Bobwhite’, ‘Lelija’/‘Mitacore’, ‘Buckbuck’/‘Dugoklasa’, and ‘Vesna’/‘Radu?a’) and their F1, F2, BC1, and BC2 generations was studied in the field near Sarajevo, Yugoslavia. Parental means differed in four of the six crosses. Generation mean analyses of genetic effects indicated that an additive-dominance model was sufficient for only two crosses: Lel/Bow and Lel/Mco. One or more types of epistasis were significant in the remaining crosses. The F1 and F2 means were either intermediate, closer to the mean of the parent with the longer GFD, or closer to the mean of the Parent with the shorter GFD. Even though different modes of gene action controlled GFD among the six crosses, the heritabilities were reasonably high (narrow sense, 39-59) range for six crosses), indicating that progress could be made from selection in these crosses for either long or short GFD. The parents were selected to have a range in days from planting to anthesis and to maturity. The relationship between dates of anthesis or maturity and GFD was not consistent, but the two latest-maturing varieties had the longest GFD, indicating that anthesis or maturity dates are not a good criteria for choosing parents for modifying GFD. Additive genetic effects predominated in the crosses studied here, but epistasis involving dominance gene action was sufficiently important. To eliminate confounding epistatic dominance effects and to take advantage of favourable additive × additive effects during selection for GFD, a breeding strategy involving rapid approach to homozygosity followed by selection after the achievement of homozygosity was suggested.  相似文献   

10.
Waxy (Wx) protein is a key enzyme for synthesis of amylose in endosperm. Amylose content in wheat grain influences the quality of end‐use products. Seven alleles have been described at the Wx‐D1 locus, but only two of them (Wx‐D1b, Wx‐D1e) were genotyped with codominant markers. The waxy wheat line K107Wx1 developed by treating ‘Kanto 107’ seeds with ethyl methanesulphonate carries the Wx‐D1d allele. However, no molecular basis supports this nomenclature. In the present study, DNA sequence analysis confirmed that a single nucleotide polymorphism in the sixth exon of Wx‐D1 changed tryptophan at position 301 into a termination codon. Based on this sequence variation, a PCR‐based KASP marker was developed to detect this point mutation using 68 BC8F1 plants and 297 BC8F2 lines derived from the cross ‘Ningmai 14’*9/K107Wx1. Combined with codominant markers for the Wx‐A1 and Wx‐B1 alleles, waxy and non‐waxy near‐isogenic lines were distinguished. The KASP marker was efficient in identifying the mutant allele and can be used to transfer waxiness to elite lines.  相似文献   

11.
Clubroot is a soilborne disease that severely infects cruciferous species. Pak choi (Brassica rapa subsp. chinensis) is an economically important cruciferous crop cultivated throughout the world. However, no clubroot‐resistant germplasms have been identified in pak choi to date. To improve disease resistance, we used marker‐assisted selection (MAS) to introgress the clubroot resistance (CR) trait from the ‘CCR13685’ Chinese cabbage (Brapa subsp. pekinensis) inbred line into an elite pak choi inbred line, ‘GHQ11021’. Genetic analysis of F2 and BC1 progeny showed that CR of ‘CCR13685’ was controlled by a single dominant gene. We designed nine candidate sequence‐characterized amplified region markers, K‐1 to K‐9, based on two molecular markers linked to the CR gene. We found that K‐3 co‐segregated with CR and an inoculation test confirmed that K‐3 could be used for MAS. Two introgression lines, BC3‐1‐4 and BC3‐2‐18, were developed using K‐3 for foreground selection. These lines displayed the same phenotypic properties as ‘GHQ11021’, but were highly resistant to clubroot, indicating that the CR gene of ‘CCR13685’ had been successfully introduced into pak choi.  相似文献   

12.
Sixteen‐hundred BC1 plants of a cross between an early blight (EB) susceptible tomato (Lycopersicon esculentum Mill.) breeding line (‘NC84173’ maternal and recurrent parent) and a resistant accession (‘PI126445’) of the tomato wild species Lycopersicon hirsutum Humb. and Bonpl. were grown in a field in 1998. This population was segregating (among other traits) for growth habit, self‐incompatibility and earliness in maturity. To eliminate confounding effects of these factors on disease evaluation and h2 estimation, plants that were self‐incompatible, indeterminate and/or late‐maturing were eliminated. The remaining plants (146), which were self‐compatible and determinate (sp./sp.) in growth habit, with early‐ to mid‐season maturity, were evaluated for EB resistance and self‐pollinated to produce BC1S1 seed. The 146 BC1S1 progeny families, consisting of 30 plants per family, were grown in a replicated field trial in 1999 and evaluated for EB resistance and plant maturity. For each of the 146 BC1 plants and corresponding BC1 families, the area under the disease progress curve (AUDPC) and final disease severity (final percentage defoliation) were determined and used to measure disease resistance. The distributions of the AUDPC and final percentage defoliation values in the BC1 and BC1S1 generations indicated that resistance from ‘PI126445’ was quantitative in nature. Estimates of h2 for EB resistance, computed by correlation between BC1S1 progeny family means and BC1 individual plant values, ranged from 0.69 to 0.70, indicating that EB resistance of ‘P1126445’ was heritable. Across BC1S1 families, a small, but significant, negative correlation (r = ‐0.26, P < 0.01) was observed between disease resistance and earliness in maturity. However, several BC1S1 families were identified with considerable EB resistance and reasonably early maturity. These families should be useful for the development of commercially acceptable EB‐resistant tomato lines.  相似文献   

13.
X. L. Li    L. K. Liu    N. Hou    G. Q. Liu  C. G. Liu 《Plant Breeding》2005,124(4):413-415
‘Yi 4060’ is an elite restorer line of a non‐photoperiod‐sensitive D2‐type cytoplasmic male‐sterile (CMS) line of wheat. Random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers were employed to map one major fertility‐restoring gene (D2Rf1) in ‘Yi 4060′. The sterile and fertile DNA pools were established from individuals in BC6, based on bulked segregant analysis. One RAPD marker E09, linked to D2Rf1, was converted to a SCAR marker and designated as E09‐SCAR865. The genetic distance between E09‐SCAR865 and D2Rf1 is 9.5 cM. Two SSR markers, Xgwm11 and Xgwm18, were also linked to a D2Rf1 and co‐segregated with E09‐SCAR865. The three molecular markers are useful in marker‐assisted breeding of the elite restorer lines for D2 ‐type CMS lines in wheat.  相似文献   

14.
Using the advanced backcross quantitative trait loci (AB‐QTL) strategy, we successfully transferred and mapped valuable allelic variants from the high β‐glucan (BG) accession IAH611 (PI 502955), into the genome of cultivar ‘Iltis’. By backcrossing one BC1F1 plant to ‘Iltis’, we developed two BC2F2‐6 populations A and B, comprising 98 and 72 F2‐individuals, respectively. Genotyping of BC2F2 individuals with predominantly AFLP markers resulted in 12 linkage groups with a map size of 455.4 cM for Population A and 11 linkage groups with a map size of 313.5 cM for Population B. Both populations were grown at three sites in Germany over a three‐year period. Individuals were then phenotyped for 13 traits including grain yield (YD) and β‐glucan content (BG). QTL analysis via stepwise regression detected a total of 33 QTLs, most of which were clustered in three linkage groups. Two dense linkage groups A1 and B13 were found to be putatively homologous to groups KO_6 and KO_11 of the ‘Kanota’/‘Ogle’ map, respectively.  相似文献   

15.
S. Chen    C. G. Xu    X. H. Lin  Q. Zhang 《Plant Breeding》2001,120(2):133-137
Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (X00), is one of the most devastating diseases of rice world‐wide; it is also a serious problem of hybrid rice production in China. In this study, a molecular marker‐assisted introgression of Xa21, a gene highly resistant to a broad spectrum of Xoo strains, from ‘IRBB21’ was performed to improve the BB resistance of‘6078′, a new restorer line with high yielding potential. The entire process took one generation of crossing followed by three generations of backcrossing and one generation of selfing. The presence of Xa21 in each generation was determined by both polymerase chain reaction (PCR) and pathogen inoculation. Recombinations between Xa21 and flanking markers were identified by PCR analysis. Background selection was conducted in BC1F1 and BC2F1 using amplified fragment length polymorphism (AFLP) markers detecting a total of 129 polymorphic bands between‘6078’ and ‘IRBB21′. The individual selected in BC3F2, or‘6078′(Xa21), carried a fragment of less than 3.8 cM from the donor line in the Xa21 region on chromosome 11, and about 98.8% of the genetic background from the recurrent parent. The results showed that‘6078′(Xa21) had the same level and spectrum of BB resistance as the donor parent ‘IRBB21′, while maintaining the agronomic performance and combining ability of the original 6078. A significant increase in BB resistance was also achieved in the hybrid using 6078(Xa21) as the restorer line.  相似文献   

16.
A mungbean (V. radiata) line (BC3F3 generation) which is resistant to two species of bruchid beetles (Callosobruchus chinensis and C. maculatus) was successfully developed in Thailand using a wild mungbean variety (V. radiata var. sublobata). One accession (TC1966) of wild mungbean was found to be completely resistant to C. chinensis and C. maculatus occurring at Chainat Field Crops Research Center in Thailand. The resistance was controlled by a single dominant gene (R). A breeding program to develop a bruchid-resistant mungbean cultivar with good agronomic characters under the environmental conditions of Thailand was initiated in 1987.‘Chainat 60’ (‘CN60’), a recommended mungbean cultivar in Thailand, was crossed with TC1966 to incorporate the resistance gene. Agronomic characters of the hybrids were improved by recurrent backcrossing using ‘CN60’ as a pollen parent. Seed yield per plant, days to flowering, and seed size of the bruchid-resistant BC3F2 population reached the level of ‘CN60’ after three consecutive backcrossings. Bruchid-resistant line (BC3F3, R/R) was selected from individual BC3F2 plants.  相似文献   

17.
Y. Kaneko    H. Yano    S. W. Bang  Y. Matsuzawa 《Plant Breeding》2003,122(3):239-243
The genetic stability and maintenance of Raphanus sativus‐Brassica rapa monosomic chromosome addition lines (a‐h‐types MALs, 2n = 19, BC2), developed by backcrossing the synthesized amphidiploid Raphanobrassica (Raphanus sativus × Brassica rapa, 2n = 38, RRAA) with R. sativus cv. ‘Shogoin’ (2n = 18, RR), was investigated. Transmission of the added alien chromosome through selected smaller seeds (SSS) and the inheritance of morphological traits and random amplified polymorphic DNA (RAPD)‐specific markers together with meiotic chromosome configuration and seed fertility were also investigated for three successive generations (BC3 to BC5). The distinctive traits and the RAPD‐specific markers of the eight types of MAL were substantially inherited and stably maintained throughout three generations, although a few variant plants (2n =18) resembling MALs (2n = 19) and hyperploidal plants (2n = 26 and 2n = 37) were generated in the earlier generations of BC3 and BC4 in comparison with BC5. The average transmission rates for three generations ranged from 26% for both the b‐type and the d‐type to 44% for the e‐type through SSS. On the other hand, the transmission rates through randomly selected seeds (RSS) were lower, ranging from 6.5% for the f‐type to 23.5% for the b‐type. In meiosis, more than 90% of PMCs showed the 9II +1I pairing configuration at metaphase I throughout three generations. For seed fertility, when backcrossed with the radish cv. ‘Shogoin’, the values were approximately 180% to 500% with the mode around 300% with the seed harvested from a pod increasing with the advancing generations. Genetic recombination between the radish chromosomes and the added chromosome is probably rare, suggesting that the added chromosome is mostly maintained unaltered in the background of the radish genome.  相似文献   

18.
A study was conducted under controlled environment conditions in a phytotron to determine the nature of the inheritance of resistance Helminthosporium leaf blight (HLB) in a synthetic hexaploid wheat line, ‘Chirya‐3’, against the isolate KL‐8 of Bipolaris sorokiniana from the major wheat growing region of India. Crosses were made between two susceptible lines ‘WH 147’ and ‘Chinese Spring’. Analyses of F1 and F2 populations of these two crosses (‘WH 147’בChirya‐3’ and ‘Chinese Spring’בChirya‐3’) showed that resistance against the isolate in ‘Chirya‐3’ was governed by two recessive genes functioning in a complementary interaction giving an F2 segregation pattern of 1 : 15 (resistant : susceptible). The segregation pattern of the resistant F2 progenies in F3 families from both crosses confirmed that two homozygous recessive genes were responsible for resistance to the isolate of Bipolaris sorokiniana in the synthetic line ‘Chirya‐3’. It is proposed that the genes be designated as hlbr1 and hlbr2.  相似文献   

19.
Aegilops variabilis no. 1 is the only known source of resistance to the root‐knot nematode Meloidogyne naasi in wheat. Previous studies showed that a dominant gene, Rkn‐mn1, was transferred to a wheat translocation line from the donor Ae. variabilis. Random amplified polymorphic DNA (RAPD) analysis was performed on the wheat cultivar ‘Lutin’, on Ae. variabilis, on a resistant disomic addition line and on a resistant translocation line. For genetic and molecular studies, 114‐117 BC3F2 plants and F3‐derived families were tested. Five DNA and one isozyme marker were linked to Rkn‐mn1. Three RAPD markers flanking the Rkn‐mn1 locus were mapped at 0 cM (OpY16‐1065), 0.8 cM (OpB12‐1320) and 1.7 cM (OpN20‐1235), respectively. Since the Rkn‐mn1 gene remained effective, its introduction into different wheat cultivars by marker‐assisted selection is suggested.  相似文献   

20.
A. N. Mishra    K. Kaushal    S. R. Yadav    G. S. Shirsekar    H. N. Pandey 《Plant Breeding》2005,124(5):517-519
The gene Lr34 has contributed to durable resistance to leaf rust caused by Puccinia triticina in wheat worldwide. The closely associated leaf tip necrosis is generally used as the gene's marker. Lr34 has been postulated in many Indian bread wheat cultivars including ‘C 306’, based on the associated leaf tip necrosis and a few other field and glasshouse observations. The present study showed monogenic control of adult‐plant resistance in ‘C 306’ to leaf rust pathotype 77‐5 (121R63‐1). The F2 segregation in the crosses between ‘C 306’ and the two known carriers of Lr34, ‘Line 897’ and ‘Jupateco 73’‘R’ fitted a digenic ratio. The F3 families derived from the susceptible F2 segregants were true breeding for susceptibility, proving the absence of Lr34 in ‘C 306’. The cross between ‘Line 897’ and ‘Jupateco 73’‘R’ did not segregate for susceptibility. Resistance in the cross ‘Agra Local’ (susceptible) × ‘C 306’ was associated with leaf tip necrosis, showing that the leaf rust resistance gene in ‘C 306’ was associated with leaf tip necrosis, but was different from Lr34. This gene is being temporarily designated as Lr‘C 306’. Hence, leaf tip necrosis cannot be considered as an exclusive marker for selecting Lr34 in wheat improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号