首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Environmental stresses such as chilling temperatures can decrease germination, emergence, flower and fruit development, marketable yield, and postharvest fruit storage longevity in cucumber (Cucumis sativus L.). While response to chilling injury in cucumber is controlled by simple plastidic (maternal) and nuclear (paternal) factors, no chilling tolerant U.S. processing varieties are commercially available. Furthermore, even though three single nucleotide polymorphic sites have been identified as plastid components associated with chilling tolerance in cucumber, it is not known how these factors interact with nuclear factors controlling economically important traits. Therefore, an experiment was designed to evaluate the rate of recovery of the chilling susceptible (cytoplasm) genotype during introgression backcrossing (IB), where it was used as a recurrent parent after the initial mating to a line possessing chilling tolerant cytoplasm (donor parent). Phenotypic yield and quality trait data were collected on processing type backcross progeny (BC1–5 and BC2S3) derived from an initial ‘Chipper’ (tolerant) × line M 29 (susceptible) mating, and rate of progression to the recurrent parent was determined by simple sequence repeat marker and morphological trait analyses. Substantial degrees of the recurrent parent phenotype and nuclear genome were recovered by the BC2 generation (P = 0.001), with nearly complete recovery of recurrent parental traits and its nuclear genome occurring by the BC3. General combining ability (GCA) of derived BC2S3 lines was significant for yield, yield/plant, length (L), diameter (D), and L:D ratios. The BC2S3 line GCA and rate of progression towards the recurrent parent for economically important traits suggests that elite chilling tolerant cucumber germplasm can be developed rapidly through IB and marker genotyping.  相似文献   

2.
The objective of this work was to develop homozygous common bean lines carrying angular leaf spot resistance genes derived from the cultivars ‘Mexico 54’, ‘MAR 2’ and ‘BAT 332’ through marker‐assisted selection. Molecular markers SCAR OPN02890, RAPD OPE04500 and OPAO12950 linked to the resistance genes of ‘Mexico 54’, ‘MAR 2’ and ‘BAT 332’, respectively, were used in segregating backcross‐derived populations to selection. DNA fingerprinting was used to select homozygous BC2F3 and BC1F3 resistant plants genetically closer to the recurrent parent. Two homozygous BC2F2:3 and two and five BC1F2:3 families derived from ‘Ruda’ vs. ‘Mexico 54’ (RM), ‘MAR 2’ (RMA) and ‘BAT 332’ (RB) crosses were selected, respectively. After only one (RMA, RB) or two backcrosses (RM), five and eight BC1F3 lines derived from RMA and RB, respectively, and seven BC2F3 lines derived from RM, with 14.9–16.6, 16.9–18.6 and 9.3–11.1% of relative genetic distances to the recurrent parent were selected. This is the first report of lines resistant to angular leaf spot carrying genes of the cultivars ‘Mexico 54’, ‘MAR 2’ and ‘BAT 332’ developed with the aid of molecular markers.  相似文献   

3.
The development of soybean varieties that lack the β‐conglycinin α‐subunit is an attractive goal because the β‐conglycinin α‐subunit negatively influences the nutrition and gelation of tofu and is a major allergen. To remove this undesirable allergen and simultaneously improve the seed nutritional value and food‐processing quality, marker‐assisted background selection (MABS) was used in backcross breeding to incorporate cgy‐2, a null phenotype version of the gene encoding the β‐conglycinin α‐subunit, from the donor line ‘RiB’ into the genetic background of the Chinese cultivar ‘Dongnong47’ (DN47), a popular high‐oil superfine seed soybean cultivar from Heilongjiang Province, China. In each F2 (F2, BCnF2) generation of the breeding programme, the offspring that carried the introgressed cgy‐2 were identified by sodium dodecyl sulphate–polyacrylamide gel electrophoresis and rescreened by MABS using simple sequence repeat markers to accelerate recurrent parent genome recovery. Of the 49 advanced backcrossing breeding lines (ABLs), the three best lines, ABL1, ABL2 and ABL3, were selected from the BC1, BC2 and BC3 populations, respectively. The ABLs were evaluated for desirable agronomic characteristics, yield‐related traits, amino acid composition, free amino acid composition and tofu‐processing quality in the mature seeds. All of the ABLs lacked the α‐subunit but grew and reproduced normally without deleterious effects on physiological processes such as seed development and germination. The free amino acid content of ABL1 was significantly higher than that of ‘DN47’, with arginine (Arg) being particularly enriched. Compared to the recurrent parent ‘DN47’, the total protein content of the three ABLs was higher, the amino acid composition of the seed proteins was markedly modified and the yield and hardness of the tofu that was made from the ABLs were significantly increased. MABS combined with stringent phenotypic selection in a backcross breeding programme is a feasible strategy for the genetic engineering of seed protein components to produce allergenic subunit‐deficient variant alleles.  相似文献   

4.
S. N. Zado  Amar  Singh 《Plant Breeding》1986,97(2):187-189
An interspecific hybrid involving Pennisetum americanum (2 n = 14) and a diploid cytotype of P. orientale (2 n = 18) was backcrossed to P. americanum using the hybrid (2 n = 16, 7‘A’+ 9 ‘O’) as the female parent. Pollen mother cells of 13 BC1 plants contained a complement of 14‘A’+ 9 ‘O’ chromosomes. Five BC2 plants obtained through further backcrossing to P. americanum had 21‘A’+ 9 ‘O’ chromosomes revealing another addition of the P. americanum genome. The role of such recurrent additions of parental genomes in the evolution of polyploid species has been discussed.  相似文献   

5.
Several R2 somaclonal families were derived from plants regenerated from a salt‐resistant callus of the salt‐sensitive rice cultivar ‘I Kong Pao’ (IKP). The family R2‐1‐23, in the presence of NaCl exhibited higher yield performances than the initial cultivar. This improvement in salinity resistance, however, was not transmitted to following generations; despite a higher number of spikelets per plant, family R3‐1‐23 did not perform better than the initial cultivar because of a very low seed set. This somaclonal family, its initial being the cultivar IKP, the breeding line IR31785 (extremely salt‐sensitive) and the cultivar ‘Aiwu’ (moderately salt‐resistant), were used as parents for production ofhybrids. Four crosses, IKP×R3‐1‐23, IR31785 ×R3‐1‐23, IR31785× IKP and IKP בAiwu’, were performed. Most of the F1 hybrids cultivated in the absence of salt exhibited increased performances compared with the mid‐parent, suggesting an heterosis effect for yield‐related parameters. F2 populations were screened for salinity resistance and a clear improvement for yield in stress conditions was recorded for populations derived from IK×R3‐1‐23, IR31785×R3‐1‐23 and IR31785×IKP, although the mean level of increase over the mid‐parent (RIMP) varied depending on the population, the presence or absence of stress, and the quantified parameters. The results are discussed in relation to the usefulness of in vitro selection for obtaining interesting somaclonal variants useful to be integrated in classical breeding programmes for salinity resistance in rice.  相似文献   

6.
The wheat progenitors and other wild relatives continue to be important sources of genes for agronomically desirable traits, which can be transferred into durum wheat (Triticum turgidum; 2n = 4x = 28; AABB genomes) cultivars via hybridization. Chromosome pairing in durum × alien species hybrids provides an understanding of genomic relationships, which is useful in planning alien gene introgression strategies. Two durum cultivars, ‘Lloyd’ and ‘Langdon’, were crossed with diploid wheatgrass, Thinopyrum bessarabicum (2n = 2x = 14; JJ), to synthesize F1 hybrids (2n = 3x = 21; ABJ) with Ph1. ‘Langdon’ disomic substitution 5D(5B) was used as a female parent to produce F1 hybrids without Ph1, which resulted in elevation of pairing between durum and grass chromosomes – an important feature from the breeding standpoint. The F1 hybrids were backcrossed to respective parental cultivars and BC1 progenies were raised. ‘Langdon’ 5D(5B) substitution × Th. bessarabicum F1 hybrids were crossed with normal ‘Langdon’ to obtain BC1 progeny. Chromosome pairing relationships were studied in F1 hybrids and BC1 progenies using both conventional staining and fluorescent genomic in situ hybridization (fl‐GISH) techniques. Multicolour fl‐GISH was standardized for characterizing the nature and specificity of chromosome pairing: A–B, A–J and B–J pairing. The A–J and B–J pairing will facilitate gene introgression in durum wheat. Multicolour fl‐GISH will help in characterizing alien chromosome segments captured in the durum complement and in their location in the A and/or B genome, thereby accelerating chromosome engineering research.  相似文献   

7.
Sixteen‐hundred BC1 plants of a cross between an early blight (EB) susceptible tomato (Lycopersicon esculentum Mill.) breeding line (‘NC84173’ maternal and recurrent parent) and a resistant accession (‘PI126445’) of the tomato wild species Lycopersicon hirsutum Humb. and Bonpl. were grown in a field in 1998. This population was segregating (among other traits) for growth habit, self‐incompatibility and earliness in maturity. To eliminate confounding effects of these factors on disease evaluation and h2 estimation, plants that were self‐incompatible, indeterminate and/or late‐maturing were eliminated. The remaining plants (146), which were self‐compatible and determinate (sp./sp.) in growth habit, with early‐ to mid‐season maturity, were evaluated for EB resistance and self‐pollinated to produce BC1S1 seed. The 146 BC1S1 progeny families, consisting of 30 plants per family, were grown in a replicated field trial in 1999 and evaluated for EB resistance and plant maturity. For each of the 146 BC1 plants and corresponding BC1 families, the area under the disease progress curve (AUDPC) and final disease severity (final percentage defoliation) were determined and used to measure disease resistance. The distributions of the AUDPC and final percentage defoliation values in the BC1 and BC1S1 generations indicated that resistance from ‘PI126445’ was quantitative in nature. Estimates of h2 for EB resistance, computed by correlation between BC1S1 progeny family means and BC1 individual plant values, ranged from 0.69 to 0.70, indicating that EB resistance of ‘P1126445’ was heritable. Across BC1S1 families, a small, but significant, negative correlation (r = ‐0.26, P < 0.01) was observed between disease resistance and earliness in maturity. However, several BC1S1 families were identified with considerable EB resistance and reasonably early maturity. These families should be useful for the development of commercially acceptable EB‐resistant tomato lines.  相似文献   

8.
Z. Sun    R. L. Lower    J. E. Staub 《Plant Breeding》2006,125(3):277-280
Parthenocarpy (seedless fruit) has potential for increasing yield in cucumber (Cucumis sativus var. sativus L.). To determine the inheritance of parthenocarpy in gynoecious cucumber, P1, P2, F1, F2, BC1P1, and BC1P2 generations derived from crossing two non‐parthenocarpic gynoecious inbred lines [Gy8 (P2; processing type) and ‘Marketmore 80’ (P2; MM, fresh market type)] with a highly parthenocarpic inbred line [2A (P1; processing type)] were evaluated for fruit number in a greenhouse at Arlington, Wisc. in 1999 (designated 2A × Gy8 1999) and in the open‐field at Hancock, Wisc. in 2000 (designated 2A × Gy8 2000 and 2A × MM 2000). There were significant location and location × generation interaction effects, and therefore generation means analyses were conducted separately for each location. The minimum numbers of effective factors controlling parthenocarpy were estimated to be at least one (2A × Gy8 1999), two (2A × Gy8 2000) and four (2A × MM 2000). Results suggest that selection for parthenocarpy for multiple hand harvest operations will likely be more effective than that for once‐over machine harvest operations. However, the selection efficiency will likely vary across different populations and environments.  相似文献   

9.
M. Confalonieri    R. Bollini    N. Berardo    A. Vitale  A. Allavena 《Plant Breeding》1992,109(4):329-334
The abundant lectin phytohemagglutinin (10 % of total seed protein) does not contain sulfur amino acids and, being a potent antimetabolite, it is responsible for the lowering of the nutritional value of bean seeds. The aim of the present work was to improve the dry bean cultivar ‘Taylor's Horticultural’ (Asgrow), by genetically introducing the lectin null (lec/lec) character from two null genotypes: ‘Pinto UI 111’ and ‘Heidi’. Thirty-seven BC2F3 and fourteen BC6F5 inbred lines were evaluated in agronomical trials. Analysis of Variance (ANOVA) showed significant differences among BC2F3 breedings lines for all traits under evaluation. Comparison of the LedLee genotypes versus lec/lec did not show statistically significant differences in the means for the following traits: yield, yield components and percentage of protein in the seed. Fourteen BC6F5 lines, compared together with their recurrent parent ‘Taylor's Horticultural’, showed significant differences among genotypes for 1000 seed weight, protein percentage on dry matter and ash percentage. No significant differences were observed for grain yield. The data indicate that lectin removal did not have a detrimental effect on the traits evaluated.  相似文献   

10.
The main goal of this work was to introduce resistance genes for rust, caused by Uromyces appendiculatus, and anthracnose, caused by Colletotrichum lindemuthianum, in an adapted common bean cultivar through marker-assisted backcrossing. DNA fingerprinting was used to select plants genetically closer to the recurrent parent which were also resistant to rust and to race 89 of C. lindemuthianum. DNA samples extracted from the resistant parent (cv. Ouro Negro), the recurrent parent (cv. Rudá), and from BC1, BC2 and BC3 resistant plants were amplified by the RAPD technique. The relative genetic distances in relation to the recurrent parent varied between 9 and 59% for BC1, 7 and 33% for BC2, and 0 and 7% for BC3 resistant plants. After only three backcrosses, five lines resistant to rust and anthracnose with, approximately, 0% genetic distance in relation to the recurrent parent were obtained. These lines underwent field yield tests in two consecutive growing seasons and three of them presented a good yield performance, surpassing in that sense their parents and most of the reference cultivars tested.  相似文献   

11.
Loren C. Stephens 《Euphytica》1998,103(2):219-222
BCT2 seedlings, derived from the cross Tangeglow (I. hawkeri Bull. × I. aurantiaca Teysm.) × 7851-1 (I. hawkeri Bull. × I. platypetala Lindl.) with 7851-1 as recurrent parent, were tested for presence of pollen fertility. Of 59 BC2 seedlings, 11 were capable of in vitro pollen germination and also of effecting fertilization and subsequent seed set as pollen parent when crossed with Tangeglow as the seed-parent tester. The Spearman's rank correlation coefficient [rs] of + 0.63 indicated a moderately good correlation of seedling ranking, based on pollen germination percent in vitro and seed set in vivo. Pollen germination of the 11 pollen-fertile BC2 seedlings varied from a mean low of 4% to a mean high of 41%. The 3 highest pollen-germinating BC2 seedlings also had the highest seed sets, but siblings showed a wide range in pollen-germinating ability. The best pollen germination for a seedling was 8% in the BC1 and 41% in the BC2. Pollen fertility in the BC2 is discussed in relation to using interspecific hybridization in an Impatiens breeding program. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
A mungbean (V. radiata) line (BC3F3 generation) which is resistant to two species of bruchid beetles (Callosobruchus chinensis and C. maculatus) was successfully developed in Thailand using a wild mungbean variety (V. radiata var. sublobata). One accession (TC1966) of wild mungbean was found to be completely resistant to C. chinensis and C. maculatus occurring at Chainat Field Crops Research Center in Thailand. The resistance was controlled by a single dominant gene (R). A breeding program to develop a bruchid-resistant mungbean cultivar with good agronomic characters under the environmental conditions of Thailand was initiated in 1987.‘Chainat 60’ (‘CN60’), a recommended mungbean cultivar in Thailand, was crossed with TC1966 to incorporate the resistance gene. Agronomic characters of the hybrids were improved by recurrent backcrossing using ‘CN60’ as a pollen parent. Seed yield per plant, days to flowering, and seed size of the bruchid-resistant BC3F2 population reached the level of ‘CN60’ after three consecutive backcrossings. Bruchid-resistant line (BC3F3, R/R) was selected from individual BC3F2 plants.  相似文献   

13.
J. E. Zalapa    J. E. Staub    J. D. McCreight   《Plant Breeding》2006,125(5):482-487
Unique architectural phenotypes have the potential for increasing yield in commercial melon (Cucumis melo L.). Therefore, a generation means analysis was conducted to investigate the inheritance of architectural traits (days to anthesis, primary branch number, fruit number and weight, and average weight per fruit). Progeny (F1, F2, BC1P1 and BC1P2) from a cross between US Department of Agriculture (USDA) line, USDA 846‐1 (P1) and ‘TopMark’ (P2) were evaluated at Arlington (AR) and Hancock (HCK), Wisconsin in 2001. Significant (P ≤ 0.05) environment effects and genotype × environment interactions (G × E) analyses necessitated analysis by location. Significant differences (P ≤ 0.05) among parents and generations were observed for all traits, and the two parental lines differed significantly for primary branch number, fruit number and average weight per fruit. Additive gene effects were most important in governing primary branch number and fruit number per plant, while dominance and epistatic genetic effects mainly controlled days to anthesis, fruit weight per plant and average weight per fruit. Narrow‐sense heritabilities were 0.62 (AR) for days to anthesis, 0.71 (AR) and 0.76 (HCK) for primary branch number, 0.68 (AR) and 0.70 (HCK) for fruit weight per plant, 0.33 (AR) and 0.45 (HCK) for fruit weight per plant, and 0.06 (AR) and 0.79 (HCK) for average weight per fruit. Estimations of the least number of effective factors for primary branch number were relatively consistent at both AR (approx. 4) and HCK (approx. 2). Results suggest that introgression of yield‐related genes from highly branched melon types (e.g. USDA 846‐1) into US Western Shipping germplasm may aid in the development of high‐yielding cultivars with concentrated fruit set suitable for machine and/or hand‐harvesting operations.  相似文献   

14.
Inheritance of Karnal bunt-free trait in bread wheat   总被引:1,自引:0,他引:1  
A Karnal bunt (KB)‐free wheat stock (‘KBRL22’) obtained from a cross of two resistant lines (‘HD29’ and ‘W485’) was used as a donor to introgress the KB‐free trait into ‘PBW343’(an ‘Attila’ sib), the most widely grown wheat cultivar in India. The number of KB‐free and KB‐affected plants in BC 1, BC2, BC3 and BC4 as well the F2 was recorded after artificial inoculations. The segregation pattern in these generations clearly indicated two independently segregating, dominant genes which jointly confer the KB‐free attribute. The importance of the KB‐free line generated in this experiment is discussed.  相似文献   

15.
C. G. Liu    N. Hou    L. K. Liu    J. C. Liu    X. S. Kang    A. M. Zhang 《Plant Breeding》2006,125(5):437-440
A new cytoplasmic male‐sterile (CMS) system for hybrid wheat breeding, YA‐type CMS line with the cytoplasmic mutant from the common wheat variety ‘CA8057’, was developed by the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. The pollen sterility of YA‐type CMS line was easily maintained but difficult to restore. Some sterile lines with desirable agronomic performance, such as msYA‐‘CA8057’ (BC17), msYA‐‘Yuandong 6’ (BC9), msYA‐‘Jin 411’ (BC9), msYA‐‘WL1’ (BC10), msYA‐‘Yanshi 9’ (BC10), msYA‐‘BPm16’ (BC9), msYA‐‘Jindong 8’ (BC9) and msYA‐‘Jinmai 33’ (BC9), were bred and a restorer line GR1 was screened with 26 new restorer lines being developed by transferring restorer genes from GR1. It was found that abnormal phenomena occurred at the uninucleate‐pollen stage and the abortive pollen was poor in starch content and other components. The variance analysis of agronomic traits in eight sterile lines indicated that there was no general negative effect of cytoplasm. The genetic analysis for fertility restoration showed that two pairs of independent major genes (designated YARf1YARf1YArf2YArf2) and some minor genes could be involved in the fertility restoration in restorer line GR1, and YARf1 was epistatic over YARf2 for the genetic effect of fertility restoration. As a new CMS system, the YA‐type CMS line was of potential value for hybrid wheat breeding and should be further studied.  相似文献   

16.
Heterosis, or hybrid vigour, has been used to improve seed yield in several important crops for decades and it has potential applications in soybean. The discovery of over‐dominant quantitative trait loci (QTL) underlying yield‐related traits, such as seed weight, will facilitate hybrid soybean breeding via marker‐assisted selection. In this study, F2 and F2 : 3 populations derived from the crosses of ‘Jidou 12’ (Glycine max) × ‘ZYD2738’ (Glycine soja) and ‘Jidou 9’ (G. max) × ‘ZYD2738’ were used to identify over‐dominant QTL associated with seed weight. A total of seven QTL were identified. Among them, qSWT_13_1, mapped on chromosome 13 and linked with Satt114, showed an over‐dominant effect in two populations for two successive generations. This over‐dominant effect was further examined by six subpopulations derived from ‘Jidou12’ × ‘ZYD2738’. The seed weight for heterozygous individuals was 1.1‐ to 1.6‐fold higher than that of homozygous individuals among the six validation populations examined in different locations and years. Therefore, qSWT_13_1 may be a useful locus to improve the yield of hybrid soybean and to understand the molecular mechanism of heterosis in soybean.  相似文献   

17.
Genetic basis of seedling-resistance to leaf rust in bread wheat 'Thatcher'   总被引:1,自引:0,他引:1  
A. N. Mishra    K. Kaushal    G. S. Shirsekar    S. R. Yadav    R. N. Brahma    H. N. Pandey 《Plant Breeding》2005,124(5):514-516
The bread wheat cultivar ‘Thatcher’ is documented to carry the gene Lr22b for adult‐plant resistance to leaf rust. Seedling‐resistance to leaf rust caused by Puccinia triticina in the bread wheat cultivar ‘Thatcher’, the background parent of the near‐isogenic lines for leaf rust resistance genes in wheat, is rare and no published information could be found on its genetic basis. The F2 and F3 analysis of the cross ‘Agra Local’ (susceptible) × ‘Thatcher’ showed that an apparently incompletely dominant gene conditioned seedling‐resistance in ‘Thatcher’ to the three ‘Thatcher’‐avirulent Indian leaf rust pathotypes – 0R8, 0R8‐1 and 0R9. Test of allelism revealed that this gene (temporarily designated LrKr1) was derived from ‘Kanred’, one of the parents of ‘Thatcher’. Absence of any susceptible F2 segregants in a ‘Thatcher’ × ‘Marquis’ cross confirmed that an additional gene (temporarily designated LrMq1) derived from ‘Marquis’, another parent of ‘Thatcher’, was effective against pathotype 0R9 alone. These two genes as well as a second gene in ‘Kanred’ (temporarily designated LrKr2), which was effective against all the three pathotypes, but has not been inherited by ‘Thatcher’, seem to be novel, undocumented leaf rust resistance genes.  相似文献   

18.
Using the advanced backcross quantitative trait loci (AB‐QTL) strategy, we successfully transferred and mapped valuable allelic variants from the high β‐glucan (BG) accession IAH611 (PI 502955), into the genome of cultivar ‘Iltis’. By backcrossing one BC1F1 plant to ‘Iltis’, we developed two BC2F2‐6 populations A and B, comprising 98 and 72 F2‐individuals, respectively. Genotyping of BC2F2 individuals with predominantly AFLP markers resulted in 12 linkage groups with a map size of 455.4 cM for Population A and 11 linkage groups with a map size of 313.5 cM for Population B. Both populations were grown at three sites in Germany over a three‐year period. Individuals were then phenotyped for 13 traits including grain yield (YD) and β‐glucan content (BG). QTL analysis via stepwise regression detected a total of 33 QTLs, most of which were clustered in three linkage groups. Two dense linkage groups A1 and B13 were found to be putatively homologous to groups KO_6 and KO_11 of the ‘Kanota’/‘Ogle’ map, respectively.  相似文献   

19.
S. Chen    C. G. Xu    X. H. Lin  Q. Zhang 《Plant Breeding》2001,120(2):133-137
Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (X00), is one of the most devastating diseases of rice world‐wide; it is also a serious problem of hybrid rice production in China. In this study, a molecular marker‐assisted introgression of Xa21, a gene highly resistant to a broad spectrum of Xoo strains, from ‘IRBB21’ was performed to improve the BB resistance of‘6078′, a new restorer line with high yielding potential. The entire process took one generation of crossing followed by three generations of backcrossing and one generation of selfing. The presence of Xa21 in each generation was determined by both polymerase chain reaction (PCR) and pathogen inoculation. Recombinations between Xa21 and flanking markers were identified by PCR analysis. Background selection was conducted in BC1F1 and BC2F1 using amplified fragment length polymorphism (AFLP) markers detecting a total of 129 polymorphic bands between‘6078’ and ‘IRBB21′. The individual selected in BC3F2, or‘6078′(Xa21), carried a fragment of less than 3.8 cM from the donor line in the Xa21 region on chromosome 11, and about 98.8% of the genetic background from the recurrent parent. The results showed that‘6078′(Xa21) had the same level and spectrum of BB resistance as the donor parent ‘IRBB21′, while maintaining the agronomic performance and combining ability of the original 6078. A significant increase in BB resistance was also achieved in the hybrid using 6078(Xa21) as the restorer line.  相似文献   

20.
Gene effects were analyzed using mean spike length of 12 populations, viz., both parents, F1, F2, first back cross generation, BC1 and BC2, second backcross generations, BC11,BC12, BC21 and BC22 along with BC1 self and BC2 self derived by selfing BC1 and BC2populations of three crosses involving six diverse cultivars of Triticum durumto determine the nature of gene actions governing spike length through generation mean analysis under normal and late sown environments. The six-parameter model was adequate in most of the cases to explain genetic variation among the generation means under both the sowing environments. Additive (d) gene effect was significant in all the cases, whereas dominance (h) gene effect was not so frequently observed significant. Epistatic effects, particularly digenic types were predominant over additive and dominance effects in most of the cases under both normal and late sown environments except in the cross Cocorit 71 × A-9-30-1 (normal sown).Additive × dominance × dominance (y), trigenic interaction played significant role in controlling the inheritance of this trait in the cross HI 8062 × JNK-4W-128under late sown condition. Duplicate epistasis was observed in the cross HI 8062× JNK-4W-128 (normal sown). Non-fixable gene effects were of higher magnitude than fixable gene effects in almost all cases, confirmed the major role of non-additive gene effects to control the inheritance of spike length in durum wheat. Significant heterosis over better parent was not observed. Similarly, inbreeding depression was not commonly observed. Favourable and suitable environment must be considered before finalizing breeding programme for its simple inheritance to get desirable improvement for high grain yield. Hybridization systems, such as biparental mating and / or diallel selective mating, which exploit both additive and non-additive gene effects, simultaneously, could be useful in the improvement of spike length in durum wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号