首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 275 毫秒
1.
为了评价新烟碱类杀虫剂吡虫啉和噻虫嗪对苜蓿盲蝽的防治效果及安全性,采用田间喷雾法测定了20%吡虫啉可溶液剂(SL)和30%噻虫嗪悬浮剂(SC)对苜蓿盲蝽的防治效果,使用超高效液相色谱-串联质谱法(UPLC-MS/MS)测定了施药1、2、3次后(间隔7 d),药剂在苜蓿中的残留情况。结果表明,当吡虫啉和噻虫嗪在施药剂量分别为25.02 g/hm2和18.00 g/hm2时,药后3~7 d对苜蓿盲蝽的防治效果分别为80.01%~82.01%和77.54%~83.29%。吡虫啉和噻虫嗪连续施药3次后,在苜蓿中的最终残留量分别为1.90 mg/kg和0.08 mg/kg,吡虫啉已超过我国食品安全国家标准GB 2763-2021规定的果蔬中的最大残留限量(0.5 mg/kg)。因此建议每茬苜蓿生长期,可选用吡虫啉和噻虫嗪防治苜蓿盲蝽,吡虫啉和噻虫嗪喷施次数分别不宜超过2次和3次。  相似文献   

2.
采用超高效液相色谱—串联质谱测定了吡虫啉微囊悬浮种衣剂在土壤和小麦植株组织内的剂量动态及对拔节期、灌浆期小麦蚜虫的防治效果。试验结果表明,微囊化剂型可以显著延缓吡虫啉在小麦根际土壤中的降解。种子包衣处理相同有效成分用量4 g/kg,小麦播种后175 d,微囊悬浮种衣剂处理区小麦根际土壤与小麦组织内的吡虫啉含量分别为0.80 mg/kg和0.099 mg/kg,均分别显著高于吡虫啉常规剂型处理区(0.21 mg/kg、0.035 mg/kg)。吡虫啉微囊悬浮种衣剂有效成分用量2、4 g/kg种子处理,对小麦拔节期蚜虫(药后175 d)的防效分别为92.46%、95.32%,对小麦灌浆期蚜虫(药后205 d)的防效分别为84.00%、85.07%;相同有效成分用量下,吡虫啉悬浮种衣剂处理区对小麦拔节期蚜虫的防效分别为78.01%、85.01%,对小麦灌浆期蚜虫防效分别为60.10%、65.47%;相同用量下比常规种衣剂对小麦拔节期和灌浆期蚜虫防效分别提高10%和20%。  相似文献   

3.
不同剂型吡虫啉在烟叶和土壤中的残留及消解动态   总被引:3,自引:2,他引:1  
采用高效液相色谱检测技术,于2010—2011年开展了吡虫啉可溶液剂、可湿性粉剂、微乳剂和颗粒剂4种常见剂型的不同施药剂量、不同施药次数和采收间隔期的田间试验,研究了不同剂型吡虫啉在烟叶和土壤中的残留降解规律与最终残留量。结果表明,在3个添加水平(0.01~5 mg/kg)、5次重复下,鲜烟叶、干烟叶和土壤中吡虫啉的平均回收率和相对标准偏差(RSD)分别为85.6% ~89.3%,5.0% ~5.7%;85.0% ~88.3%,3.5% ~5.0%;84.1% ~91.5%,3.4% ~8.0%;符合农药残留检测要求。吡虫啉最小检出量(LOD)为0.3 ng(S/N=3),最低检测浓度(LOQ)分别为:鲜烟叶0.01 mg/kg,干烟叶0.03 mg/kg,土壤0.01 mg/kg。由于推荐剂量不同,不同剂型农药在烟叶上的原始沉积量有较大差别,可溶液剂、可湿性粉剂、微乳剂和颗粒剂4种剂型的吡虫啉降解速率均较快,半衰期分别为5.7~6.6、3.1~3.7、5.0~5.1和10.5~11.4 d。在不同处理的干烟叶中,吡虫啉残留量有明显差异,根据国际烟草科学合作研究中心(CORESTA)的指导性残留限量为5 mg/kg,建议大田喷雾施药的3种剂型(可溶液剂、可湿性粉剂和微乳剂)安全间隔期为14 d,移栽期穴施的颗粒剂安全间隔期为70 d。  相似文献   

4.
采用HPLC DAD方法对吡虫啉在金银花及土壤中的残留动态进行研究。该方法最小检出量为0.021 2 ng,样品添加回收率为80.9%~ 84.6%,变异系数为7.74%~ 18.15%。研究结果表明:吡虫啉在金银花和土壤中的半衰期分别为1.52~ 4.65、11.07~ 19.09 d。建议金银花中吡虫啉的最大残留限量(MRL)为3.0 mg/kg;10%吡虫啉可湿性粉剂防治金银花蚜虫,用药量为30 g/hm2(有效成分),采用喷雾的施药方法,在每茬花中最多施药2次,安全施药间隔期为7 d。  相似文献   

5.
氯溴异氰尿酸在烟叶及其土壤中的残留分析及消解动态   总被引:1,自引:1,他引:0  
建立了烟叶及其土壤中氯溴异氰尿酸残留的检测方法,并测定了氯溴异氰尿酸在烟叶及其土壤中的消解动态和最终残留。样品经乙腈提取,三氯甲烷、石油醚萃取后,采用高效液相色谱(HPLC-UV)检测。结果表明:在0.01~0.5 mg/kg添加水平下,氯溴异氰尿酸在鲜烟叶、干烟叶和土壤中的平均回收率分别为82.7% ~91.6%、89.2% ~91.8%和89.2% ~94.4%,相对标准偏差(RSD)分别为1.1% ~3.9%、2.6% ~5.5%和1.5% ~4.6%,方法的检出限(LOD)均为0.003 mg/kg, 定量限(LOQ)均为0.01 mg/kg。田间消解动态结果表明,氯溴异氰尿酸在烟叶及其土壤中消解较快,半衰期分别为3.94~4.25 d和2.83~3.41d,施药后14d,其在烟叶和土壤中的消解率均达90%以上。氯溴异氰尿酸可湿性粉剂按有效成分600 g/hm2(推荐高剂量)和900 g/hm2(1.5倍推荐高剂量)于烟草现蕾期对水喷雾施药3~4次,距末次施药后间隔21d采样,烟叶中氯溴异氰尿酸的残留量为1.47~3.52 mg/kg,土壤中的残留量为未检出~0.43 mg/kg。  相似文献   

6.
建立了分析菜薹、芥蓝和青花菜中吡虫啉残留量的方法。样品经乙腈震荡提取,盐析后取乙腈相浓缩,PSA和GCB分散固相萃取净化后,高效液相色谱-串联质谱法检测。吡虫啉在3种蔬菜中的平均回收率分别为82. 2%~99. 7%、92. 9%~108. 3%和80. 3%~100. 5%,相对标准偏差分别为2. 5%~6. 0%、0. 6%~3. 1%和1. 9%~2. 8%,定量限均为0. 02mg/kg。在黑龙江省、江苏省和湖南省进行田间试验,按照20%吡虫啉可溶液剂的推荐施药方法施药,末次施药5、7、10d后,菜薹中吡虫啉的残留量为0. 02~0. 080mg/kg,芥蓝中吡虫啉的残留量为0. 02~0. 11mg/kg,青花菜中吡虫啉的残留量为0. 02~0. 33mg/kg。经长期膳食摄入风险评估,我国普通人群吡虫啉的日摄入风险概率最大为11. 7%,建议制定吡虫啉在菜薹、芥蓝和青花菜中的最大残留限量分别为0. 5mg/kg、1. 0mg/kg和1. 0mg/kg。  相似文献   

7.
利用气相色谱外标法定量分析检测3%啶虫脒乳油在小麦和麦田土壤中的消解动态以及残留量,为制定啶虫脒在小麦上的合理使用提供科学依据。检测结果表明,啶虫脒在小麦植株和土壤中的半衰期分别为5.3~5.8d和7.1~7.8d。啶虫脒在距离最后施药14d采样时麦秸中的残留量为0.030 5~0.182 2mg/kg,土壤中残留量为0.009 1~0.026 1 mg/kg,麦粒中残留量0.002 7~0.072 5mg/kg。  相似文献   

8.
烯酰吗啉10%水乳剂在葡萄和土壤上的残留及消解动态研究   总被引:2,自引:0,他引:2  
进行了烯酰吗啉10%水乳剂在葡萄和土壤中残留消解动态和最终残留量的研究。结果表明,以375mg/L剂量施药4次,距离最后1次施药后21d,烯酰吗啉最终残留量在葡萄中均<0.5mg/kg,在土壤中均<0.7mg/kg。表明烯酰吗啉在葡萄和土壤中消解较快,其残留消解动态曲线符合化学反应一级动力学方程,半衰期:在葡萄上为9.3~14.8d,在土壤中为11.2~15.8d。  相似文献   

9.
戊唑醇在葡萄和土壤中的残留和消解动态   总被引:1,自引:0,他引:1  
建立了葡萄中戊唑醇残留的气相色谱测定方法,并研究了其在葡萄和土壤中的消解动态。土壤用乙腈提取,无需净化,葡萄样品用甲醇提取,二氯甲烷液液分配净化后用气相色谱-氮磷检测器(GC-NPD)测定。结果表明:在 0.01、0.1、1 mg/kg 3个添加水平下,戊唑醇的平均回收率为85.0%~98.8%,相对标准偏差(RSD)为2.9%~10.4%;最小检出量为1×10-11g,最低检测浓度为0.01 mg/kg。采用250 g/L戊唑醇水乳剂按有效成分187.5 mg/L剂量(推荐剂量的1.5倍)施药,戊唑醇在葡萄中的半衰期为9.8~12.2 d,在土壤中的半衰期为8.2~17.3 d,药后28、35 d葡萄中的最终残留量≤0.81 mg/kg,低于国际食品法典委员会(CAC)和中国规定的最大残留限量2.0 mg/kg。建议在葡萄上使用250 g/L戊唑醇水乳剂时,施药剂量最高为有效成分187.5 mg/L,施药2~3次,采收间隔期为28 d。  相似文献   

10.
吡唑醚菌酯在杨梅和土壤中的残留及消解动态   总被引:1,自引:0,他引:1  
为明确吡唑醚菌酯在杨梅和土壤中的残留消解规律和最终残留量,于2017年在浙江、重庆、湖南和云南4地进行了吡唑醚菌酯在杨梅及土壤中的田间残留及消解动态试验。建立了超高效液相色谱-串联质谱检测吡唑醚菌酯在杨梅和土壤中残留的分析方法。样品经乙腈水溶液提取,N-丙基乙二胺 (PSA) 和C18净化,利用超高效液相色谱-串联质谱仪 (UPLC-MS/MS) 进行检测。结果表明:在0.0005~0.5 mg/L范围内,吡唑醚菌酯的质量浓度与其峰面积间呈良好的线性关系,相关系数均大于0.99。在0.01、0.5和5.0 mg/kg添加水平下,吡唑醚菌酯在杨梅中的回收率为92%~97%,相对标准偏差 (RSD) 为1.0%~2.7%;在土壤中的回收率为86%~96%,RSD为1.5%~4.1%。吡唑醚菌酯在杨梅和土壤中的定量限 (LOQ) 均为0.01 mg/kg。田间试验结果表明:吡唑醚菌酯在杨梅和土壤中的消解动态均符合一级反应动力学方程,在杨梅中的半衰期为6.6~11.8 d,在土壤中的半衰期为5.0~11.1 d。采用60%唑醚 ? 代森联水分散粒剂分别按有效成分800 mg/kg和1200 mg/kg施药3、4 次,分别于距离最后一次施药21、25和28 d采样检测发现,吡唑醚菌酯在杨梅中的最高残留量为1.4 mg/kg,均低于中国规定的其在杨梅上的最大残留限量(3.0 mg/kg)。建议采用60%唑醚 ? 代森联水分散粒剂有效成分最高使用剂量为800 mg/kg,施药间隔期7 d,最多施药3 次,采收安全间隔期为21 d。  相似文献   

11.
草莓中吡虫啉和氟硅唑残留的膳食暴露风险   总被引:2,自引:1,他引:1  
为明确吡虫啉和氟硅唑在草莓上施用后可能产生的膳食暴露风险,进行了规范的田间残留试验及对不同人群的膳食风险评估。结果表明:保护地栽培条件下,吡虫啉、氟硅唑在草莓上的消解速率符合一级动力学方程,半衰期分别为6.3 d和9.9~11.5 d。10%吡虫啉可湿性粉剂(WP)分别按有效成分37.5和56.25 g/hm2剂量于草莓果实为成熟个体一半大小时开始施药,共施2~3次,每次间隔7 d,于末次施药后3、5、7、10 d时分别采样测定,草莓中吡虫啉的残留量在0.022~0.16 mg/kg之间;400 g/L的氟硅唑乳油(EC)分别按有效成分45和67.5 g/hm2剂量于草莓果实为成熟个体一半大小时开始施药,共施2~3次,每次间隔7 d,于末次施药后3、5、7、10 d时分别采样测定,氟硅唑在草莓中的残留量为0.079~0.30 mg/kg。基于此残留试验数据、各类食物的日平均膳食摄入量及每日允许摄入量(ADI),计算得到中国各类人群中吡虫啉和氟硅唑暴露的风险商(RQ)。结果表明:草莓中吡虫啉和氟硅唑的急性风险商(ARQ)分别为其急性参考剂量(ARfD)的0.18%~1.0%和10%~37.7%,不存在不可接受的急性膳食暴露风险;草莓中吡虫啉和氟硅唑的慢性风险商(CRQ)分别为其ADI值的18.6%~85.3%和68.3%~316.4%,其中氟硅唑对2~4岁幼童的暴露风险超过100%,存在明显风险,但草莓中的氟硅唑对其全膳食暴露风险的贡献率不超过3.2%,并非其主要风险源;两种农药对其他暴露人群均不存在明显膳食风险。中国尚未制定草莓中吡虫啉和氟硅唑的最大残留限量(MRL)值,本研究推荐的吡虫啉和氟硅唑的MRL值对消费者长期慢性暴露风险的保护水平(CPLc)分别为18~109倍和2~13倍,短期急性暴露风险的保护水平(CPLa)分别为121~725倍及6~36倍,对消费者的保护水平均较高。建议:草莓中吡虫啉和氟硅唑的MRL值均可定为0.5 mg/kg,安全间隔期可分别为3 d和5 d;但对于2~4岁幼童,应充分关注氟硅唑对其的慢性膳食暴露风险。  相似文献   

12.
13.
6种农药对瓜蚜的毒力测定及田间药效   总被引:1,自引:0,他引:1  
为了筛选防治西瓜瓜蚜的有效药剂,用6种药剂进行了室内毒力测定和田间药效试验。结果表明,1.8%阿维菌素EC对瓜蚜的毒力最高,60g/L乙基多杀菌素SC毒力最低,48hLC50分别为0.38mg/L和2 225.63mg/L。6种药剂毒力大小依次为阿维菌素溴氰虫酰胺氟啶虫胺腈啶虫脒吡虫啉乙基多杀菌素。田间试验结果表明,1.8%阿维菌素EC 3 000倍、10%溴氰虫酰胺OD 2 000倍、22%氟啶虫胺腈SC 4 000倍对瓜蚜速效性及持效性均较好,3~14d防效均达到90%以上,防效差异不显著;20%啶虫脒WP 3 000倍和10%吡虫啉WP 3 000倍速效性及持效性均较差,1d防效分别为31.31%和6.66%,14d防效分别为57.39%和47.80%;60g/L乙基多杀菌素SC 1 000倍防效最差,药后14d的最高防效仅为34.70%。推荐田间轮换使用阿维菌素、溴氰虫酰胺、氟啶虫胺腈防治瓜蚜。  相似文献   

14.
西瓜花叶病毒2号(WMV-2)对棉蚜生物学特性的影响   总被引:1,自引:0,他引:1  
通过对棉蚜寄生选择、显微测量、解剖法及室内培养,研究了西瓜花叶病毒2号对棉蚜寄生甜瓜的趋向性、体长、胚胎数量、繁殖力等的影响。结果表明,棉蚜嗜好感病的甜瓜;病株上棉蚜胚胎数目比健株多2~3个;病株上棉蚜的体长大于健康株;用Logistic曲线拟合,病株上棉蚜最大生物容纳量和瞬时增加速率大于健株;在寄主甜瓜接毒2周内,病株上棉蚜个体繁殖力大于健株,但接毒2周后,病株上棉蚜的繁殖力小于健株;病毒WMV-2对棉蚜种群结构也有影响。  相似文献   

15.
树干注药后吡虫啉在核桃组织中的分布动态研究   总被引:3,自引:1,他引:3  
采用高效液相色谱(HPLC)测定了吡虫啉经树干注药后在核桃树体中的分布动态。结果表明,树干注药后吡虫啉在核桃树体内具有较好的传导、分布性能,其在不同组织中的含量差异较大,含量由大到小顺序为:叶片>果皮>果仁。吡虫啉在核桃树体内残留期较长,注药后60 d时,药剂在核桃叶片、果皮和果仁中的含量分别为0.256、0.178 和0.046 mg/kg;注药后80 d时,吡虫啉在叶片、果皮和果仁中的含量均小于0.05 mg/kg。根据吡虫啉在核桃果仁中的残留量变化动态及国外相关最大允许残留限量标准,建议在利用吡虫啉树干注药防治核桃害虫时,注药时间距核桃采收期应大于60 d。  相似文献   

16.
为明确氟唑菌酰胺和吡唑醚菌酯在芒果上的残留行为,于2012和2013年在中国广东省和广西自治区进行了氟唑菌酰胺和吡唑醚菌酯在芒果上的田间残留及消解动态试验,建立了芒果中氟唑菌酰胺及吡唑醚菌酯残留量的高效液相色谱检测方法。样品用丙酮提取,乙酸乙酯液-液分配萃取,弗罗里硅土柱层析净化,高效液相色谱-二级管阵列紫外检测器检测,外标法定量。结果表明:氟唑菌酰胺和吡唑醚菌酯在芒果上的消解半衰期分别为7.2~9.1和8.0~11.0 d;采用42.4%吡唑醚菌酯·氟唑菌酯胺悬浮剂(SC),分别按有效成分200和300 mg/L的剂量于幼果期开始施药,施药3~4次,施药间隔期为10~15 d,距最后一次施药后7和14 d采样测定,芒果中氟唑菌酰胺和吡唑醚菌酯的残留量分别为0.004~0.053和0.004~0.072 mg/kg。其中,吡唑醚菌酯残留量符合中国制定的最大残留限量(MRL)标准(0.05 mg/kg),根据试验结果,建议中国可将氟唑菌酰胺在芒果上的MRL值暂定为0.2 mg/kg。  相似文献   

17.
 Fusarium oxysporum is one of the most important phytopathogens and cause Fusarium wilt disease in cucumber, watermelon and melon, etc.In this study, a pair of species-specific primers Fc-1 and Fc-2 was synthesized based on differences in internal transcribed spacer sequences of Fusarium genus.With the primers, a specific 315 bp PCR product was amplified from five F.oxysporum isolates isolated from cucumber, watermelon and melon, infected cucumber and watermelon tissues, while no product was obtained from other fourteen fungi, healthy cucumber and watermelon tissues.The detection sensitivity is 100 fg for genomic DNA of F.oxysporum and 1 000 spores/g soil for the soil pathogens.In contrast, the nested PCR with two pairs of primers(ITS1/ITS4 and Fc-1/Fc-2) increased the sensitivity by 100-fold.In addition, one-step PCR could also detect F.oxysporum in symptomless cucumber root of 7 dpi(days post inoculation) and in infected cucumber and watermelon tissues at the early stage of disease development.Therefore, the developed PCR-based method enabled rapid, sensitive and reliable detection of F.oxysporum.It also provides the detection method for early monitoring and diagnosis of the pathogen as well as the plant disease management guidance.  相似文献   

18.
The metabolism of the chloronicotinyl insecticide imidacloprid is strongly influenced by the method of application. Whilst in foliar application most of the residues on the leaf surface display unchanged parent compound, most of the imidacloprid administered to plants by soil application or seed treatment is metabolized more or less completely, depending on plant species and time. The present study revealed that certain metabolites of imidacloprid which have been described in crop plants are highly active against aphid pests in different types of bioassays. Some of these metabolites showed a high oral activity against the green peach aphid (Myzus persicae), and the cotton aphid (Aphis gossypii). The aphicidal potency of the metabolites investigated was weaker in aphid dip tests than in oral ingestion bioassays using artificial double membranes. The most active plant metabolite was the imidazoline derivative of imidacloprid. The LC50 values of this metabolite for M. persicae and A. gossypii in oral ingestion bioassays were in the lower ppb-range, i.e. 0·0044 and 0·0068 mg litre-1, respectively. Most of the other reported metabolites showed much weaker activity. Compared to imidacloprid, the imidazoline derivative showed superior affinity to housefly (Musca domestica) head nicotinic acetylcholine receptors, while all other metabolites were less specific than imidacloprid. It seems possible that, after seed treatment or soil application, a few of the biologically active metabolites arising are acting in concert with remaining levels of the parent compound imidacloprid, thus providing good control and long-lasting residual activity against plant-sucking pests in certain crops. © 1998 SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号