首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
除草剂草甘膦对土壤过氧化氢酶活性的影响   总被引:4,自引:0,他引:4  
研究了草甘膦对土壤过氧化氢酶活性的影响。结果表明:草甘瞵对土壤中过氧化氢酶的活性有明显的影响,随着浓度的升高,对过氧化氢酶活性抑制作用有所增强,草甘瞵对离体过氧化氢酶有一定的抑制作用。高浓度时对大棚土壤过氧化氢酶活性的抑制作用明显高于对农田土壤的抑制作用。实验结果表明:草甘瞵在农业生产实际用量下属于低毒或无实际危害的农药。  相似文献   

2.
除草剂草甘膦在几种土壤和矿物上的吸附研究   总被引:5,自引:0,他引:5  
通过批平衡实验考察了草甘膦在几种性质不同土壤和矿物上的吸附行为。研究发现土壤对草甘膦有较强的吸附能力,草甘膦在土壤上吸附量的大小与土壤理化性质密切相关。草甘膦在土壤和矿物上的吸附符合Freundlich吸附方程,其在土壤上的吸附常数K与土壤粘粒含量呈正相关,并随土壤氧化铁和氧化铝含量增加而增加,而与土壤的pH呈显著负相关。草甘膦在高岭石上的吸附量要比在蒙脱石上大,而草甘膦在金属离子饱和的蒙脱石和高岭石上的吸附研究结果表明,草甘膦在钠、钙、铁离子饱和的矿物上的吸附能力依次为Fe-蒙脱石〉Ca-蒙脱石〉Na-蒙脱石和Fe-高岭石〉Ca-高岭石〉Na-高岭石。  相似文献   

3.
除草剂草甘膦的性质及环境行为综述   总被引:31,自引:0,他引:31  
草甘膦是一种广谱、非选择性芽后除草剂,它被越来越广泛地应用于农业。本文总结了草甘膦的一些基本性质及其在环境中的行为和降解机理,概述了国内外的研究现状,及影响其在土壤环境去向的一些因素,如土壤性质、磷酸盐、重金属和DOC的存在等,为进一步研究提供一些建设性的参考。  相似文献   

4.
Herbicides released through agricultural activities to surface waters and drinking water systems represent a risk to human and environmental health, as well as a cost to municipalities for removal. This study focuses on the viability of glyphosate tolerant cropping systems as an alternative to atrazine-based systems, and the impact of tilling historically no-till ground on the runoff pollution potential of these systems. Variable intensity field rainfall simulations were performed on 2 m long × 1 m wide plots within a field in first-year disk and harrow following no-till (CT), and within a long-term no-tilled (NT) field, both treated with atrazine and glyphosate according to label. Rainfall sequence was: 50 mm h−1 for 50 min followed by 75 mm h−1 for 15 min, 25 mm h−1 for 15 min, and 100 mm h−1 for 15 min. Runoff was collected at regular time intervals during two simulated rainfall events and analyzed for herbicide concentration, sediment content, and volume. Maximum glyphosate concentration in runoff was 233 μg L−1 for NT and 180 μg L−1 for CT (approximately 33% and 26% of the maximum contaminant limit (MCL) for glyphosate (700 μg L−1), respectively, while maximum atrazine concentrations in runoff was 303 μg L−1 for NT and 79 μg L−1 for CT (approximately 100 times and 26 times the atrazine MCL (3 μg L−1)). Atrazine concentration and loading were significantly higher in runoff from NT plots than from CT plots, whereas glyphosate concentration and loading were impacted by tillage treatment to a much lesser degree. Results suggest that glyphosate-based weed management may represent a lower drinking water risk than atrazine-based weed management, especially in NT systems.  相似文献   

5.
This study demonstrates that 31P and 1H high resolution-magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR), a recently developed NMR technique, can be applied to the in vivo analysis of metabolites from an unstarved earthworm. The endogeic earthworm Aporrectodea caliginosa was cut into lengths and then the different body parts (anterior, middle, posterior) with the gut content were analyzed. With the HR-MAS NMR, metabolites show well-resolved signals, whereas, with conventional NMR, spectra are highly dependent on the gut content. 31P HR-MAS NMR has been used to evaluate the effect of an acute exposure of the earthworm to glyphosate. Our observations support a low toxicity of the herbicide and suggest that glyphosate could be trapped in the cutaneous mucus. Earthworms could therefore play a role in horizontal dispersion and stabilization of glyphosate in the drilosphere. Phosphorylated metabolites, such as phospholombricine and lombricine, were clearly identified and their amount measured during experiments. The 1H HR-MAS NMR method offers the opportunity to measure, on the same sample and simultaneously, both the hydrosoluble metabolites and lipids. The data on lipid location and relative succinate concentration shed light on the physiological and metabolic functions of the different body parts of the earthworm.  相似文献   

6.
近年来,草甘膦及其降解产物氨甲基磷酸 (AMPA)在土壤中的持久性及其环境风险日益受到关注。然而,草甘膦与磷酸盐结构相似且带电荷,可能与磷酸盐在土壤颗粒表面产生吸附竞争,进而影响其在土壤中的环境行为及土壤 磷的生物有效性。本研究通过室内控制试验,对不同磷肥施用水平(0,50 mg.kg-1,100 mg.kg-1)及水分条件下 (20%田间持水量 (20FC),60%田间持水量 (60FC)),黄土中草甘膦农药降解动力学、土壤速效磷及土壤酶活性变化特征进行研究。结果表明:1) 不同磷肥施用及水分条件下,草甘膦农药在喷施初期降解速率较快,后期逐渐减缓;不同磷肥施用水平对草甘膦降解影响不显著,但不同水分梯度对其影响差异显著。其降解产物AMPA的含量随着草甘膦农药的降解而增加,不同磷肥施用水平处理AMPA的含量差异不显著,但不同水分条件下其峰值及变化特征差异显著,即:20FC 条件下到喷施后第14 d达到峰值,而60FC条件下在喷施后第7d 就达到峰值。通过拟合发现,草甘膦残留数量特征符合污染物一级动力学衰减模型,其半衰期分别为 69.3~77.0 d (20FC)和10.5~12.8 d (60FC)。2) 草甘膦农药喷施后,土壤中速效磷含量随草甘膦农药的降解呈现先减小后增大的变化特征,土壤水分对其影响差异显著。此外,草甘膦农药喷施后,磷酸酶活性受到明显抑制,N-乙酰胺基-β-葡萄糖苷酶、β-葡萄糖苷酶、亮氨酸酶活性波动较大。不同磷肥施用水平对以上四种土壤酶活性的影响差异不显著,但不同水分梯度对其影响较大。由此表明:黄土中磷水平对草甘膦农药降解特征的影响不显著,但土壤水分状况显著影响草甘膦农药的衰减速率及其降解产物的残留水平;同时,草甘膦农药喷施,对黄土中速效磷及磷酸酶活性的影响较大,可能对土壤P循环及植物利用产生影响。因此,后续研究还应考虑草甘膦与土壤磷组分及相关酶活性的互馈效应,特别是在干旱条件下草甘膦及其降解产物的持久性与土壤健康的关系研究,以期为黄土区草甘膦农药的安全喷施提供科学依据。  相似文献   

7.
草甘膦农药的大量喷施,使其在环境特别是土壤中的残留-累积风险日益突出,从团聚体粒径角度研究红壤不同粒径团聚体中草甘膦的降解动力学及其相互作用特征仍鲜有报道。基于此,本研究通过干筛筛分、室内控制培养、液质联用定量分析相结合等探究草甘膦降解残留,并进一步分析团聚体理化性质与草甘膦降解的关系。结果表明:1)不同粒径团聚体中,草甘膦残留量随降解时间不断减小,且粒径之间降解动力学差异不显著。降解半衰期为15.8~20.6 d,粒径最小的团聚体(0.25 mm)中草甘膦的降解半衰期最长,为20.6 d。草甘膦在土壤中的主要降解产物氨甲基磷酸(AMPA)的含量随着降解时间的增加而增加,且在第5d达到峰值,而后不断减小;不同粒径团聚体间AMPA含量差异显著(P0.05)。2)相关分析及主成分分析发现,草甘膦残留量与红壤团聚体中速效磷含量呈显著正相关(P0.05),而其降解产物AMPA含量与团聚体中酸性磷酸酶活性及N-乙酰氨基-β-葡萄糖苷酶活性呈显著正相关(P0.05)。团聚体粒径与草甘膦残留量间没有显著相关性,但与AMPA含量显著正相关(P0.05)。此外,草甘膦降解过程中,团聚体中有机质含量及β-葡萄糖苷酶、N-乙酰氨基-β-葡萄糖苷酶、酸性磷酸酶活性与团聚体粒径为显著负相关关系(P0.05)。由此表明:红壤不同粒径团聚体影响草甘膦降解速率,粒径最小的团聚体(0.25 mm)中草甘膦农药的降解速率最慢,但试验结束时,各粒径红壤团聚体中的草甘膦和AMPA含量均较高,可能会影响土壤健康及生态环境安全;此外,草甘膦降解与土壤磷素密切相关,后续研究需探讨磷亏缺或丰盈条件下,草甘膦农药的土壤环境特征,为后续农田草甘膦环境风险评估提供依据。  相似文献   

8.
Summary Herbicide combinations of paraquat, glyphosate, alachlor, linuron, fluazifopbutyl, aciflurofen, and bentazon were investigated for their impact on soil arthropod population dynamics and surface wheat straw decomposition (weight loss) within a North Carolina coastal plain agroecosystem. Herbicides were applied twice (preemergence and mid-bloom) at recommended field rates to soybeans no-till planted into wheat residue. Separate measurements were made for surface crop residue and soil-dwelling (0–3 cm depth) arthropods. Decomposition of herbicide (glyphosate) and nonherbicide-treated wheat straw residue was compared using mesh bag techniques. Decay rate constants were estimated for glyphosate and nonherbicide-treated wheat straw residue by fitting a two-component model to the data. Comparison of soil microarthropod numbers from herbicide and nonherbicide treatments showed no consistent trend, suggesting that abiotic factors such as soil temperature and moisture were probably more significant than herbicide effects in regulating soil microarthropod number and activity. Herbicides had no effect on soil macroarthropod number or activity until late in the season when macroarthropods were most abundant under weedy, no-tillage conditions. Moist soil and litter, low soil temperature, floral diversity, and high weed-seed availability probably enhanced macroarthropod numbers in nonherbicide treatments. Decomposition (ash-free weight loss) of nonherbicided, surface crop residues was more rapid than herbicide (glyphosate) treated, indicating that herbicide effects occur at the decomposer as well as producer level of agroecosystems.Paper No. 9957 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601, USA  相似文献   

9.
The aim of this study was to investigate the possible influence of surface topographical features on the spatial variability of glyphosate degradation and some microbial characteristics in sandy loam soil. Soil samples were taken from the ploughed layer across an agricultural field after seedbed preparation for grain (Grue site), and down to 1 m depth under a ridge tilled field (Målselv site), both sites having similar soil textural characteristics (sandy loam soil). Laboratory experiments were performed looking at glyphosate mineralization and soil microbial activity at the Grue site, as well as microbial biomass, activity and substrate utilization patterns at the Målselv site. Microbial biomass and activity decreased, and substrate utilization patterns changed with increasing soil depth, reflecting naturally occurring changes in quantity and quality of soil organic carbon. Further, our results show that considerable spatial heterogeneity in the degradation rate of glyphosate and general carbon utilization exists even across small areas within a single agricultural field. This horizontal variability was observed over several spatial scales, and could not be clearly explained. It evidently arose from differences in environmental factors affecting microbial activity and growth, and topographical features controlling redistribution of water and matter flow patterns were correlated to the investigated soil microbial variables.  相似文献   

10.
为探讨除草剂施用对柑橘园土壤氮转化及温室气体排放的影响,在实验室培养条件下,研究了0年(林地)、种植10年和30年的柑橘园土壤中分别添加除草剂草甘膦和丁草胺后,尿素态氮含量、硝化和反硝化作用以及温室气体排放的变化。研究结果表明,橘园土壤中尿素第1 d的水解率、氮肥硝化率、反硝化作用损失总量以及N_2O和CO_2排放量显著高于林地土壤(P0.05)。与10年橘园土壤相比,30年橘园土壤显著增加了尿素的水解速率、氮肥硝化率和CO_2排放量(P0.05),但二者的反硝化损失量没有显著差异。施用草甘膦和丁草胺都显著促进了林地土壤的尿素水解(P0.05),第1 d尿素态氮含量分别降低11.20%和12.43%;但对3种土壤氮肥的硝化率均没有明显影响。施用丁草胺显著降低了林地土壤的CO_2排放量(P0.05),对两种橘园土壤的CO_2排放没有明显影响,但明显增加了两种橘园土壤的N_2O排放总量(P0.05),分别比不施除草剂增加56.27%和85.41%;施用草甘膦对3种土壤的N_2O和CO_2排放均没有明显影响。可见,草甘膦和丁草胺的施用不会对柑橘园土壤的氮转化过程产生影响,但丁草胺显著增加了柑橘园土壤的N_2O排放。  相似文献   

11.
Glyphosate is a commonly used herbicide in grassland soils and microorganisms control its degradation. We introduce the concept of using the degradation rate as an indicator for ecosystem health. Testing this concept, we used soils with a long history of heavy metal pollution (Cu, Pb, and Zn). We hypothesized lower degradation rates in metal-polluted compared to less polluted soils. The degradation rates were measured by repeated measurements of the parent compound in spiked soil-water slurries incubated at 20 °C over 21 days. Average rates showed no differences comparing among soils. We observed a positive correlation between glyphosate degradation rates and soil metal pollution. Therefore, we concluded that the expected impact of the metals on the bacteria responsible for the herbicide degradation was not established. We discuss the potential influence on biological degradation rates of soil pH and adsorption and implications using the concept of the soil health indicator.  相似文献   

12.
Recent increases in diesel price and decreases in glyphosate [N-(phosphonomethyl) glycine] price should favor the profitability and farmer acceptance of herbicide-intensive conservation tillage systems versus fuel-intensive traditional tillage (TT) systems. Profitability results from a long-term field experiment that compared TT, minimum tillage (MT), and delayed minimum tillage (DMT) systems for winter wheat–(Triticum aestivum L.)summer fallow in eastern Washington, USA were calculated using both 1998 and 2005 input prices. Net returns for the MT and DMT systems increased by US$ 6.37 and 6.30 (rotational ha)−1, respectively, and net returns to the TT system decreased by US$ 2.36 (rotational ha)−1 when 2005 versus 1998 prices were used. Here, rotational ha equals 0.5 ha fallow and 0.5 ha wheat. Focusing on the dominant crop of soft white winter wheat (SWWW), the 2005 price hikes pushed diesel costs up for all systems, from US$ 6.81 (rotational ha)−1 for DMT to US$ 9.00 (rotational ha)−1 for TT. The cost of diesel for the conservation tillage systems, relative to the cost for TT, decreased by US$ 1.50–2.20 (rotational ha)−1. The conservation tillage systems accrue greater savings from the price reduction in glyphosate because they consume more of this herbicide. An unanticipated result was that relative cost savings from price changes in N fertilizer rivaled those from diesel and glyphosate because anhydrous NH3–N was exclusively used in the experiment for TT and aqueous NH3–N for MT and DMT. The price of anhydrous NH3–N increased from US$ 0.55 kg−1 in 1998 to 0.85 kg−1 in 2005, a 56% increase. Aqueous NH3–N only increased from $0.75 kg−1 in 1998 to 0.85 kg−1 in 2005, a 15% increase. The greater price increase for anhydrous NH3–N penalized the TT system because of its use of this fertilizer. If the same source of N fertilizer were used on all three tillage systems, this fertilizer cost effect would disappear. Nonetheless, the conservation tillage systems still retained a statistically significant profitability advantage over TT even if the same fertilizer was used throughout. The sharp price increase for diesel and the concurrent price decrease for glyphosate herbicide favored the conservation tillage systems over TT in this study. Results provide strong evidence for the superior profitability of conservation tillage winter wheat–summer fallow under current economic conditions.  相似文献   

13.
Environmental weed invasion threatens the biodiversity of native species. Unfortunately, managing these weeds may also affect biodiversity adversely. A recent example occurred when glyphosate, a herbicide used to control the highly invasive weed, bitou bush (Chrysanthemoides monilifera ssp. rotundata), accidentally drifted over a small population of an endangered shrub, Pimelea spicata. Following concerns that the affected population would not recover and, thereby, cause the local extinction of P. spicata, we conducted a series of glasshouse and field experiments to explore the impacts of glyphosate on this endangered species. Seedlings and young plants of P. spicata, in which the tap root was undeveloped, were killed by a single application of glyphosate. Older plants with a well developed tap root also died back initially, but about 50% of individuals re-sprouted. This re-growth was associated with a significant decrease in tap root diameter, implying that further disturbance, including repeated treatment with glyphosate, would kill plants by impairing their potential for recovery. Unlike some sclerophyllous native shrubs, the tolerance of P. spicata to glyphosate was limited, even when its growth was slowed artificially by limiting water availability. Winter applications of glyphosate to manage infestations of bitou bush will impact adversely on populations of P. spicata and may also affect the other rare and endangered species whose survival is threatened by this species, even though some natives are unaffected by the herbicide. Protecting native biodiversity from bitou bush will involve sustainable weed management that minimises impacts on non-target native species.  相似文献   

14.
抗草甘膦基因在转基因植物体内持续高效表达,不但增加植物代谢压力,有的甚至改变植物形态造成植物的生长发育畸形。为了减少转基因植株的代谢负担和能源浪费,从拟南芥菜(Arabidopsis thaliana)基因组中克隆了Leafy组织特异性启动子替代CaMV35S启动子,用其驱动改造后加二磷酸核酮糖羧化酶(rubisco)小亚基引导肽的5-烯醇丙酮酰-莽草酸-3-磷酸合酶(CP4EPSPS)基因,同时调控报告基因gus的编码区构建植物表达载体p3300-Leafy-gus和p3300-Leafy-CP4EPSPS,嵌合基因经农杆菌(Agrobacterium)介导转化烟草。稳定表达后经GUS组织染色分析表明,Leafy驱动的gus表达仅局限在植物茎尖和幼叶部分,转基因植株成熟的叶片、茎部和根系均未能检测到GUS活性。草甘膦试验分析表明,Leafy驱动的CP4EPSPS的转基因植株幼芽部位有草甘膦抗性。结果表明,Leafy启动子驱动CP4EPSPS表达增强植株芽端对草甘膦的抗性。  相似文献   

15.
铜和草甘膦对蚯蚓的毒性效应研究   总被引:3,自引:1,他引:2  
污染物的交互作用及其生态毒理效应已成为环境科学研究的主要方向。含铜杀菌剂与除草剂草甘膦[N-(膦酸甲基)甘氨酸]是农业生产中常见的农药,其在土壤中共存可能造成复合污染。草甘膦中含有羧基、氨基、磷酸基等配位基团对重金属阳离子和有机阳离子有很强的络合能力,草甘膦可以影响重金属的生物有效性、毒性以及重金属在生物体内的积累。本文以赤子爱胜蚓(Eisenia fetida)为例,采用室内模拟试验,单一试验设置5个铜浓度25 mg·kg-1、50 mg·kg-1、100 mg·kg-1、200 mg·kg-1和400 mg·kg-1,5个草甘膦浓度25mg·kg-1、50 mg·kg-1、100 mg·kg-1、200 mg·kg-1和500 mg·kg-1,并以去离子水做空白对照;复合试验设置2个铜浓度(低铜浓度25 mg·kg-1和高铜浓度200 mg·kg-1)分别与5个草甘膦浓度(0、25 mg·kg-1、50 mg·kg-1、100 mg·kg-1和200 mg·kg-1)复合;每个处理3次重复,试验期为35 d。研究了铜和草甘膦的单一及复合施用对蚯蚓的亚急性毒性效应。单一毒性试验结果表明,蚯蚓对低浓度铜的响应不敏感,而较高浓度铜使蚯蚓生物量的相对增长率受到显著抑制(α=0.01,r2=0.570),且未出现死亡,并且随着铜浓度的增加蚯蚓体内铜含量显著增加(α=0.01,r2=0.905)。与对照相比草甘膦的添加对蚯蚓的生长无显著影响。复合毒性试验结果表明,草甘膦和铜复合可以降低蚯蚓对铜的吸收,特别是当铜浓度较高时即200 mg·kg-1,草甘膦和铜复合可显著降低蚯蚓对铜的吸收,并且草甘膦能够减轻铜对蚯蚓生物量相对增长率的抑制,但差异并不显著。以上结果表明,铜比草甘膦的毒性大很多,铜与草甘膦复合能够减少蚯蚓对铜的吸收,缓解铜的毒性。因此本研究认为,在草甘膦和重金属共存的污染土壤中,草甘膦能够控制重金属的生物有效性和毒性。  相似文献   

16.
Upland heather moors are high priority biotopes for conservation in Britain, but are under threat from a number of sources. One such threat is a change from a vegetation dominated by dwarf shrubs, mainly Calluna vulgaris, to a grassland dominated by Molinia caerulea. Restoration of a dwarf shrub community has proved problematic with studies showing that herbicide use may be necessary to control Molinia. Previously the non-selective herbicide, glyphosate, has been recommended, but this herbicide may damage Calluna and other moorland species severely. Here, we tested a range of selective herbicides (graminicides) for use in an herbicide-based conservation strategy under field conditions. Two selective herbicides, propaquizafop and quizalofop-ethyl, gave a short-term check to Molinia and another, cycloxydim, provided a reduction for at least 1 year, but this effect disappeared after 3 years. Damage to Calluna was less than that caused by glyphosate, and the selective herbicides had little effect on other moorland species present. Our findings suggest that selective herbicides have a potential role in reducing Molinia during moorland restoration, although follow-up applications, and appropriate moorland management, will also be needed.  相似文献   

17.
Summary The effects of Spray Seed (diquat + paraquat), Roundup (glyphosate), Banvel-D (dicamba), Treflan (trifluralin), Glean (chlorsulfuron) and Dacthal (chlorthal dimethyl) at concentrations of 0–500 ppm product on the vegetative growth, vigour and pathogenicity of Gaeumannomyces graminis var. tritici (Ggt) on wheat were examined. All herbicides with the exception of dicamba and chlorsulfuron inhibited fungal growth on potato dextrose agar (PDA) at concentrations 10–500-fold of rates recommended for use in the field. The vegetative growth of the pathogen growing out of straw colonized on PDA supplemented with 100 ppm diquat + paraquat or glyphosate was reduced by 47.4% and 42.4%, respectively. When portions of these colonies were subcultured onto unamended PDA, their growth and the pathogenicity of straw pieces colonized by these subcultures were found to be unaltered. Straw colonized by Ggt on agar amended with concentrations of diquat + paraquat or at all concentrations of glyphosate produced less root disease in wheat seedlings in comparison to those colonized on unamended agar. It is proposed that the reduced pathogenicity of inocula prepared on agar amended with these two herbicides is due to poor colonization by the pathogen of straw on these media, and that a similar effect on saprophytic colonization in the field could lead to a reduction in the field inocula of the pathogen.  相似文献   

18.
Summary The application of diquat + paraquat, glyphosate and trifluralin to unsterilized field soil increased take-all caused by the fungus, Gaeumannomyces graminis var. tritici Walker by 13.0% 16.6% and 10.8% respectively, while no effect on disease was recorded in sterilized soil treated with the same herbicides. The herbicides tested had no effect on the saprophytic growth of the pathogen with the exception of glyphosate, which increased its growth in unsterilized soil. The application of diquat + paraquat and glyphosate to unsterile soil had no effect on the numbers of actinomycetes. The diquat + paraquat treatment, however, increased populations of fungi while the glyphosate decreased the numbers of bacteria. The proportion of soil fungi antagonistic to the pathogen was reduced in glyphosate-treated soil. The frequency of occurrence of Eupenicillium euglaucum (v. Beyma) Stolk & Samson (strain B), and Penicillium verruculosum Peyr. (strain B), which were strong and low level antagonists of Ggt on agar, were reduced in their occurrence in soil by 7.7% and 2.5% respectively, following glyphosate treatment. Moreover, the numbers of Aspergillus viridinutans Ducker & Thrower, which showed moderate antagonism to the pathogen, was decreased by 1.9% and 4.1% in diquat + paraquat and glyphosate treatments respectively. The proportion of antagonists rather than total numbers of fungi appears to be related to the treatment effect observed on the soil growth and pathogenicity of G. graminis var. tritici in our investigation. The increase in disease of wheat in certain herbicide-treated soils may be due to the shift in soil microbial populations away from those which are antagonistic to the pathogen.  相似文献   

19.
Fusarium head blight (FHB) is an important disease which has been causing damage to wheat and barley crops in western Canada. Because crop residues are an important source of inoculum, it is important to know the ability of Fusarium spp. to colonize and survive in different residue types, and how their populations might be affected by agronomic practices. Sampling of residue types on producers’ fields for quantification of Fusarium and other fungi was conducted in 2000–2001 in eastern Saskatchewan. Fusarium spp. were isolated from most fields, whereas their mean percentage isolation (MPI) was over 50% for cereal and pulse residues, and under 30% for oilseed residues. The most common Fusarium, F. avenaceum, had a higher MPI in pulse and flax (45–48%) than in cereal or canola (10–22%) residues. This was followed by F. equiseti, F. acuminatum, F. graminearum, F. culmorum and F. poae which were isolated from all, or most, residue types. Factors affecting Fusarium abundance in residues included the current crop, cropping history, and tillage system. In cereal residues, the MPI of F. avenaceum was higher when the current crop was another cereal (24%) versus a noncereal (4–8%). When the current crop was another cereal, the lowest MPI of F. avenaceum and F. culmorum occurred when the field had been in summerfallow (SF) two years previous (F. avenaceum: 17% for SF, 28% for a crop; F. culmorum: 1% for SF, 4% for a crop); in contrast, F. equiseti and Cochliobolus sativus were most common in residues of cereal crops preceded by SF (F. equiseti: 16% for SF, 10% for a crop; C. sativus: 22% for SF, 13% for a crop). The MPI of F. graminearum was higher when the crop two years previous was an oilseed (7%) versus a cereal (4%). In regards to tillage effects, when the current crop was a cereal, the MPI of F. avenaceum was higher under minimum (MT) and zero tillage (ZT) (22–37%) than conventional tillage (CT) (15%), that of F. graminearum was lowest under ZT (3% for ZT, 7–11% for CT-MT), whereas that of C. sativus was highest under CT (27% for CT, 6–11% for MT-ZT). Under ZT, previous glyphosate applications were correlated positively with F. avenaceum and negatively with F. equiseti and C. sativus. These observations generally agreed with results from previous FHB and root rot studies of wheat and barley in the same region. Percentage isolation of F. avenaceum from noncereal and of F. graminearum from cereal residues were positively correlated with FHB severity and percentage Fusarium-damaged kernels of barley and wheat caused by the same fungi.  相似文献   

20.
低氮和干旱胁迫对富士和秦冠生长及氮素利用的影响   总被引:2,自引:2,他引:0  
【目的】以富士(Fuji)、 秦冠(Qinguan)嫁接在平邑甜茶(Malus hupehensis Rehd.)上的当年生盆栽苗为试验材料,采用砂培方法,研究了缺氮胁迫和干旱对富士和秦冠生长情况、 光合参数、 植株各部位氮磷钾含量及氮素利用效率的影响,分析比较了低氮干旱条件下富士和秦冠生长及氮素利用的差异,以期为果树生产高效肥水利用提供理论指导。【方法】试验共设四个处理: 正常氮正常水(ZZ)、 低氮正常水(DZ)、 正常氮干旱(ZG)、 低氮干旱(DG)。氮素和水分均设置两个水平,分别为正常氮(6 mmol/L NO-3-N)、 低氮(0.3 mmol/LNO-3-N)、 正常供水(保持盆中砂子相对含水量为饱和含水量的80%~85%)、 干旱处理(保持盆中砂子相对含水量为饱和含水量的60%~65%)。【结果】富士和秦冠的生物量(茎和叶)、 株高茎粗等生长指标以及光合速率、 气孔导度、 蒸腾速率均为正常氮正常水(ZZ)>低氮正常水(DZ)>正常氮干旱(ZG)>低氮干旱(DG),并且相对应处理下秦冠的以上指标均高于富士;正常供水下,缺氮处理使富士、 秦冠的根冠比比正常氮处理均有所增加,富士提高了2.05%,秦冠提高了22.40%。富士和秦冠的氮、 磷、 钾含量均表现出正常氮正常水(ZZ)>低氮正常水(DZ)>正常氮干旱(ZG)>低氮干旱(DG); 氮、 钾元素含量在植株各部位的分布顺序依次是叶>根>茎,磷元素则是根>叶>茎;光合氮素利用效率(PNUE)和氮素利用效率表现为秦冠处理之间差异极显著,富士处理之间差异不显著;秦冠的PNUE和NUE明显高于富士,在低氮正常水(DZ)处理下,秦冠氮肥利用率比富士高42.07%,在低氮干旱(DG)处理下高64.14%;低氮胁迫下富士和秦冠的NUE显著提高,并且秦冠提高的幅度高于富士。【结论】施用氮肥能够显著提高富士与秦冠的干物质量,同等水肥条件下,秦冠生长优于富士;水分亏缺会减少叶片对氮的吸收,干旱条件下适度增施氮肥,可提高果树的抗旱能力;低氮干旱胁迫下秦冠的生长指标、 光合指标及氮素利用效率指标均优于富士,表现出较强的抗低氮干旱胁迫的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号