首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
小麦雄性不育主要是通过花粉的败育表现,其不育材料对小麦杂种优势的利用研究具有重要意义和价值,国外研究表明,某些特定普通小麦品种间杂交F1表现的花粉部分不育现象,受控于核基因组花粉致死基因Ki,为了筛选小麦花粉致死基因Ki的连锁标记,利用现代分子生物学技术通过定位该基因,克隆出花粉致死基因连锁标记片段,为小麦雄性不育种质材料的转育提供有效的选择标记。对小麦花粉致死基因Ki进行了分子标记定位,以‘中国春’和澳大利亚春小麦品种的BC1F1代作为定位群体,利用分离群体分组分析法(BSA)对位于小麦6B染色体上85对SSR引物进行多态性筛选,具有多态性的引物再通过BC1F1定位群体进行验证,从中筛选出与目的基因连锁的2个SSR标记Xgwm626和Xgpw4138。运用Mapmaker 3.0软件进行连锁分析。结果表明,Xgwm626和Xgpw4138与Ki基因的遗传距离分别为9.2 cM和6.9 cM,且2个SSR标记位于目的基因两侧,并将Ki定位于小麦6BL染色体上。研究结果为Ki基因的分子标记辅助选择和进一步精细定位奠定了基础。  相似文献   

2.
一个水稻雄性不育突变体的遗传分析和基因定位   总被引:2,自引:0,他引:2  
ms-np是一个源于自然突变的水稻雄性不育突变体,明显较正常植株矮小,叶色浓绿。小花解剖观察发现,突变体小花花丝细长,花药干瘪,呈白色透明状,但雄性器官的数量和雌性器官正常。碘染证实,突变体的花药壁内没有花粉粒着色,是一个典型的无花粉型雄性不育材料。5个F2和2个BC1F1群体的遗传分析显示,该突变性状受1对隐性基因控制。对组合ms-np/M63衍生F2不育单株的连锁分析表明,ms-np(t)基因位于水稻第6 染色体微卫星标记RM541和RM343之间,遗传距离分别为15.2 cM和7.9 cM。  相似文献   

3.
ms-np是一个源于自然突变的水稻雄性不育突变体,明显较正常植株矮小,叶色浓绿。小花解剖观察发现,突变体小花花丝细长,花药干瘪,呈白色透明状,但雄性器官的数量和雌性器官正常。碘染证实,突变体的花药壁内没有花粉粒着色,是一个典型的无花粉型雄性不育材料。5个F2和2个BC1F1群体的遗传分析显示,该突变性状受1对隐性基因控制。对组合ms-np/M63衍生F2不育单株的连锁分析表明,ms-np(t)基因位于水稻第6 染色体微卫星标记RM541和RM343之间,遗传距离分别为15.2 cM和7.9 cM。  相似文献   

4.
王乃元  梁康迳  李毓  王颖  王洪飞  仇秀丽 《作物学报》2008,34(11):1929-1937
发掘水稻新型雄性不育细胞质源CMS-FA,育成系列优质米不育系和系列新质源恢复系,组配成强优势杂交稻组合的基础上研究新质源雄性不育恢复系的恢复基因遗传。采用新质源(CMS-FA)不育系金农1A与恢复系金恢3号杂交获得杂交F1代种子,种植F1代,收获自交F2代种子。用F1分别与不育系或保持系回交,获得(不育系//不育系/恢复系和不育系/恢复系//保持系)2个测交群体。同时种植P1、P2、F1、F2、B1F1和B2F1等群体,考察花粉染色率、套袋结实率和自然结实率,卡平方测验遗传分离适合度。结果表明,不育系与恢复系杂交F1代正常可育,育性恢复(可育)基因为显性遗传。F2代分离出可育︰不育适合3︰1,育性恢复(可育)基因为1对显性基因控制。B1F1和B2F1代2个测交群体的可育︰不育都适合1︰1分离规律,验证了F2代育性恢复(可育)单基因的遗传模式。暂时确定新质源(CMS-FA)核质互作三系的基因型为不育系S(SS)、保持系F(SS)和恢复系S(FF)。  相似文献   

5.
Summary A tetraploid annual male sterile form of Beta vulgaris L. (2n=4x=36) was crossed with the wild beet species Beta intermedia Bunge (2n=36). The resulting F1-plants were male sterile annuals being two or three times back-crossed to diploid and tetraploid sugar and fodder beets in the next years. Apart from tetraploid material (36 chromosomes) hexaploid (54 chromosomes) and a number of aneuploid plants developed.The results obtained justify the conclusion that, at a tetraploid level the material mostly propagates apomictically after the F1 generation. The presence of penta-, hexa-, septa-and even octaploid plants might be explained by assuming that no meiosis has taken place in the crossing partners. Triploid plants are sometimes found in the progeny of hexaploid material and may presumably be considered haploids. Moreover some pentaploid plants were found in the progeny of the open pollinated F1 which after two generations of bagging are still pentaploids although they produce no pollen. This is another clear indication of apomictic reproduction.The tetraploid generation from the cross between the hexaploid material and diploid sugar beets probably contains the best prospects for breeding.  相似文献   

6.
Y. Shen  M. Gao  Q. Cai 《Euphytica》1994,76(1-2):89-96
Summary Male-sterile mutants were isolated from M2 and M3 generations of indica rice variety 26 Zhaizao, dry seeds of which had been exposed to 60Co- rays at a dose of 290 Gy. The mutants were planted in early season and ratooned in late season for two successive years for identification of fertility conversion in different growing seasons. One of the mutant lines was further observed in a growth chamber and in the field. Results showed that daily average temperature might be the major factor conditioning the male fertility conversion at a moderate daylength. The critical temperature for the male fertility conversion of the mutant grown under 12.5 h and 14.0 h daylength is about 23°C, below which the plant becomes completely male sterile. Its male fertility conversion character differs from other EGMS lines so far developed. The performance of the hybrids between the mutant and some other indica varieties demonstrated its good combining ability and its potential value in hybrid rice production. The obtained mutant line still sheds KI-stainable pollen grains under male sterilizing conditions. Nevertheless, pollen grains shed from the male sterile plants were much more vulnerable than from normal plants. At sucrose concentration below 1.5 M, the pollen grains from the mutant grown under male sterilizing conditions almost completely broke down, while above 1.5 M they became plasmolysed and shrunken. This is indicative of poor development of the membrane and walls of the pollen grains from the male sterile mutant, causing the pollen grains to be unfunctional. NBT test also clarified the abortion of the pollen grains from the mutant, which were formed in the male sterilizing environment.  相似文献   

7.
J. H. Oard  J. Hu  J. N. Rutger 《Euphytica》1991,55(2):179-186
Summary Twenty-six male sterile plants grown in the field were recovered in the M7 generation from ethyl methane sulfonate-treated material of the rice cultivar M-201. Fertility increased five-fold when ratooned plants from the field were grown in a growth chamber with a 12 hour daylength. Crosses between mutant and normal fertile cultivars produced fertile F1 plants. Female fertility was normal as judged by percent seed set from unbagged panicles of parental and recombinant lines. Transgressive segregation for fertility was observed for all crosses in the F2 and F3 generations. Five of 37 F3 male sterile plants showed moderate levels of seed fertility under winter greenhouse conditions and reduced seed set when transplanted to summer field plots. Fertility data from reciprocal crosses suggested cytoplasmic factors had little or no effect on levels of male sterility in the mutant lines. Chi-squared analyses of F2 and F3 generation results indicated male sterility of the mutants is conditioned by two nuclear genes with epistatic effects.  相似文献   

8.
The cytoplasmic male sterile (CMS) wheat (Triticum aestivum L.) line KTP116A developed at Northwest A&F University, Yangling, China, was sterile at temperatures below 18 °C and fertile at temperatures above 20 °C during Zadok’s growth stages 45–52. The possibility of a two-line system has a promising future for hybrid wheat production. The present study describes morphological differences in pollen abortion behavior at different temperatures, and the genetics of the thermo-sensitive restorer gene(s) in line KTP116A. Cytological observations showed that abnormalities in development of male sterile anthers first appeared at the bi-nucleate stage. Only a few pollen grains go through the second mitosis to produce two sperm cells; most of those became abnormal pollen grains and shell structures without protoplast, confirming that the conversion from sterility to fertility in the CMS line was accompanied by changes in morphology and cytology. A BC1 population of 198 plants from a cross of male-sterile KTP116A and male fertile F1 TP116B/WM5-5 was developed to study the genetic control of thermo-sensitive sterility. Chi squared tests on data from back-crossed populations revealed that two recessive genes, designated rfv 1 sp and rfv 2 , were responsible for sterility of line KTP116A. Sixteen of 712 SSR markers were polymorphic between the parents and bulks. Four SSR markers, viz. Xgwm11, Xgwm18, Xgwm413 and Xbarc137, were linked to thermo-sensitive gene rfv 1 sp on chromosome 1BS of T. spelta, and another four markers were linked to rfv 2 located on chromosome 2A. This thermo-sensitive male sterile line can be used for production of experimental hybrids in order to test levels of heterosis.  相似文献   

9.
Summary Some plants without pods but with gynophores were observed in two F4 progenies of two crosses of goundnut (Arachis hypogaea L.). The flowers on these plants had translucent white anthers with no or a few sterile pollen grains. Three such plants in the succeeding generation were hand pollinated with pollen from a short-duration Indian cv. JL 24. The resulting F1 hybrid plants (male sterile x JL 24) were normal. Chi-square tests for segregation for male fertile and male sterile plants in F2 and F3 generations indicated that the male sterility in these crosses of groundnut is governed by two recessive genes. We designate these genes as ms1 and ms2 with ms1ms1ms2ms2 being a male sterile genotype.Submitted as ICRISAT J. A. No. 1812.  相似文献   

10.
A male sterile plant of wheat (Triticum aestivum L.) segregated from progenies of a transgenic family containing the leaf senescence-inhibition gene P SAG12 -IPT in the genetic background of ??Xinong 1376??, a well adapted winter wheat cultivar. The male sterile plant (named TR1376A) showed no phenotypic changes, except for florets and male organs, compared to its male fertile sibling plants (named TR1376B). The glumes and florets of male sterile TR1376A plants widely opened whereas those of the fertile counterpart TR1376B were closed or opened only briefly at flowing. Anthers of TR1376A were slender and indehiscent, and failed to release pollen. Compared to TR1376B, TR1376A anthers contained greatly reduced amounts of pollen, which was inviable or weakly viable. Ultra-structure studies indicated that cells in the endothecium and middle layers of the anther wall were dissolved or poorly developed in the sterile anthers of TR1376A. Molecular studies showed that the male sterility of TR1376A was caused by a sequence deletion or mutation that occurred in the promoter region of the transgene. F1 hybrids of TR1376A and TR1376B gave 1:1 segregation of male fertility to sterility, indicating that the male sterility of TR1376A was heritable and controlled by a single dominant gene (named Ms1376). To date, only a few dominant nuclear male sterility genes have been characterized and one of them (Ms2) has been successfully used to improve wheat cultivars through recurrent breeding strategies. The discovery of the Ms1376 gene provides another dominant male sterile source for establishing recurrent breeding systems in wheat.  相似文献   

11.
The three short duration cytoplasmic genetic male sterility (CGMS) hybrids developed using A2 (Cajanus scarabeoides) cytoplasm-based male sterile lines (CORG 990047A, CORG 990052A and CORG 7A) and the restorer inbred AK 261322 and their segregating populations (F2 and BC1F1) were subjected to the study of inheritance of fertility restoration in pigeonpea. The fertility restoration was studied based on three different criteria, namely, anther colour, pollen grain fertility and pollen grain morphology and staining. The F2 and BC1F1 populations of the three crosses, namely, CORG 990047A × AK 261322, CORG 990052A × AK 261322 and CORG 7A × AK 261322, segregated in the ratio of 3:1 and 1:1, for anther colour (yellow:pale yellow), pollen grain fertility (fertile:sterile) and for pollen grain morphology and staining. The above study confirmed that the trait fertility restoration was controlled by single dominant gene. This finding can be utilized for the identification of potential restorers, which can be further used in the development of CGMS-based hybrids in pigeonpea.  相似文献   

12.
A Brassica juncea line carrying an introgression from Moricandia arvensis restored male fertility to two cytoplasmic male‐sterile (CMS) B. juncea lines carrying either M. arvensis or Diplotaxis catholica cytoplasm. Genetics of fertility restoration was studied in the F1, F2, F3 and backcross generations of the cross between CMS and fertility‐restorer lines. No male‐sterile plants were found in F1‐F3 generations of the cross between CMS [M. arvensis] B. juncea and the restorer. However, a 1: 1 segregation for male sterility and fertility was observed when the F1 was pollinated with non‐restorer pollen from a euplasmic line. These results clearly show that restoration is mono‐genic and gametophytic. In CMS lines carrying D. catholica cytoplasm, the restorer conferred male fertility to the F1 and showed 3: 1 and 1: 1 segregations for male fertility and sterility in F2 and BC1 generations, respectively, indicating a monogenic, sporophytic mode of fertility restoration. The results were also supported by pollen stainability in the F1 which was about 65% in M. arvensis‐based CMS and >90% in D. catholica‐based CMS. The above results are discussed in the light of previous molecular studies which showed association between CMS and atpA in both systems.  相似文献   

13.
Summary Four indica cultivars viz. Kalinga-I, Ptb. 10, IR 27280-13-3-3-3 and Co. 41 were found to possess male sterile cytoplasm with fertility restoring genes while the cultivar Krishna was found to maintain the male sterility in all the cases. All the plants in the F1 of Kalinga-I × Krishna were observed to be completely male sterile and continued to show complete pollen sterility in subsequent backcross generations when backcrossed with recurring pollen parent, Krishna. Thus, it was posible to develop a new cytoplasmic-genetic male sterile line in indica rice (Krishna A) with Kalinga-I male sterile cytoplasm and this male sterile cytoplasm was found to be genetically different from others. Further, the newly developed male sterile line (Krishna A) was observed to be tolerant for low temperature at seedling stage.  相似文献   

14.
Yang Zhuping 《Euphytica》1997,94(1):93-99
The fertility segregations of F1, F2, BCF1 descended from crosses between PSGMR and japonica varieties, and F1's anther cultured homozygous diploid pollen plant populations (H2) were studied to reveal the genetic mechanism of photoperiod sensitive genic male sterility in PSGMR under natural daylight length at Shanghai. Rate of bagged seed-setting was used as an indicator of fertility. Fifteen F1 showed complete fertility similar to their parents. The ratio of completely sterile plants to fertile plants in fifteen F2 and four BCF1 was 1:15 and 1:3, respectively. The ratio of completely sterile to fertile diploid pollen plants in nine diploid populations (H2) was 1:3. These results demonstrated that the photoperiod sensitive genic male sterility in PSGMR was governed by two pairs of independent major recessive genes. There were no significant fertility segregations in hybrids F1 and selfed F2 between Nongken 58S and its derivatives 7001S, 5088S, 5047S and M105-9S, indicating that the photoperiod sensitive genic male-sterile genes in Nongken 58S were allelic to those in its derivatives. Several photoperiod sensitive genic male-sterile diploid pollen lines were bred from anther cultured homozygous diploid populations (H2) in about a three-year period. Most of these diploid lines showed significant fertility transformation and stable complete sterility from 5 August to 5 September, excellent agronomic traits and high resistance to blast and bacterial leaf blight. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
A chromosomal region containing a hybrid sterility locus, S 1, from Oryza glaberrima, located on the short arm of chromosome 6, was investigated in 15 BC7F1 and one BC3F2 populations. As a gamete eliminator, S 1 induced both male and female gamete abortion and responded to typical, spherical, or empty pollen abortion when it was heterozygous. The gametes carrying S 1 a (Oryza sativa allele in S 1) in the heterozygous S 1 locus had been eliminated in previous studies. We found here that both male and female gametes carrying the S 1 a allele were killed incompletely in heterozygous (S 1 g S 1 a ) plants, with 26.22% female and 9.06% male gametes with the S 1 a genotype remaining when the BC3F1 sterile plant produced male and female gametes, which fits with the hypothesis that the ratio of S 1 a gametes of the female that were killed is higher than that of the male gametes. In addition, in sterile BC6F1 plants with the heterozygous S 1 locus, not only a majority of the female gametes carrying the S 1 a allele, but also a quite number of those carrying the S 1 g allele (O. glaberrima allele in S 1) could not be transmitted to their offspring. This abnormal transmission of female gametes illustrates the complexity of the reproductive isolation mechanism caused by S 1 and can not be explained by the ‘one locus, sporo-gametal interaction’ model alone. Interaction for female sterility between S 1 and two other loci on chromosomes 1 and 4 that suppress the expression of S 1 was identified. S 1 is the main reproductive isolation locus when mining favorable traits/genes from O. glaberrima due to its ubiquity between these two species, and the development of bridge parents carrying S 1 should be a useful method for overcoming or abating this obstacle between these two species. The chromosomal region of S 1 may be the hot region of genetic diversity for speciation because several hybrid sterility loci between species, subspecies, and even intra-subspecies have been identified in the same region.  相似文献   

16.
为观察野生茶树雄性不育株开花生物学特性,探讨野生茶树雄性不育表型特征。以野生茶树雄性不育株及可育株为试材,田间观察了野生茶树的开花物候期、单花发育进程和花器形态特征,并采用离体萌发法、染色法测定其花粉活力和柱头可授性。结果表明:野生茶树雄性不育株开花物候期为9月上旬—10月上旬,全花期持续约29~33天,花期与对照材料相近。雄性不育花从花芽分化至花瓣凋谢平均历时约107天,比对照长14天。雄性不育花器结构具有典型的雄不育特征,表现为花冠开展度小,花丝弯曲畸形,花药彼此粘连,皱缩干瘪,不裂药,花药内无花粉或有微量败育花粉。雄性不育花雌性器官发育正常,柱头从开花前1天至开花后4天具有可授性,最佳授粉时间为开花后1天。所调查的野生茶树雄性不育类型属于花药败育型和花粉败育型。  相似文献   

17.
Genetic male sterility (GMS) genes in wheat (Triticum aestivum L.) can be used for commercial hybrid seed production. A new wheat GMS mutant, LZ, was successfully used in the 4E-ms system for producing hybrid wheat, a new approach of producing hybrid seed based on GMS. Our objective was to analyse the genetic mechanism of male sterility and locate the GMS gene in mutant LZ to a chromosome. We firstly crossed male sterile line 257A (2n = 42) derived from mutant LZ to Chinese Spring and several other cultivars for determining the self-fertility of the F1 hybrids and the segregation ratios of male-sterile and fertile plants in the F2 and BC1 generations. Secondly, we conducted nullisomic analysis by crossing male sterile plants of line 257A to 21 self-fertile nullisomic lines as male to test the F1 fertilities and to locate the GMS gene in mutant LZ to a chromosome. Thirdly, we conducted an allelism test with Cornerstone, which has ms1c located on chromosome 4BS. All F1s were male fertile and the segregation ratio of male-sterile: fertile plants in all BC1 and F2 populations fitted 1:1 and 1:3 ratios, respectively. The male sterility was stably inherited, and was not affected by environmental factors in two different locations or by the cytoplasm of wheat cultivars in four reciprocal cross combinations. The results of nullisomic analysis indicated the gene was on chromosome 4B. The allelism test showed that the mutant LZ was allelic to ms1c. We concluded that the mutant LZ has common wheat cytoplasm and carries a stably inherited monogenic recessive gene named ms1g.  相似文献   

18.
水稻三明显性核不育基因的初步鉴定   总被引:3,自引:0,他引:3  
2001年在福建省尤溪县西城镇凤元村进行两系核不育系育性鉴定时, 在SE21S/Basmati 370组合编号为S221的800多株F2代分离群体中发现1株与其他不育株的花粉败育形态不同的植株。经测交、回交、姐妹交的后代育性分离调查, 不育株与可育株呈1︰1分离, 以不育株为母本与普通品种配制杂交组合, 其后代育性呈1︰1分离, 可育株后代分离不出不育株, 表明S221不育性受核内1对显性不育基因控制。  相似文献   

19.
Cytoplasmic male sterile system in ridge gourd has been converted to cytoplasmic genetic male sterile (CGMS) system through the development of analogues of male sterile (MS) line, maintainer line and fertility restorer line. These lines were developed by crossing the MS mutant, regenerated through in vitro culture, with monoecious pollen parents Deepthi, Haritham, LA 101, CO 2, IC 92761 and IC 92685. All hybrids and the BC1 generation developed by crossing with the recurring pollen parents Deepthi, Haritham and LA 101 were male sterile. Male sterile BC1 plants have been advanced to BC6 generation and the parental line LA 101 was proved to be a successful maintainer line, producing male sterile progeny in successive back cross generations. Analogue of cytoplasmic male sterile line, MS LA 101, was developed through back crossing and on crossing with fertility restorer lines Arka Sumeet and LA 102, this line excelled as female parent, resulting heterotic combinations. Mitochondrial marker rpS14 and SCAR Tm-53 were identified to yield male sterility specific markers whereas SSR marker 18956 has generated the male fertility specific marker. These primers are recommended for marker assisted selection of ridge gourd, for utilizing male sterility for hybrid seed production and for developing A, B and C lines in CGMS system.  相似文献   

20.
芝麻核雄性不育系ms86-1小孢子败育过程的超微结构   总被引:3,自引:0,他引:3  
运用透射电子显微镜对芝麻核雄性不育系ms86-1的可育和不育花药进行了超微结构的比较观察。根据小孢子的细胞学形态特征,将芝麻花粉发育过程划分为小孢子母细胞形成期、减数分裂期、四分体期、单核小孢子早期、单核小孢子中期、单核小孢子晚期、花粉成熟期7个时期。对比观察表明芝麻核雄性不育的败育迹象起始于小孢子母细胞形成期,并伴随着进一步发育,败育现象逐渐明显,小孢子母细胞形成期小孢子母细胞壁形状不规则;减数分裂期小孢子母细胞壁严重扭曲变形,质膜外缺少早期外壁成分--原基粒棒;四分体期胼胝质壁外沉积物异常,呈绒毛状;四分体解体后形成畸形小孢子,孢子外壁不健全,绒毡层异常肥厚、降解延迟,释放极少量的畸形乌氏体;随后小孢子愈发皱缩,胞质凝集,内含物减少并逐渐凝聚成一团电子致密物质,最终走向完全败育。本研究揭示了不育小孢子的败育过程和败育特征,为深入研究芝麻核雄性不育败育机理奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号