首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
本文介绍一种运用毛细管气相色谱法检测谷物中酰胺类除草剂多残留快速测定方法。采用石油醚作为溶剂提取样品中农药,中性氧化铝的层析柱净化,石油醚/乙酸乙酯(9:1,v/v)洗脱。气相色谱(附ECD检测器)检测,用保留时间和外标法定性、定量。对大米样品进行添加回收率实验,分别添加0.50mg/kg、0.20mg/kg、0.10mg/kg、0.05mg/kg、0.02mg/kg,添加回收率在86.5%~109.5%之间,变异系数为3.5%~8.1%。  相似文献   

2.
本文介绍一种运用毛细管气相色谱法检测谷物中酰胺类除草剂多残留快速测定方法.采用石油醚作为溶剂提取样品中农药,中性氧化铝的层析柱净化,石油醚/乙酸乙酯(9:1,v/v)洗脱.气相色谱(附ECD检测器)检测,用保留时间和外标法定性、定量.对大米样品进行添加回收率实验,分别添加0.50mg/kg、0.2 0mg/kg、0.10mg/kg、0.05mg/kg、0.02mg/kg,添加回收率在86.5%~109.5%之间,变异系数为3.5%~8.1%.  相似文献   

3.
建立了豇豆和土壤样品中烯啶虫胺残留量的快速检测方法,样品用乙腈-水(4∶1,v/v),振荡提取3 h,浓缩后甲醇定容,气相色谱-电子捕获检测器(GC-ECD)检测,外标法定量。结果表明:乙腈提取豇豆和土壤中烯啶虫胺效果较好,无需净化可以直接上机检测。该方法在烯啶虫胺添加量为0.01~1.00 mg/L范围内线性相关性良好,R2=0.999 1,最低检出限为0.005 mg/kg。在添加水平为0.01~1.00 mg/kg中,豇豆样品在3个烯啶虫胺添加水平下的回收率为86.8%~101.5%,相对标准偏差为3.3%~4.9%;土壤样品在3个烯啶虫胺添加水平下的回收率为83.8%~105.1%,相对标准偏差为5.8%~8.9%,其具有高效率、低成本、高灵敏度、定量准确等优点。  相似文献   

4.
建立了吡蚜酮(pymetrozine)在大米和苹果中的残留分析方法.大米样品以乙腈 氨水(10:1,v:v)提取,苹果样品用乙腈提取,提取液经固相萃取小柱净化,高效液相色谱(VWD)测定.吡蚜酮的最小检测量为6.0×10-10g.最低检测浓度为0.02mg/kg.大米中吡蚜酮的添加(浓度0.05-1.0mg/kg)回收率为75.99%~96.03%.变异系数分别为1.64%~4.74%;苹果中吡蚜酮的添加(浓度为0.05~1.Omg/kg)回收率为74.84%~86.28%.变异系数分别为1.67%~6.43%.该方法的准确性和灵敏度均符合农药残留分析要求.  相似文献   

5.
为探究对高氯代阻燃剂得克隆选择性好和灵敏度高的检测方法,采用振荡提取和加速溶剂萃取(ASE)两种方法对土壤和大米中得克隆的两种异构体残留进行提取,利用TSQ 8000三重四极杆GC-MS/MS(气相色谱质谱/质谱联用)的二级质谱检测分析,建立了土壤和大米中得克隆的残留测定方法。结果表明,得克隆的两种同分异构体syn-DP和anti-DP在试验测定条件下保留时间比较合适,线性范围分别为5.00×10-13~4.02×10-9 g和1.62×10-12~1.30×10-8g,最低检出限分别为1.00×10-13 g和5.0×10-14 g。对于土壤样品中的syn-DP,在试验设定的添加浓度下,振荡提取和ASE方法添加回收率分别为85.32%~91.42%和90.69%~95.63%,变异系数均小于4.64%;对于anti-DP,振荡提取和ASE方法添加回收率分别为82.45%~90.16%和88.78%~98.23%,变异系数均小于4.96%。采用ASE法,大米中syn-DP和anti-DP的回收率分别为90.56%~98.56%和90.36%~96.56%,变异系数均小于5.05%,振荡提取法回收率小于加速溶剂萃取法,分别为86.47%~90.24%和85.84%~89.61%,变异系数均小于4.53%,达到了痕量syn-DP和anti-DP残留分析方法的要求。研究表明,采用ASE和振荡提取两种预处理样品的方法,二者的回收率均能满足土壤和大米样品中得克隆的痕量残留检测分析方法的要求,且该分析方法灵敏度高、准确性好,适合土壤和大米中得克隆的残留检测。  相似文献   

6.
由于大米农残检测需求及检测项目的不断扩增,建立高效、可靠的多农残分析方法具有重要意义。为了建立一种全自动在线定量浓缩净化色谱(GPC)-液相色谱-三重四级杆线性离子阱质谱(LC-Q-TRAP/MS)法测定大米中193种农药残留量,将大米样品经乙腈超声提取,GPC全自动在线定量浓缩净化,由三重四级杆线性离子阱质谱仪定性及定量检测。试验结果表明:方法的线性关系良好,相关系数R均大于0.9904,检出限(LOD)为5μg·kg-1,定量限(LOQ)为10μg·kg-1;193种农药在添加水平为5μg·kg-1时的平均回收率范围为66.2%~124.3%,相对标准偏差(RSD)范围为3.4%~17.8%;在添加水平为10μg·kg-1时的平均回收率范围为69.4%~115.7%,相对标准偏差(RSD)范围为2.9%~16.3%。该方法具有较高的灵敏度和准确度,并且自动化程度较高,能满足国内外对大米农药残留检测要求。  相似文献   

7.
建立了番茄和土壤样品中多效唑残留的固相萃取-高效液相色谱(SPE-HPLC)检测方法。样品用乙腈提取,再用甲醇-二氯甲烷(5∶95,v/v)混合溶剂经LC-NH2固相萃取柱净化,以乙腈-水(55∶45,v/v)作流动相,Shiseido C18色谱柱(4.6 mm×250mm,5μm)于222 nm波长检测,外标法定量。在0.1~5.0 mg/L内,多效唑峰面积与其质量浓度之间呈良好线性关系,相关系数为0.9995。在番茄果实、植株和土壤中进行0.05、0.1和0.5 mg/kg多效唑加标回收试验,果实中的回收率为92.4%~95.2%,RSD为3.5%~5.6%,植株中的回收率为94.64%~96.8%,RSD为1.52%~4.48%,土壤中的回收率为98.3%~102.4%,RSD为1.21%~3.42%。该方法具有简便,快速,灵敏度高、重现性好等优点,适用于番茄果实、植株和土壤中多效唑残留的检测。  相似文献   

8.
建立了基于Qu ECh ERS-气相色谱-串联质谱法测定大米中丙溴磷、稻瘟灵、敌瘟磷、二甲戊灵、氟硅唑、甲草胺、甲基对硫磷、醚菊酯等8种农药残留的方法。采用Qu ECh ERS法进行样品预处理,大米样品用乙腈提取,经PSA和C18粉末和无水Mg SO4净化后检测。结果表明,8种农药的线性范围为0.001~1.0μg/m L,相关系数大于0.99,农药加标回收率为89.4%~105.0%,RSD为1.3%~6.3%。该方法简捷、灵敏、稳定、回收率高,适用于大米中多农药残留的定量检测与定性确证。  相似文献   

9.
试验采用气相色谱法测定铜仁市特色农产品铜仁珍珠花生中敌敌畏、乐果、杀螟硫磷、倍硫磷、毒死蜱、氯氰菊酯、三唑酮、百菌清、三氯杀螨醇、甲氰菊酯10种农药残留的含量,分析了铜仁珍珠花生中农药残留现状。结果表明:空白花生样品进行方法添加回收率试验,前5种有机磷类农药添加浓度0.005~2.000 mg/kg时,加标回收率为83.80%~105.12%,RSD为6.38%~20.61%;后5种有机氯类农药添加浓度为0.005~5.000 mg/kg时,加标回收率为89.61%~107.03%,RSD为3.29%~20.03%。方法的添加回收率数据及RSD数据说明本试验方法的准确度、精密度均达到农药残留检测的要求。10种农药检测含量均未超过食品中农药最大残留限量标准。  相似文献   

10.
大米中有机磷和氨基甲酸酯农药残留检测方法研究   总被引:6,自引:0,他引:6  
王龙根  成强 《安徽农业科学》2007,35(13):3783-3784
应用石英毛细管气相色谱法,利用高灵敏氮磷检测器,用乙腈和丙酮提取样品,建立了一种快速测定大米中有机磷和氨基甲酸酯8种农药残留的方法.结果表明,该方法的最低检出浓度为0.002~0.009 mg/kg.添加量为0.004~O.007mg/kg时,添加回收率为84.3%~120.0%,相对标准偏差为4.1%~11.5%.该方法能同时测定大米中的有机磷和氨基甲酸酯类农药,具有灵敏度高、分离效果好、回收率高、变异系数小、检出限低的特点.  相似文献   

11.
选用水稻品种汕优63、福两优2186、东南201、闽紫香为试验材料,分别在始穗期和齐穗期以不同浓度的硒肥和锌肥喷施叶面,结果表明:(1)不同处理下,水稻株高、穗长、有效穗、穗粒数、千粒重性状差异不显著,而结实率差异显著。(2)各浓度硒肥和锌肥处理的单株产量比对照均提高。其中,福两优2186和闽紫香在(Na2SeO3)22.2mg/kg (ZnSo4)50mg/kg(Ⅴ处理)下,分别比对照增产14.03%和15.65%;汕优63在硒肥浓度22.2mg/kg(Ⅱ处理)时,单株产量最高,较对照增产18.42%;东南201,当硒肥浓度为44.4mg/kg时,其产量较对照提高17.65%。(3)硒肥浓度为0~44.4mg/kg范围内,糙米硒含量随硒肥浓度增加而显著增高,六种处理的糙米硒含量依次为对照的3.43、8.29、16.86、4.14、7.71和17.36倍,而糙米中锌、铁和钙含量在各处理和对照间差异不显著。  相似文献   

12.
大米中敌稗残留量的测定方法   总被引:6,自引:0,他引:6  
用丙酮提取大米中的敌稗残留,液-液分配法去除提取液中的水溶性杂质和水分,柱层析法去除提取液中的有机杂质,气相色谱仪电子捕获检测器测定敌稗残留量,色谱柱采用固定相为1.5% IO-17+1.98,OV-210的玻璃填充柱,平均添加回收率为89.5%-90.5%,变异系数为4.46%-5.21%,最小检测量为0.002ng,最小检出浓度为0.002mg.kg^-1,卫生部食品卫生监督检验所和扬州大学环境工程系对本方法验证结果,平均添加回收率为88.0%-91.0%,变异系数为5.48%-6.03%。  相似文献   

13.
[目的]建立水稻中10种拟除虫菊酯类杀虫剂农药残留气相色谱-串联质谱测定方法。[方法]将样品用乙腈提取,采用无水硫酸镁、氯化钠盐析,弗罗里硅土柱萃取净化进行前处理,采用多反应监测模式测定。[结果]浓度为0.010~0.500 mg/L范围内与峰面积呈线性关系,相关系数均大于0.99,最低检测限在0.005~0.010 mg/kg。当添加水平为0.05、0.10、0.20 mg/kg时(n=5),回收率为75.0%~115.5%,相对标准偏差为3.9%~6.9%。[结论]该方法简便、准确、可靠,能同时定性和定量,可用于水稻中拟除虫菊酯类杀虫剂农药残留的快速检测与确证。  相似文献   

14.
为明确苄嘧磺隆和苯噻酰草胺在稻田系统中的使用安全性,于2010、2011年在杭州、长沙和南宁进行田间试验,研究苄嘧磺隆·苯噻酰草胺0.42%颗粒剂在水稻中的消解动态和最终残留.结果表明,在稻田土壤、水、糙米、谷壳和水稻植株中添加的苄嘧磺隆和苯噻酰草胺的平均回收率为70.78%~ 116.06%,相对标准偏差(RSD)为0.91%~10.24%;苄嘧磺隆和苯噻酰草胺的检出限(LOD)均为0.02 mg/L,最小检出量均为4.0×10-9 g.在水稻移栽后5~7 d,采用直接撒施法在高剂量(270 kg/hm2,其中苄嘧磺隆有效成分为64.8 g/hm2,苯噻酰草胺有效成分为1 069.2 g/hm2)下施药1次的消解动态试验结果表明:苄嘧磺隆和苯噻酰草胺在稻田水、稻田土壤和水稻植株中的消解动态曲线均符合一级动力学方程,苄嘧磺隆在稻田水、稻田土壤和水稻植株中的平均消解半衰期分别为5.35,3.05和3.71 d,苯噻酰草胺在稻田水、稻田土壤和水稻植株中的平均消解半衰期分别为3.61,3.29和3.88 d.分别按低剂量(180 kg/hm2,其中苄嘧磺隆有效成分为43.2 g/hm2,苯噻酰草胺有效成分为712.8 g/hm2)和高剂量(270 kg/hm2)施药1次,在正常收获期采集的稻田土壤、稻杆、谷壳和糙米中均未检测出苄嘧磺隆和苯噻酰草胺.  相似文献   

15.
建立了肉制品中5种红曲色素含量的高效液相色谱分析方法。样品用甲醇+乙酸乙酯(2∶8,体积比)提取,采用Eclipse plus.C18[5μm,25 cm×4.6 mm(i.d.)]色谱柱分离,以磷酸溶液(pH=2.5±0.3)和乙腈为流动相梯度洗脱,流速1mL/min,检测波长为400 nm,分析时间为20 min,采用二极管阵列检测器进行检测。方法的相关系数r2≥0.99910,5种红曲色素检出限(信噪比为3)为0.52~1.05 mg/kg,相对标准偏差(n=8)为1.6%~7.6%,平均加标回收率为75%~108%。结果表明,该方法准确、灵敏、重现性好、分析时间短,适用于肉制品中红曲色素含量的测定。  相似文献   

16.
研究室内培养条件下水稻秸秆配施化肥氮对土壤微生物生物量的形成和氮素转化的影响。84mgN/kg标记硫铵和4.5g/kg稻草粉配施淹水培养,结果表明,有25.8%的肥料氮在培养63d时成为生物量及其代谢产物-15N。整个培养过程中生物量-15N无净再矿化现象。将稻草粉换成葡萄糖淹水培养,葡萄糖在培养7d时消耗贻尽,此时生物量-15N达最大值43.1mgN/kg,相当于施入肥料氮的51.3%。在此条件下,生物量-15N有明显净再矿化现象,且净矿化出来的氮遭受损失。稻草粉处理好气培养结果表明,新形成的生物量及其代谢产物-15N较淹水培养处理高得多,达47.0mgN/kg,相当于施入肥料氮的46.3%。在此条件下,生物量-15N亦无明显净再矿化现象。比较不同处理的氮素回收率,可以看出施入稻草粉可以减少肥料氮的损失  相似文献   

17.
采用超高效液相色谱-串联质谱(UPLC-MS/MS)建立了环酰菌胺和噻酰菌胺在稻田生态系统中的残留检测方法。样品经乙腈提取,N-丙基乙二胺吸附剂(PSA)净化(稻秆和稻壳样品添加石墨化碳黑(GCB)辅助净化),UPLC-MS/MS测定,基质外标法(ESTD)定量。稻田土、稻田水、稻米、稻壳和稻秆五种基质中环酰菌胺和噻酰菌胺的添加浓度在0.005~2 mg/kg时,平均回收率均为81.9%~107.6%,相对标准偏差为1.4%~9.6%,检出限(LOD)是0.019~0.061μg/kg,定量限(LOQ)是5μg/kg。结果表明本方法灵敏度高、定量准确、测定浓度范围宽,且操作简便;可用于稻田生态系统中同时对环酰菌胺和噻酰菌胺进行残留检测分析。  相似文献   

18.
张晶  李向民  孙晶 《安徽农业科学》2011,39(20):12031-12033
[目的]研究叶面喷硒对水稻不同部位含硒量的影响。[方法]采用随机区组试验,向水稻叶面喷施不同浓度亚硒酸钠溶液;采用原子荧光光谱法测定不同时期水稻茎、叶、穗的含硒量。[结果]叶面喷硒可明显提高水稻中硒含量,大米硒含量随喷硒浓度的增加而增加。水稻叶、茎、稻谷和大米的硒含量分别从对照的0.85、0.14、0.12、0.03 mg/kg上升至5.48、1.32、2.01、1.37 mg/kg,分别增加了544.7%、842.8%、1 575.0%、4 466.7%。经施硒处理的水稻,低硒处理(50 mg/kg)叶的含硒量随采样时间的延迟前期降低,后期略有上升,其他处理叶的含硒量随采样时间的延迟而逐渐降低;茎和稻谷的含硒量均为随采样时间的延迟前期上升,后期降低。[结论]喷施100 mg/kg浓度的亚硒酸钠可满足富硒大米的要求。  相似文献   

19.
在淮河平原进行田间试验,研究了旱稻小麦两熟种植系统土壤氮、磷、钾供应状况、养分吸收利用效率及肥料需求规律。结果表明:小麦产量对肥料的依赖性以及对磷和钾素的敏感程度高于旱稻。旱稻小麦两熟种植系统一个周期内的土壤氮素供应量为12.5 g/m2、磷素为3.3 g/m2和钾素为22.7 g/m2。土壤对第一季旱稻和小麦的氮、磷和钾素供应能力均显著高于第二季,表明土壤养分供应能力很大程度上受施肥的影响。旱稻氮、磷和钾肥表观利用率平均值分别为33.4%、3.0%和-8.5%,小麦分别为69.3%1、3.4%和36.9%。每生产1 t旱稻籽粒需氮素14.9~33.7 kg、磷素2.9~5.9 kg和钾素17.9~38.1 kg;每生产1 t小麦籽粒需氮素15.9~28.3 kg、磷素3.1~4.2 kg和钾素15.9~21.6 kg。在淮河平原,两季旱稻施氮、磷、钾(NPK)比不施氮(PK)处理分别显著增产18.4%、25.8%;两季小麦NPK比PK处理分别显著增产54.1%、158.7%,两季旱稻、小麦NPK处理的产量均显著高于PK处理,表明氮素是限制淮河平原旱稻小麦两熟制旱稻和小麦产量的主要肥料因素。  相似文献   

20.
为探明戊菌唑在黄瓜中的安全性,采用气相色谱-电子捕获器法对戊菌唑在江苏南京、北京和吉林长春3个试验点黄瓜和土壤中的残留消解动态和最终残留进行了研究。结果表明,在0.01 mg/kg、0.10 mg/kg和1.00 mg/kg 3个添加水平下,戊菌唑在黄瓜中的添加回收率为82.5%~94.2%,相对标准偏差为4.8%~7.5%;在土壤中平均回收率为81.2%~93.2%,相对标准偏差为6.2%~9.1%;戊菌唑在黄瓜和土壤中的最低检测浓度均为0.01 mg/kg。戊菌唑在3个试验点黄瓜中的半衰期为1.6~1.9 d,在土壤中的半衰期为1.8~2.3 d。戊菌唑按低剂量(57.0 g/hm2,a.i.)或高剂量(85.5 g/hm2,a.i.)施药2次或3次,在最后一次施药1 d、3 d和5 d后采收,黄瓜中戊菌唑的残留量均低于0.080 mg/kg。按试验推荐施药剂量和次数施用戊菌唑,参照CAC、欧盟或日本制订的黄瓜中戊菌唑的最大残留限量标准(0.1 mg/kg),所采收的黄瓜是安全的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号