首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Bimazubute, M., Cambier, C., Baert, K., Vanbelle, S., Chiap, P., Albert, A., Delporte, J. P., Gustin, P. Penetration of enrofloxacin into the nasal secretions and relationship between nasal secretions and plasma enrofloxacin concentrations after intramuscular administration in healthy pigs. J. vet. Pharmacol. Therap. 33 , 183–188. The pharmacokinetic behaviour of enrofloxacin (ENRO) in plasma and nasal secretions of healthy pigs was investigated, after a single‐dose intramuscular administration of 2.5 mg/kg body weight of the drug. Blood samples and nasal secretions were collected at predetermined times after drug administration. Concentrations of ENRO and its active metabolite ciprofloxacin (CIPRO) were determined in plasma and nasal secretions by high‐performance liquid chromatography (HPLC). CIPRO was not detected probably because we investigated young weaned pigs. The data collected in 12 pigs for ENRO were subjected to noncompartmental analysis. In plasma, the maximum concentration of drug (Cmax), the time at which this maximum concentration of drug (Tmax) was reached, the elimination half‐life (t½) and the area under the concentration vs. time curve (AUC) were, respectively, 694.7 ng/mL, 1.0 h, 9.3 h and 8903.2 ng·h/mL. In nasal secretions, Cmax, Tmax, t½ and AUC were, respectively, 871.4 ng/mL, 2.0 h, 12.5 h and 11 198.5 ng·h/mL. In a second experiment conducted in 10 piglets, the relationship between concentrations of ENRO measured in the plasma and the nasal secretions has been determined following single‐dose intramuscular administration of 2.5, 10 or 20 mg/kg body weight of the drug. It has been demonstrated that, among several variables, i.e., (1) the dose administered, (2) the time between intramuscular injection and blood sampling, (3) the age, (4) the sex, (5) the animal body weight and (6) the plasma concentration of the drug, only the latter influenced significantly the ENRO concentration in nasal secretions. Practically, using a generalized linear mixed model, ENRO concentrations in the nasal secretions (μg/mL) can be predicted taking into account the ENRO concentrations in plasma (μg/mL), according to the following equation:   相似文献   

2.
The pharmacokinetics of tylosin were compared in cattle (Bos taurus) and buffaloes (Bubalus bubalis). Six animals received each a single dose of 10 mg/kg of tylosin tartrate by the intramuscular route. The serum concentration (C max) and the volume of distribution (V d) presented significant differences between the two species. C max was 0.40 ± 0.046 µg/ml for buffaloes and 0.64 ± 0.068 µg/ml for cattle. V d was 1.91 ± 0.12 L/kg and 1.33 ± 0.09 L/kg for buffaloes and cattle, respectively. However, as the present study did not show considerable differences in the pharmacokinetics of tylosin in buffaloes and cattle, similar dosage regimes of this drug can be recommended for both species.  相似文献   

3.
A potentiated sulpha drug was administered intravenously to 12 sows on the 17th day of lactation and to 4 sows in early pregnancy to study the influence of lactation on its disposition kinetics. The dose-rate of sulphadoxine (SDX) used was 12 mg/kg b.w. while that of trimethoprim (TMP) was 2.4 mg/kg b.w. The pharmacokinetic parameters of SDX showed no significant difference between lactating and pregnant sows (V ss, 0.24±0.04 L/kg; Cl s , 0.25±0.05 ml/min per kg: MRT, 17.08±4.48 h). SDX did not accumulate in milk, the concentrations in milk being less than the concentrations in serum at the same time. Of the pharmacokinetic parameters for TMP, only the mean residence time was significantly different between the two groups (V ss, 1.60±0.31 L/kg; Cl s , 4.62±1.07 ml/min per kg: MRTlactating, 5.43±1.26 h; MRTpregnant, 7.74±1.72 h). TMP was excreted in milk to a considerable extent, the ratio of its concentration in milk to that in serum at the same time being over 2.2. These two substances show a completely different pharmacokinetic behaviour. Even though TMP is excreted more quickly in lactating sows, adjusting the dose of this potentiated sulpha drug does not seem to be appropriate.Abbreviations AUC area under the curve - AUMC area under the first-movement curve - terminal elimination rate constant - b.w. body weight - Cl s clearance at steady state - D dose - MRT mean residence time - SD standard deviation - SDX sulphadoxine - TMP trimethoprim - V ss apparent volume of distribution at steady state  相似文献   

4.
The pharmacokinetic properties and tissue distribution of enrofloxacin (EF) were investigated after single intramuscular (i.m.) dose of 10 mg/kg body weight (b.w.) in Pacific white shrimp at 22 to 25°C. EF and its metabolite ciprofloxacin (CF) were determined by high‐performance liquid chromatography. After i.m. administration, EF was absorbed quickly, and the peak of EF concentration (Cmax) reached at first time point in hemolymph. The volume of distribution Vd(area) of EF was 3.84 L/kg, indicating that the distribution of EF was good. The area under the concentration–time curve (AUC) of EF was 90.1 and 274.2 μg hr/ml in muscle and hepatopancreas, respectively, which was higher than 75.8 μg hr/ml in hemolymph. The EF elimination was slow in muscle and hepatopancreas with the half‐life (T1/2β) of 52.3 and 75.8 hr, respectively. CF, the mainly metabolite of EF, was detected in hemolymph, muscle and hepatopancreas. The Cmax was 0.030, 0.013 and 0.218 μg/ml, respectively. Based on a minimum inhibitory concentration (MIC) of 0.006–0.032 μg/ml for susceptible strains, EF i.m. injected at a dose 10 mg/kg could be efficacious against common pathogenic bacteria of Pacific white shrimp.  相似文献   

5.
Thymoquinone (TQ) is the major constituent of Nigella sativa and known to possess a variety of pharmacological effects. This study was designed to evaluate the pharmacokinetic profile of TQ following oral (PO) and intravenous (IV) administration in layer chickens. The layer chickens were equally divided into two groups (six chickens in each group, total 12 chickens), and TQ was administered via PO and IV routes. For PO route, the dose was 20 mg/kg b.w. and for IV route, 5 mg/kg b.w. was administered, respectively. A sensitive and accurate High‐Performance Liquid Chromatography (HPLC) technique was validated for the quantification of TQ from plasma. The limit of detection (LOD) and limit of quantification (LOQ) were 0.02 µg/ml and 0.05 µg/ml, respectively with >80% recovery. Maximum plasma concentration (Cmax) following PO and IV administration was 8.805 and 4.497 µg/ml, respectively, while time to reach at maximum concentration (Tmax) was 1 and 0.1 hr, respectively. The elimination half‐lives were recorded as 1.02 and 0.978 hr, whereas the mean residence times were 1.79 and 1.036 hr following both PO and IV administration, respectively. The 85% PO bioavailability was indicative that TQ could be used for various therapeutic purposes in layer chickens.  相似文献   

6.
1. The pharmacokinetics and bioavailability of levofloxacin in turkeys were investigated after a single intravenous (IV), intramuscular (IM) and oral (PO) administration of 10 mg/kg body weight.

2. The concentrations of levofloxacin in plasma samples were assayed using a microbiological assay method and pharmacokinetic parameters were calculated by non-compartmental analysis.

3. Following IV administration, the elimination half-life (t0.5(β)), volume of distribution at steady state (Vdss) and total body clearance (Cl) were 4.49 h, 1.31 l/kg and 0.23 l/h/kg, respectively.

4. After single IM and PO administrations at the same dose, levofloxacin was rapidly absorbed as indicated by an absorption half-life (t0.5ab) of 1.02 and 0.76 h, respectively; maximum plasma concentrations (Cmax) of 5.59 and 5.15 μg/ml were obtained at a maximum time (Tmax) of 2 h for both routes and levofloxacin bioavailability (F) was 96.5 h and 79.9% respectively after IM and PO administration. In vitro plasma protein binding of levofloxacin was 24.3%.

5. Based on these pharmacokinetic parameters, a dose of 10 mg/kg body weight given intramuscularly or orally every 24 h in turkeys can maintain effective plasma concentrations with bacterial infections with (minimum inhibitory concentration) MIC90 > 0.1 μg/ml.  相似文献   


7.
It is well-known that old animals show physiologic and/or pathologic variation that could modify the pharmacokinetics of drugs and the related pharmacodynamic response. In order to define the most appropriate therapeutic protocol in old horses, pharmacokinetic profile and safety of naproxen were investigated in horses aged over 18 years after oral administration for 5 days at the dose of 10 mg/kg b.w./day. After the first administration, the maximum concentration (Cmax 44.21 ± 9.21 μg/mL) was reached at 2.5 ± 0.58 h post-treatment, the harmonic mean terminal half-life was 6.96 ± 1.73 h, AUC0–24h was 459.71 ± 69.95 h μg/mL, MRT was 7.44 ± 0.74 h and protein binding was 98.47 ± 2.72%. No drug accumulation occurred with repeated administrations. No clinical and laboratory changes were detected after administration of naproxen. Gastric endoscopies performed after the treatment did not show pathological changes of the gastric mucosa.  相似文献   

8.
The tissue distribution and depletion of colistin and amoxicillin were studied in 84 turkeys dosed subcutaneously on 4 consecutive days with a formulation containing the two drugs at 0.2 ml/kg per day, corresponding to 50 000 IU of colistin sulphate/kg and 20 mg of amoxicillin trihydrate/kg. All the turkeys were killed 1–30 days after the final dose and samples of muscle, liver, kidney and cutaneous-subcutaneous tissues and of the injection site were taken for analysis for colistin and amoxicillin residues. The colistin concentrations in the liver (117.5±26.0 ng/g) and cutaneous-subcutaneous tissue (100.0±35.6 ng/g) were higher than those in kidney (92.0±34.4 ng/g) or muscle (67.5±16.9 ng/g) 1 day after the final dose. The concentration of this drug then increased for 9–14 days, followed by a slow decrease. The antibiotic was still present at low concentrations in the kidneys of all the treated birds and in the livers of two turkeys 30 days after the end of treatment. Amoxicillin concentrations were greatest in muscle (389.2±195.0 ng/g) and at the injection sites (440.3±213.9 ng/g) 1 day after treatment ceased, with a subsequent rapid decline. This drug was undetectable in the livers and kidneys by 10 days after dosing ceased.Abbreviations IU international units - i.v. intravenous  相似文献   

9.
Green sea turtles are widely distributed in tropical and subtropical waters. Adult green sea turtles face many threats, primarily from humans, including injuries from boat propellers, being caught in fishing nets, pollution, poaching, and infectious diseases. To the best of our knowledge, limited pharmacokinetic information to establish suitable therapeutic plans is available for green sea turtles. Therefore, the present study aimed to describe the pharmacokinetic characteristics of ceftriaxone (CEF) in green sea turtles, Chelonia mydas, following single intravenous and intramuscular administrations at two dosages of 10 and 25 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 96 hr. The plasma concentrations of CEF were measured by liquid chromatography tandem mass spectrometry. The concentrations of CEF in the plasma were quantified up to 24 and 48 hr after i.v. and i.m. administrations at dosages of 10 and 25 mg/kg b.w., respectively. The Cmax values of CEF were 15.43 ± 3.71 μg/ml and 43.48 ± 4.29 μg/ml at dosages of 10 and 25 mg/kg, respectively. The AUClast values increased in a dose‐dependent fashion. The half‐life values were 2.89 ± 0.41 hr and 5.96 ± 0.26 hr at dosages of 10 and 25 mg/kg b.w, respectively. The absolute i.m. bioavailability was 67% and 108%, and the binding percentage of CEF to plasma protein was ranged from 20% to 29% with an average of 24.6%. Based on the pharmacokinetic data, susceptibility break‐point and PK‐PD index (T > MIC, 0.2 μg/ml), i.m. administration of CEF at a dosage of 10 mg/kg b.w. might be appropriate for initiating treatment of susceptible bacterial infections in green sea turtles.  相似文献   

10.
Three asymptomatic koalas serologically positive for cryptococcosis and two symptomatic koalas were treated with 10 mg/kg fluconazole orally, twice daily for at least 2 weeks. The median plasma Cmax and AUC0‐8 h for asymptomatic animals were 0.9 μg/mL and 4.9 μg/mL·h, respectively; and for symptomatic animals 3.2 μg/mL and 17.3 μg/mL·h, respectively. An additional symptomatic koala was treated with fluconazole (10 mg/kg twice daily) and a subcutaneous amphotericin B infusion twice weekly. After 2 weeks the fluconazole Cmax was 3.7 μg/mL and the AUC0‐8 h was 25.8 μg/mL*h. An additional three koalas were treated with fluconazole 15 mg/kg twice daily for at least 2 weeks, with the same subcutaneous amphotericin protocol co‐administered to two of these koalas (Cmax: 5.0 μg/mL; mean AUC0‐8 h: 18.1 μg/mL*h). For all koalas, the fluconazole plasma Cmax failed to reach the MIC90 (16 μg/mL) to inhibit C. gattii. Fluconazole administered orally at either 10 or 15 mg/kg twice daily in conjunction with amphotericin is unlikely to attain therapeutic plasma concentrations. Suggestions to improve treatment of systemic cryptococcosis include testing pathogen susceptibility to fluconazole, monitoring plasma fluconazole concentrations, and administration of 20–25 mg/kg fluconazole orally, twice daily, with an amphotericin subcutaneous infusion twice weekly.  相似文献   

11.
The purpose of this study was to investigate the pharmacokinetic characteristics of amoxicillin (AMX) trihydrate in male Asian elephants, Elephas maximus, following intramuscular administration at two dosages of 5.5 and 11 mg/kg body weight (b.w.). Blood samples were collected from 0.5 up to 72 h. The concentration of AMX in elephant plasma was measured using liquid chromatography electrospray ionization mass spectrometry. AMX was measurable up to 24 h after administration at two dosages. Peak plasma concentration (Cmax) was 1.20 ± 0.39 μg/mL after i.m. administration at a dosage of 5.5 mg/kg b.w., whereas it was 3.40 ± 0.63 μg/mL at a dosage of 11 mg/kg b.w. A noncompartment model was developed to describe the disposition of AMX in Asian elephants. Based on the preliminary findings found in this research, the dosage of 5.5 and 11 mg/kg b.w. produced drug plasma concentrations higher than 0.25 mg/mL for 24 h after i.m. administration. Thereafter, i.m. administration with AMX at a dosage of 5.5 mg/kg b.w. appeared a more suitable dose than 11 mg/kg b.w. However, more studies are needed to determine AMX clinical effectiveness in elephants.  相似文献   

12.
The aim of this study was to elucidate some of the pharmacokinetic parameters of pefloxacin in lactating goats (n = 5) following intravenous (i.v.) or intramuscular (i.m.) injections of 10 mg/kg bw. Serially obtained serum, milk and urine samples were collected at precise time intervals, and the drug concentrations were assayed using a microbiological assay. A two-compartment open model best described the decrease of pefloxacin concentration in the serum after intravenous administration. The maximum serum concentration (C p 0 ) was 8.4±0.48 g/ml; elimination half-life (t 1/2) was 1.6±0.3 h; total body clearance (Cltot) was 3.6±0.3 L/kg/h; steady-state volume of distribution (V dss) was 5.14±0.21 L/kg; and the area under the curve (AUC) was 2.78±0.22 g.ml/h. Pefloxacin was absorbed rapidly after i.m. injection with an absorption half-life (t 1/2ab) of 0.32±0.02 h. The peak serum concentration (C max) of 0.86±0.08 g/ml was attained at 0.75 h (T max). The absolute bioavailability after i.m. administration was 70.63±1.13% and the serum protein-bound fraction ranged from 7.2% to 14.3%, with an average value of 9.8±1.6%. Penetration of pefloxacin from the blood into the milk was rapid and extensive, and the pefloxacin concentration in milk exceeded that in serum from 1 h after administration. The drug was detected in milk and urine for 10 and 72 h, respectively; no samples were taken after 72 h.  相似文献   

13.
The pharmacokinetic profile and bioavailability of a long-acting formulation of cephalexin after intramuscular administration to cats was investigated. Single intravenous (cephalexin lysine salt) and intramuscular (20% cephalexin monohydrate suspension) were administered to five cats at a dose rate of 10 mg/kg. Serum disposition curves were analyzed by noncompartmental approaches. After intravenous administration, volume of distribution (Vz), total body clearance (Clt), elimination constant (λz), elimination half-life (t½λ) and mean residence time (MRT) were: 0.33 ± 0.03 L/kg; 0.14 ± 0.02 L/h kg, 0.42 ± 0.05 h−1, 1.68 ± 0.20 h and 2.11 ± 0.25 h, respectively. Peak serum concentration (Cmax), time to peak serum concentration (Tmax) and bioavailability after intramuscular administration were 15.67 ± 1.95 μg/mL, 2.00 ± 0.61 h and 83.33 ± 8.74%, respectively.  相似文献   

14.
The present study aimed to characterize the pharmacokinetic profile of oxytetracycline long‐acting formulation (OTC‐LA) in Thai swamp buffaloes, Bubalus bubalis, following single intramuscular administration at two dosages of 20 and 30 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 504 h. The plasma concentrations of OTC were measured by high‐performance liquid chromatography (HPLC). The concentrations of OTC in the plasma were determined up to 264 h and 432 h after i.m. administration at doses of 20 and 30 mg/kg b.w., respectively. The Cmax values of OTC were 12.11 ± 1.87 μg/mL and 12.27 ± 1.92 μg/mL at doses of 20 and 30 mg/kg, respectively. The AUClast values increased in a dose‐dependent fashion. The half‐life values were 52.00 ± 14.26 h and 66.80 ± 10.91 h at doses of 20 and 30 mg/kg b.w, respectively. Based on the pharmacokinetic data and PK–PD index (T > MIC), i.m. administration of OTC at a dose of 30 mg/kg b.w once per week might be appropriate for the treatment of susceptible bacterial infection in Thai swamp buffaloes.  相似文献   

15.
This study aimed to investigate the pharmacokinetic characteristics of amoxicillin (AMX) in Thai swamp buffaloes, Bubalus bubalis, following single intramuscular administration at two dosages of 10 and 20 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 48 h. The plasma concentrations of AMX were measured by liquid chromatography–tandem mass spectrometry (LC‐MS/MS). The concentrations of AMX in the plasma were determined up to 24 h after i.m. administration at both dosages. The Cmax values of AMX were 3.39 ± 0.18 μg/mL and 6.16 ± 0.18 μg/mL at doses of 10 and 20 mg/kg, respectively. The AUClast values increased in a dose‐dependent fashion. The half‐life values were 5.56 ± 0.40 h and 4.37 ± 0.23 h at doses of 10 and 20 mg/kg b.w, respectively. Based on the pharmacokinetic data and PK‐PD index (T > MIC), i.m. administration of AMX at a dose of 20 mg/kg b.w might be appropriate for the treatment of susceptible Mannheimia haemolytica infection in Thai swamp buffaloes.  相似文献   

16.
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml.  相似文献   

17.
Bicozamycin was dissolved in water and administered to pigs by stomach tube at 40 mg/kg once daily for 7 consecutive days. The plasma concentration was determined on days 1 and 7 of the dosing period. The mean (± SD) peak plasma concentrations were 2.06±0.36 µg/ml at 3.08±0.80 h on day 1 and 2.36±1.32 µg/ml at 2.80±0.74 h on day 7, the elimination half-lives being 3.80±0.92 h and 2.43±1.41 h, respectively. The mean areas under the plasma concentration-time curves were 15.88±2.18 (µg h)/ml on day 1 and 12.31±6.98 (µg h)/ml on day 7. These pharmacokinetic parameters did not differ between days 1 and 7, suggesting that there was no accumulation in the plasma after consecutive oral dosing. The residues in kidney, liver and muscle were examined in pigs slaughtered on days 1, 3 and 5 after the last dosing. One day after withdrawal, residues were found in the kidneys of all three pigs examined, at a mean concentration of 0.26 µg/g, and in muscle from one pig, but not in liver from any of the pigs. Bicozamycin was not detected in any of the samples taken 3 or 5 days after withdrawal.Abbreviations AUC area under the plasma concentration-time curve - C max peak concentration - T max time of the peak - t 1/2 elimination half-life  相似文献   

18.
The aim of this study was to establish an integrated pharmacokinetic/pharmacodynamic (PK/PD) modeling approach of acetylkitasamycin for designing dosage regimens and decreasing the emergence of drug‐resistant bacteria. After oral administration of acetylkitasamycin to healthy and infected pigs at the dose of 50 mg/kg body weights (bw), a rapid and sensitive LC–MS/MS method was developed and validated for determining the concentration change of the major components of acetylkitasamycin and its possible metabolite kitasamycin in the intestinal samples taken from the T‐shape ileal cannula. The PK parameters, including the integrated peak concentration (Cmax), the time when the maximum concentration reached (Tmax) and the area under the concentration–time curve (AUC), were calculated by WinNonlin software. The minimum inhibitory concentration (MIC) of 60 C. perfringens strains was determined following CLSI guideline. The in vitro and ex vivo activities of acetylkitasamycin in intestinal tract against a pathogenic strain of C. perfringens type A (CPFK122995) were established by the killing curve. Our PK data showed that the integrated Cmax, Tmax, and AUC were 14.57–15.81 μg/ml, 0.78–2.52 hR, and 123.84–152.32 μg hr/ml, respectively. The PD data show that MIC50 and MIC90 of the 60 C. perfringens isolates were 3.85 and 26.45 μg/ml, respectively. The ex vivo growth inhibition data were fitted to the inhibitory sigmoid Emax equation to provide the values of AUC/MIC to produce bacteriostasis (4.84 hr), bactericidal activity (15.46 hr), and bacterial eradication (24.99 hr). A dosage regimen of 18.63 mg/kg bw every 12 hr could be sufficient in the prevention of C. perfringens infection. The therapeutic dosage regimen for C. perfringens infection was at the dose of 51.36 mg/kg bw every 12 hr for 3 days. In summary, the dosage regimen for the treatment of C. perfringens in pigs administered with acetylkitasamycin was designed using PK/PD integrate model. The designed dose regimen could to some extent decrease the risk for emergence of macrolide resistance.  相似文献   

19.
The study was aimed at investigating the pharmacokinetics of amoxicillin trihydrate (AMOX) in olive flounder (Paralichthys olivaceus) following oral, intramuscular, and intravenous administration, using high‐performance liquid chromatography following. The maximum plasma concentration (Cmax), following oral administration of 40 and 80 mg/kg body weight (b.w.), AMOX was 1.14 (Tmax, 1.7 h) and 0.76 μg/mL (Tmax, 1.6 h), respectively. Intramuscular administration of 30 and 60 mg/kg of AMOX resulted in Cmax values of 4 and 4.3 μg/mL, respectively, with the corresponding Tmax values of 29 and 38 h. Intravenous administration of 6 mg/kg AMOX resulted in a Cmax of 9 μg/mL 2 h after administration. Following oral administration of 40 and 80 mg/kg AMOX, area under the curve (AUC) values were 52.257 and 41.219 μg/mL·h, respectively. Intramuscular 30 and 60 mg/kg doses resulted in AUC values of 370.274 and 453.655 μg/mL·h, respectively, while the AUC following intravenous administration was 86.274 μg/mL·h. AMOX bioavailability was calculated to be 9% and 3.6% following oral administration of 40 and 80 mg/kg, respectively, and the corresponding values following intramuscular administration were 86% and 53%. In conclusion, this study demonstrated high bioavailability of AMOX following oral administration in olive flounder.  相似文献   

20.
Five lactating cows were given benzydamine hydrochloride by rapid intravenous (0.45 mg/kg) and by intramuscular (0.45 and 1.2 mg/kg) injection in a crossover design. The bioavailability, pharmacokinetic parameters and excretion in milk of benzydamine were evaluated. After intravenous administration, the disposition kinetics of benzydamine was best described using a two-compartment open model. Drug disposition and elimination were fast (t 1/2: 11.13±3.76 min;t 1/2: 71.98±24.75 min; MRT 70.69±11.97 min). Benzydamine was widely distributed in the body fluids and tissues (V d(area): 3.549±1.301 L/kg) and characterized by a high value for body clearance (33.00±5.54 ml/kg per min). After intramuscular administration the serum concentration-time curves fitted a one-compartment open model. Following a dose of 0.45 mg/kg, theC max value was 38.13±4.2 ng/ml at at max of 67.13±4.00 min; MAT and MRT were 207.33±22.64 min and 278.01±12.22 min, respectively. Benzydamine bioavailability was very high (92.07%±7.08%). An increased intramuscular dose (1.2 mg/kg) resulted in longer serum persistence (MRT 420.34±86.39 min) of the drug, which was also detectable in milk samples collected from both the first and second milking after treatment.Abbreviations HPLC high-pressure liquid chromatography - IC50 concentration to inhibit the activity of an organism by 50% - IM intramuscular(ly) - IV intravenous(ly) - NSAID non-steroidal antiinflammatory drugs - pK a negative logarithm of the ionization constant (K a) of a drug; other abbreviations are listed in footnotes to tables  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号