首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
咸阳市郊菜地土壤中邻苯二甲酸酯(PAEs)污染研究   总被引:6,自引:1,他引:5  
选择咸阳市郊4块典型菜地,采集59个表层土壤样品,利用高效液相色谱(HPLC)分析了土壤中邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸正二丁酯(DnBP)、邻苯二甲酸苄基丁基酯(BBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)和邻苯二甲酸正二辛酯(DnOP)6种美国环境保护部(US EPA)优控的PAEs含量,研究了土壤中PAEs的分布特征、构成特征、环境来源及污染水平。结果表明,咸阳市郊菜地土壤中这6种PAEs均有不同程度的检出,检出率为DMP(100%)=DnBP(100%)DEHP(98%)BBP(80%)DnOP(66%)DEP(52%);单个PAEs化合物含量从未检出到6 313.36μg·kg-1,含量顺序为DnBPDEHPDMPDnOPBBPDEP;6种PAEs总量(∑6PAEs)在128.60~10 288.42μg·kg-1之间,平均含量为632.10μg·kg-1;不同菜地土壤中∑6PAEs含量顺序为曹家寨郭村八兴滩东张村。与国内外已有研究结果比较发现,咸阳市郊菜地土壤中PAEs含量处于中等水平,土壤中PAEs主要以DnBP、DEHP和DMP为主。主成分分析和聚类分析表明,咸阳市郊菜地土壤中DEHP和DnBP主要来源于地膜的使用,DMP、DEP、BBP和DnOP与个人护肤品、化妆品及室内装修材料有关。根据美国纽约州土壤PAEs控制和治理标准,咸阳市郊菜地土壤中DMP和DnBP分别有100%和85%的样品超过该控制标准,是主要控制污染物,但均未超过该治理标准。  相似文献   

2.
土壤邻苯二甲酸酯(PAE)污染对生态环境和农产品安全均构成威胁。为实现PAE污染土壤的生物修复,明确共代谢基质对微生物降解PAE的影响机制,从PAE污染的大蒜中筛选获得能降解PAE的内生菌。通过生理生化特征和16S rRNA基因测序对其种属进行了鉴定,并研究了内生菌对6种PAE的共代谢降解特性,优化了共代谢降解条件,初步探索了共代谢条件下内生菌对PAE的降解代谢途径。结果表明:从大蒜中共筛选出3株能降解PAE的内生菌DGB-1、DGB-3和DGB-8,经鉴定3者皆为巨大芽孢杆菌(Bacillus megaterium)。3株菌株均能以6种PAE为碳源生长,但处理3 d后PAE的降解率仅0.89%~10.40%,降解能力较弱。添加D-纤维二糖为共代谢基质后,3株菌株对6种PAE的降解率均显著提升,其中菌株DGB-1和DGB-3处理3 d后能完全降解20 mg/L质量浓度的邻苯二甲酸二丁酯(DBP)和邻苯二甲酸丁苄酯(BBP)。以DGB-1为供试菌株,发现吐温80添加量、碳源种类、碳源浓度和接菌量对6种PAE的降解率均有显著影响,最佳降解条件为吐温80添加量0.025%,碳源为D-纤维二糖...  相似文献   

3.
一株DBP高效降解菌的筛选及降解特性研究   总被引:2,自引:0,他引:2  
邻苯二甲酸二丁酯(DBP)属邻苯二甲酸酯(PAEs),DBP与基质间非共价键连接,是环境污染物。由于DBP性质相对稳定,微生物降解是其降解主要途径。试验从荒废污染设施土壤中成功筛选一株DBP高效降解菌,经16S r RNA比对与剑菌(Ens ife r sp.)相似度为99%,将其命名为DNB-S2。经研究发现DNB-S2最适生长条件为:温度35℃;p H 7.0;DBP浓度500 mg·L~(-1);转速125 r·min~(-1)。DNB-S2能利用高浓度DBP,在500 mg·L~(-1)DBP浓度下,48 h内降解率达95%。底物广谱性研究发现DNB-S2可降解PAEs家族中其他污染物邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)。为PAEs污染的生物降解提供理论基础和技术支持。  相似文献   

4.
利用平板分离技术,以5种邻苯二甲酸酯类物质(DMP、DEP、DBP、DEHP、DOP)为能源和碳源,对巢湖底泥进行驯化培养,从中筛选出活性菌株DM1,经鉴定,该菌为皮氏伯克霍尔德氏菌(Burkholderia pickettii)。气相色谱分析的结果表明:B.pickettii.z-1菌对五种混合体系邻苯二甲酸酯的降解趋势符合一级动力学方程:,且随着基质邻苯二甲酸酯浓度梯度的增加,PAEs的降解速率减小。B.pickettii.z-1菌对不同PAEs化合物的降解速率差别很大,较短侧链的DMP和DEP降解较快,较长侧链的DEHP、DOP降解较慢。  相似文献   

5.
甜菜-牧草体系对土壤中4种邻苯二甲酸酯的修复研究   总被引:3,自引:0,他引:3  
通过室内盆栽试验,研究了甜菜与黑麦草、苜蓿、苏丹草分别间作及4种植物各自单作对土壤中邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸丁基苄基酯(BBP)和邻苯二甲酸(2-乙基己基)二酯(DEHP)4种邻苯二甲酸酯类(PAEs)的植物修复效果。结果表明:与空白对照相比,种植植物的修复效果更好;苜蓿单作与间作都有较好的修复效果,其中甜菜/苜蓿间作PAEs的去除率最高,可达66.48%;植物单作与间作相比,间作的修复效果高于单作,间作增强土壤中过氧化氢酶和磷酸酶的活性,从而促进了根际微生物对PAEs的降解;就单一污染物来说,DBP和DEHP在污染土壤和植物茎叶中的浓度较其他两种污染物高,两者在土壤中的去除率也较高,其中DEHP为最高,均可达50%以上,DBP的去除率也在40%以上;DEHP在植物茎叶中的生物富集系数明显较低,且单作低于间作,而DBP和BBP的生物富集系数较高。可选择苜蓿作为土壤中PAEs修复的一种高效修复植物,植物间作相对于单作有更好的修复效率,也可更高效地利用土地资源,因此可优先选择作为植物修复的一种种植模式。  相似文献   

6.
【目的】明确吐鲁番区域设施菜地土壤和蔬菜中PAEs的含量水平及健康风险。【方法】采集吐鲁番市设施蔬菜基地土壤和蔬菜样品各27个,使用气相色谱-质谱联用检测方法检测了土壤和蔬菜中16种PAEs的含量,采用美国环保署推荐的评估模型对检出的PAEs进行了人体暴露健康风险评价。【结果】土壤中检出了5种PAEs,分别为DMP、DEP、DBP、DEHP、DIBP,检出率为100%,∑PAEs在7.66~71.80μg/kg,平均值为26.57μg/kg。其中DIBP、DBP和DEHP分别占总量的60.9%、18.8%和17.8%。蔬菜中检出了DMP、DEP、DIBP、DBP、DEHP、BBP、DCHP 7种PAEs,∑PAEs在41.12~807.63μg/kg,平均值为237.98μg/kg,其中DIBP、DEHP和DBP三者占总量的91.8%。蔬菜与土壤样品中∑PAEs、DMP、DEP、DIBP、DEHP的含量具有显著相关性,相关系数分别为0.524、0.724、0.498 2、0.502 2、0.456 2。PAEs单体的非致癌风险值(HQ)均小于1,DEHP和BBP的致癌风险值(CR)小于...  相似文献   

7.
试验模拟低中高3个污染水平、6种PAEs(DMP、DEP、DIBP、DBP、BBP和DEHP)的污染,利用课题组前期筛选出的高效降解真菌,尖孢镰刀菌PO-Yi (Fusarium oxysporum),通过盆栽试验进一步研究其对蔬菜(辣椒、茄子)土壤中PAEs的降解作用。结果表明, PO-Yi可以不同程度地促进蔬菜(辣椒和茄子)土壤中PAEs的降解,其中绝对降解率最高的为DEP,在20 mg/kg的PAEs污染水平时,达39.5%,比10 mg/kg的PAEs提高了14.2%,对辣椒土壤中的降解效果要比茄子土壤中的降解效果好;尖孢镰刀菌PO-Yi菌对3种污染程度不同的辣椒土壤和茄子土壤都有良好的生物修复表现,30d内能将总量60 mg/kg PAEs降解76.8%和63.1%;菌株PO-Yi、土著微生物和不同蔬菜作物(辣椒与茄子)在PAEs复合污染的盆栽土壤中表现出对土壤PAEs降解的协同效应。  相似文献   

8.
为了进一步研究土壤中主要邻苯二甲酸酯(PAEs)污染物的微生物修复,选择邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)作为目标污染物,采用富集驯化法从设施菜地土壤中筛选出一株可同时降解邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)的细菌AS001。通过形态、生理生化特征、16S rDNA序列分析,初步鉴定为节杆菌属(Arthrobacter sp.),重点考察了该菌株在不同转速、pH、初始浓度、接菌量和温度条件下对邻苯二甲酸酯的降解特性。结果表明,菌株AS001的最佳降解条件为:转速175 r·min-1,pH 7.0,初始浓度100 mg·L-1,接菌量4%,温度35 ℃,且不同条件下菌株对DBP的降解效果高于对DEHP的降解效果。为该区域土壤中PAEs污染修复的环境条件提供一定的理论依据。  相似文献   

9.
邻苯二甲酸酯降解菌的筛选、降解特性及土壤修复研究   总被引:4,自引:3,他引:1  
为寻找高效邻苯二甲酸二(2-乙基己基)酯(DEHP)降解菌,采用富集培养法从城市污水处理厂活性污泥中分离筛选出一株DEHP降解菌并命名为ASW6D。通过扫描电镜、16S r RNA同源性序列分析,初步将菌株ASW6D鉴定为分枝杆菌属(Mycobacterium sp.)。菌株ASW6D可在较宽温度(20~40℃)和pH(5~10)范围下高效降解DEHP,其最适生长降解条件为30℃、pH 8.0,3 d内可将初始浓度为500 mg·L~(-1)的DEHP降解82.87%。进一步采用GC-MS分析DEHP降解的中间产物,推测出DEHP的生物代谢途径为先通过β-氧化缩短DEHP侧链,生成邻苯二甲酸二丁酯(DBP),再将DBP转化为邻苯二甲酸(PA)。将菌株ASW6D接种到DEHP污染的土壤,可将土壤中DEHP去除率提高58.67%,表明ASW6D在PAEs污染环境生物修复方面的应用具有一定的潜力。  相似文献   

10.
在广东省汕头市蔬菜产区共采集63个表层土壤样品和26个蔬菜样品,采用GC-FID检测方法分析了样品中被美国国家环保署(EPA)优先控制的6种邻苯二甲酸酯(PAEs)化合物含量,并对其污染分布、污染程度进行了评价.结果表明,汕头市蔬菜产区土壤样品中6种PAEs化合物总浓度(∑PAEs)范围为0.018~9.303 mg·kg-1,平均含量为0.721 mg·kg-1,检出率为100%,5个蔬菜产区土壤中∑PAEs的平均含量大小顺序依次为潮阳区>龙湖区>澄海区>潮南区>金平区,与美国土壤6种优控的PAEs控制标准相比,邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二正丁酯(DBP)和邻苯二甲酸丁基苄基酯(BBP)含量均超过控制标准,超标率分别为38.1%、6.3%、6.3%和3.2%.蔬菜样品中∑PAEs含量范围为0.454~19.193 mg·kg-1,平均含量7.158 mg·kg-1,不同产区内蔬菜中∑PAEs的平均含量顺序依次为潮阳区>澄海区>潮南区>金平区>龙湖区,潮阳区和潮南区蔬菜中DBP含量均高于美国和欧洲建议标准,存在健康风险.DBP在土壤-蔬菜样品中占∑PAEs总量的百分比较高,是汕头市PAEs污染物的主要组成部分;蔬菜-土壤中的∑PAEs、邻苯二甲酸二(2-乙基)己酯(DEHP)和邻苯二甲酸二正辛酯(DnOP)存在显著正相关性,Pearson相关系数(r)分别为0.7(P=0.016)、0.825(P=0.002)和0.813(P=0.002).不同蔬菜对土壤中6种PAEs化合物的富集能力存在明显差异,但对∑PAEs的富集系数均大于1.因此,在蔬菜产区土壤质量评价过程中,应重视蔬菜自身特性对PAEs吸收和富集的影响.  相似文献   

11.
为探讨中国地膜产品中塑化剂的含量与安全性,于2019年和2020年开展全国范围地膜抽检活动,在购入的294份地膜产品中随机抽取69份,依照《聚乙烯吹塑农用地面覆盖薄膜》(GB 13735—2017)和《全生物降解农用地面覆盖薄膜》(GB 35795—2017)国家标准,对其厚度、颜色与力学性能进行了检测;并依照《食品安全国家标准食品接触材料及制品邻苯二甲酸酯的测定和迁移量的测定》(GB 31604.30—2016)标准测定了地膜样品中6种优先控制类邻苯二甲酸酯类塑化剂的初始含量,包括邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二甲酯(DMP)和邻苯二甲酸二正辛酯(DNOP);分析了地膜塑化剂含量与地膜材料、颜色、厚度及力学性能的关系,并对地膜塑化剂产生的土壤环境风险进行评估。结果显示:抽检的地膜产品中6种邻苯二甲酸酯(PAEs)塑化剂检出率为100%,其中聚乙烯地膜中6种邻苯二甲酸酯总量(Σ_6PAEs)平均值为13.4 mg·kg~(-1),包括DEHP和DBP两种类型;生物降解地膜中Σ_6PAEs平均含量为32.5 mg·kg~(-1),显著高于聚乙烯地膜,且除含有DEHP和DBP外还有少量DMP和DEP。当地膜中塑化剂全部释放至0~20 cm土层且不发生迁移和降解等情况时,地膜应用每年对土壤塑化剂的贡献为0.000 4~0.001 0 mg·kg~(-1),与土壤平均塑化剂(1.0 mg·kg~(-1))含量和土壤塑化剂风险阈值(10 mg·kg~(-1))相比,对农田土壤造成塑化剂污染的风险较小。研究表明,我国地膜产品中塑化剂含量基本处于安全范围,地膜应用对土壤塑化剂的贡献微乎其微。地膜塑化剂的含量与材料密切相关,与颜色、厚度和力学性能无关。  相似文献   

12.
一株DMP降解菌的分离鉴定及特性研究   总被引:1,自引:1,他引:0  
为分离邻苯二甲酸二甲酯(DMP)降解菌,本研究以长期覆盖塑料废弃物垃圾场的土壤为试材,采用选择性培养基筛选降解DMP的菌株,并研究其降解和生长特性。结果表明,分离获得了一株能降解DMP的菌株QD15-1,根据其菌落的形态特征、生理生化试验及16S rDNA碱基序列同源性分析,鉴定QD15-1为Paracoccus sp.,革兰氏阴性。底物利用试验表明,菌株QD15-1具有降解多种邻苯二甲酸酯(PAEs)的能力;以DMP为唯一碳源,菌株QD15-1生长的最佳条件为pH 8,温度30℃;动力学试验表明,降解DMP过程符合一级动力学方程,随着DMP初始浓度的增加,半衰期缩短;该菌株中含有降解PAEs的基因——邻苯二甲酸双加氧酶基因(PApht Ab)和3,4-二羟基-3,4-二氢邻苯二甲酸脱氢酶基因(PApht B)。液相质谱试验表明,降解的中间产物有邻苯二甲酸单酯、邻苯二甲酸,推测其降解DMP的途径为:将DMP降解成邻苯二甲酸单酯,再分解成邻苯二甲酸(PA),通过PApht Ab和PApht B的作用进一步降解。综上所述,QD15-1是一株高效降解DMP的菌株,在修复DMP污染方面有一定的应用前景。  相似文献   

13.
建立了牛奶中邻苯二甲酸二(2-甲氧基)乙酯(DMEP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-丁氧基)乙酯(DBEP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP)、邻苯二甲酸二己酯(DHXP)、邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二正辛酯(DNOP)共9种邻苯二甲酸酯(PAEs)的高效液相色谱-串联质谱(HPLC-MS/MS)测定方法。样品经正己烷提取后,用LC-Si固相萃取柱净化,以甲醇和甲酸-乙酸铵缓冲溶液为流动相,梯度洗脱,采用HPLC-MS/MS电喷雾正离子(ESI+)电离,多反应监测(MRM)模式检测,外标法定量。9种PAEs在2~200 ng/mL范围内均具有良好的线性关系,相关系数不低于0.9983,平均加标回收率为88.0%~103.1%,相对标准偏差均小于10%。该方法准确、灵敏、高效、环保,适用于牛奶中多种PAEs的同时测定。  相似文献   

14.
为了解黔南地区表层土壤中酞酸酯类污染物的分布特征,对该地区表层土壤中6种酞酸酯类(PAEs)物质的含量进行了GC/FID内标法定量分析.测定结果表明,该地区酞酸酯类污染物总含量(ΣPAEs)在0.38~1.26 mg/kg,主要以DBP和DEHP为主,二者总含量约占ΣPAEs的90.5%.被测样品中均未检出邻苯二甲酸二乙酯(DEP)和邻苯二甲酸二正辛酯(DOP).  相似文献   

15.
为探讨邻苯二甲酸酯(PAEs)在土壤-植物系统中的残留和累积状况,检测了不同厚度(0.012、0.010、0.008 mm)和不同降解类型地膜中PAEs的含量,动态比较了地膜处理方式(填埋和暴晒)对PAEs在土壤中的残留情况,通过田间试验分析了不同覆膜年限(5、15、25 a)对土壤和玉米籽粒PAEs累积的影响。结果表明:0.012 mm的加厚地膜PAEs含量高于普通(0.008 mm)地膜,可降解地膜中PAEs的含量高于PE地膜,检出PAEs同系物分别为DMP、DEP、DBP、DEHP和DNOP共5种,其中DBP和DEHP含量较高。大田处理90 d后发现,不同降解类型地膜填埋处理的土壤PAEs含量平均高出暴晒处理1.49倍,表明土壤PAEs含量受地膜处理方式的影响。随着覆膜种植年限的延长,玉米地土壤PAEs累积增加,其中以DBP和DEHP增加最明显。玉米籽粒中仅检测到PAEs同系物DBP,且土壤中PAEs含量与籽粒中的呈显著正相关,说明玉米会吸收土壤中的PAEs并转移到籽粒中。  相似文献   

16.
土壤酸碱性和有机质含量对邻苯二甲酸酯纵向迁移的影响   总被引:1,自引:0,他引:1  
以4种优先控制邻苯二甲酸酯类(PAEs)为研究对象,设置土壤pH值为5.2、6.2、7.0、8.3、9.1,有机质含量为9.9、21.2、30.6、41.7、50.4 g/kg,采用土柱淋滤模拟实验,土柱上层为PAEs污染土(3 cm),下层为不含PAEs的清洁土(20 cm),研究了土壤酸碱性和有机质含量对PAEs纵向迁移的影响.结果表明,土壤pH值为9.1时淋滤后污染和清洁土中4种PAEs总含量最低,总淋出率最高,可达98.0%;污染土中邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)的迁移不受土壤pH值影响,但邻苯二甲酸二辛酯(DOP)在强碱性土壤中更易迁移;清洁土中各PAEs均是在pH为6.2时的含量较高,其中DMP和DEP在土壤底层含量最高,但DBP和DOP在土壤上层含量最高.土壤有机质含量为9.9 g/kg时4种PAEs总含量最低,淋出率最高,达82.4%;不同有机质条件下污染土中DMP、DEP和DBP的迁移没有差异,DOP在低有机质含量土壤中更易迁移;总体上有机质含量为30.6~50.4 g/kg的清洁土柱DEP、DBP、DOP的含量更高,不易迁移.  相似文献   

17.
2株邻苯二甲酸酯高效降解菌的筛选鉴定及其降解性能   总被引:1,自引:1,他引:0  
为获得用于修复邻苯二甲酸酯(PAEs)污染的高效降解菌,通过富集培养的方法从土壤中筛选出2株PAEs降解菌(RXX-2、RXX-3),经形态观察、生化鉴定和16S r DNA序列分析对菌株进行了鉴定,并对其降解性能进行了分析。结果表明:菌株RXX-2和RXX-3初步鉴定为食异源物鞘氨醇菌(Sphingobium xenophagum)和鳗败血假单胞菌(Pseudomonas anguilliseptica)。菌株RXX-2降解PAEs的最佳条件为p H 8、温度30℃、转速175 r·min~(-1)、接种量1.5%;菌株RXX-3降解PAEs的最佳条件为p H 7、温度30℃、转速175 r·min~(-1)、接种量1.0%。在最佳降解条件下,经过5 d的培养,菌株RXX-2对邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)的降解率分别达到71.43%和52.85%,RXX-3对DBP和DEHP的降解率分别达到98.98%和62.96%,表明2株降解菌在PAEs污染环境的生物修复方面具有良好的应用前景。  相似文献   

18.
为探究寿光设施菜地PAEs污染分布特征及在农产品中的富集状况,采集了寿光某镇0~8年棚龄共16个大棚的设施菜地土壤和农产品,采用加速溶剂萃取-高效液相色谱串联质谱技术(LC-MS/MS),对土壤-农产品(黄瓜)中PAEs含量进行了分析,结果显示:在调查的大棚中,土壤中6种优先控制的PAEs总量(∑PAEs)范围为0.453~1.615 mg·kg~(-1),均值±标准差为1.197±0.361mg·kg~(-1)。以邻苯二甲酸二(2-乙基己基)酯(DEHP)和邻苯二甲酸正二丁酯(DBP)为主,其中DEHP占∑PAEs含量的45%~77%,DBP占17%~44%。参照美国优先控制PAEs化合物的控制标准,100%的土壤样品DBP含量超过控制标准,52%的土壤样品DMP含量超过控制标准,表明调查设施菜地土壤已存在一定程度PAEs污染风险。随着种植年限(棚龄)的增长,土壤∑PAEs并非呈现线性增长态势,5年棚龄的大棚土壤∑PAEs含量最高,5年后含量稍许下降,变化比较平稳。∑PAEs与DBP、DEHP、有机质、CEC含量之间存在显著的正相关,与p H之间存在显著的负相关性。调查的农产品(黄瓜)中∑PAEs含量为0.42~1.62 mg·kg~(-1),平均为1.09 mg·kg~(-1),平均富集系数为1.02,以DEHP和DBP为主,两者合计共占PAEs总量的53%~97%。调查的农产品中PAEs含量及各组分含量均低于美国和欧洲的建议摄入标准。  相似文献   

19.
从多年地膜污染棉田土壤中分离纯化出邻苯二甲酸酯(PAEs)降解真菌,筛选分离出对PAEs降解效果良好的3株非致病真菌PAE1、PAE6、PAE8,经形态学特征及18S rDNA序列分析,分别鉴定为菌核生枝顶孢霉(Acremonium sclerotigenum)、辐毛鬼伞(Coprinellus radians)、耐盐枝孢菌(Cladosporium halotolerans).3株真菌在邻苯二甲酸二丁酯(DBP)起始质量分数为10 mg/kg时降解效率最高,PAE6降解率达68.4%.3株真菌均能降解多种PAEs,推测出其降解生物代谢路径为:PAE→单酯→PA→PCA→CO2+H2 O.将3株真菌接种到DBP及邻苯二甲酸二辛酯(DEHP)污染的土壤中,接菌后21 d,DBP及DEHP降解率分别为47.2%~70.6%、54.1%~73.4%,其中PAE6对DEHP的降解率最高,达73.4%.表明3株真菌对土壤中DBP及DEHP污染具有良好的修复作用.  相似文献   

20.
应用液相色谱-质谱联用技术,优化、建立22个邻苯二甲酸酯(PAEs)成分的检测体系,在此基础上,对PAEs胁迫土壤栽培、水栽培的蕹菜茎叶、根、土壤、水等进行检测,研究PAEs成分迁移规律。结果表明:不同样品中PAEs成分的检出率为40.91%~95.45%,邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二异癸酯(DIDP)、邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二苯酯(DPHP)为检测样品中共有的检出成分;随PAEs胁迫浓度的提高,叶-茎中DIBP含量整体呈减少趋势,根中DIBP含量整体呈增加趋势;栽培方式、分析样品种类是影响DIBP检出的主效应因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号