首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
郭涛  颜安  耿洪伟 《麦类作物学报》2020,40(9):1129-1140
为快速、准确地估测不同生育时期小麦品种(系)株高与叶面积指数(LAI)表型性状,基于各生育时期小麦品种(系)数字正射影像(digital orthophoto map,DOM)和数字表面模型(digital surface model,DSM),分别构建不同生育时期株高估测模型和光谱指数LAI估测模型。借助一元线性回归、多元逐步回归(SMLR)和偏最小二乘回归(PLSR)分析方法,并采用决定系数(r)、均方根误差(RMSE)和归一化均方根误差(nRMSE)综合性评价指标,筛选出小麦不同生育时期最优的株高和LAI估测模型。结果表明,(1)全生育期株高估测效果最好,模型预测值与实测值高度拟合(r、RMSE、nRMSE分别为0.87、5.90 cm、9.29%);在各生育时期中,灌浆期模型预测精度较好,成熟期预测精度最差,r分别为0.79和0.69。(2)所选的18种光谱指数与LAI相关性均较好,其中BGRI、RGBVI、NRI和NGRDI的相关系数达到极显著水平,且各时期三种回归估测模型均表现出较高的稳定性和拟合效果,其中SMLR回归模型对各生育时期LAI预测精度最好,其拔节期、孕穗期、扬花期、灌浆期和成熟期的预测集r分别为0.68、0.57、0.61、0.68和0.53。这说明,基于无人机获取的不同生育时期小麦DSM影像提取株高,并运用18种光谱指数构建LAI估测模型方法是可行的。  相似文献   

2.
为探讨基于神经网络对小麦地上部生物量(aboveground biomass,AGB)进行遥感估测的可行性,在江苏省泰州泰兴市、盐城大丰区和宿迁沭阳县布设冬小麦大田试验,在对冬小麦近红外波段反射率(near-infrared band reflectance,REFnir)、红光波段反射率(red band reflectance,REFred)、归一化差值植被指数(normalized difference vegetation index,NDVI)、差值植被指数(difference vegetation index,DVI)、比值植被指数(ratio vegetation index,RVI)、土壤调节植被指数(soil adjusted vegetation index,SAVI)和优化土壤调节植被指数(optimized soil adjusted vegetation index,OSAVI)等7个遥感光谱指标与冬小麦生长指标(LAI和AGB)进行相关性分析基础上,构建基于BP神经网络的冬小麦AGB估测模型,并与多元线性回归估测模型进行精度比较。结果表明,冬小麦拔节期REFred、NDVI、RVI、SAVI、OSAVI和LAI与AGB之间存在较好相关性,其中LAI与AGB的相关性最高(相关系数为0.782),SAVI与AGB的相关性最低(相关系数为0.647)。利用BP神经网络建立的冬小麦AGB估测模型AGBBP的决定系数(r)为0.918,均方根误差(root mean square error,RMSE)为582.9 kg·hm-2,平均相对误差(average relative error,ARE)为18.4%。利用多元线性回归分析建立的冬小麦AGB估测模型AGBRAr为0.784,RMSE为871.1 kg·hm-2, ARE为32.6%。利用冬小麦抽穗期AGB实测数据再对模型AGBBP和AGBRA进行验证,其RMSE分别为1 140.4和1 676.7 kg·hm-2, ARE分别为20.5%和33.1%。由此可以看出,冬小麦估测模型AGBBP精度优于模型AGBRA,说明利用多个遥感光谱指标结合LAI建模可以有效提高冬小麦AGB的估测精度。  相似文献   

3.
不同生育时期冬小麦叶面积指数地面高光谱遥感模型研究   总被引:1,自引:0,他引:1  
为建立不同生育时期冬小麦叶面积指数(LAI)的高光谱遥感预测模型,2017年在荥阳和鹤壁大田区域进行野外试验,利用便携式光谱仪ASD FieldSpec Handheld测量不同生育时期冬小麦冠层高光谱数据,使用LAI2200冠层分析系统采集冬小麦冠层LAI。通过对高光谱数据进行不同形式的变换以及高光谱特征变量的计算,并与叶面积指数进行相关分析。结果表明,在拔节-抽穗期,LAI与Dr(红边幅值)、SDr(红边面积)、VI3(红边面积SDr与蓝边面积SDb的比值指数)、VI5(红边面积SDr与蓝边面积SDb的归一化指数)、VI6(红边面积SDr与黄边面积SDy的归一化指数)的相关性较大,相关系数均大于0.85;在开花-乳熟期,LAI与Rr(红谷反射率)、VI1(绿峰反射率Rg与红谷反射率Rr的比值指数)、VI2(绿峰反射率Rg与红谷反射率Rr的归一化指数)、VI3、VI5的相关性较大,相关系数均大于0.7,且均通过0.01水平显著性检验。因此,拔节-抽穗期选择变量Dr、SDr、VI3、VI5、VI6作为估算模型的自变量;开花-乳熟期选择变量Rr、VI1、VI2、VI3、VI5作为估算模型的自变量。拔节-孕穗期叶面积指数单变量估算模型中大部分变量的二次模型决定系数较大,其中VI3、VI5、lg(1/ρ676)、dρ750/dλ750的二次模型决定系数超过0.6,拟合程度较高,同时dρ750/dλ750的RMSE值最小,因此认为以dρ750/dλ750为自变量的二次模型最优。开花-乳熟期单光谱变量建立的叶面积指数估算各类模型中大部分参数的指数模型决定系数较大,其中Rr、VI3、VI5的指数模型决定系数超过0.7,拟合程度最高,同时VI5的RMSE值最小,因此认为以VI5为自变量的指数模型最优。  相似文献   

4.
基于无人机多时相遥感影像的冬小麦产量估算   总被引:1,自引:0,他引:1  
为高效准确地预测小麦产量,以浙江省冬小麦为研究对象,利用四旋翼无人机精灵4多光谱相机获取冬小麦5个关键生育时期(拔节期、孕穗期、抽穗期、灌浆期、成熟期)的冠层多光谱数据,选取多光谱相机的五个特征波段计算各生育时期的72个植被指数,分别通过逐步多元线性回归(SMLR)、偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机(SVM)、随机森林(RF)构建不同生育时期的产量估算模型,最后采用决定系数(R)、均方根误差(RMSE)和相对误差(RE)对估算模型进行评价,筛选出最优估算模型。结果表明,基于随机森林建立的模型估算效果最优,SMLR、PLSR和SVM三种方法建立的模型估算效果接近。利用随机森林算法所建拔节期、孕穗期、抽穗期、灌浆期、成熟期模型的R、RMSE和RE分别为0.92、0.35、11%;0.93、0.33、10%;0.94、0.32、9%;0.92、0.36、9%;0.77、0.67、33%。模型验证时,抽穗期估算效果最好(R、RMSE和RE分别为0.91、0.35和15%),拔节期、孕穗期、灌浆期估算效果接近且有很好的估算能力,成熟期估算精度最差(R、RMSE和RE分别为0.71、0.47和13%)。由此说明,结合机器学习算法和无人机多光谱提取的植被指数可以提高小麦产量估算效果。  相似文献   

5.
基于高光谱的倒伏冬小麦产量预测模型研究   总被引:1,自引:0,他引:1  
为利用高光谱遥感技术对倒伏小麦产量进行准确、快速地估算,选取在乳熟期发生不同程度倒伏的两个春性冬小麦品种为材料,利用光谱仪测定了不同倒伏级别下小麦冠层光谱反射率,研究植被指数与产量及其构成因素间的相关性,最终建立快速、有效估测倒伏小麦产量的数学模型。结果表明,不同级别倒伏对小麦千粒重和产量的影响均达显著水平(P<0.05),随倒伏级别的增加,千粒重和产量均呈降低趋势,二者最高降幅分别为10.72%和17.69%。对倒伏小麦产量与冠层光谱反射率进行相关分析,在350~690 nm波段,相关系数随波长的增加总体呈下降趋势;在690~760 nm波段,相关系数呈上升趋势,在764 nm处,相关系数绝对值达最大,为0.734。千粒重与DVI570,670的相关系数值最高,产量与DVI764,407的相关性最好,且都通过了0.01水平检验。利用植被指数-千粒重-产量构建的反演模型,可提高模型预测精度,与单因子植被指数-产量模型、多因子植被指数-产量模型相比,能更好地反演不同倒伏程度的小麦产量。  相似文献   

6.
为了比较不同机器学习算法在干旱半干旱区春小麦叶片水分含量(leaf water content,LWC)遥感监测中的应用效果及筛选最佳波段组合,在田间尺度上,以春小麦冠层高光谱数据为基础,采用两波段组合形式,计算15种光谱参数(比值植被指数RVI、归一化植被指数NDVI、差值植被指数DVI和12种水分植被指数),通过对抽穗期叶片含水量与光谱参数拟合效果进行对比与分析,分别构建了基于机器学习[人工神经网络(artificial neural network,ANN)、K近邻(K-nearest neighbors,KNN)和支持向量回归(support vector regression,SVR)]和光谱参数的春小麦LWC反演模型,并对模型精度进行验证,以确定有效波段组合。结果表明,小麦抽穗期LWC与冠层高光谱反射率(R784~950)、12种水分植被指数均显著相关(P<0.01);波段组合形式有效地优化了两波段指数的波段组合,在800~1 000 nm区间光谱参数(RVI1046,1057、NDVI1272,1279、DVI1272,1279)的波段组合计算明显提升了其对LWC的敏感性;在不同的机器学习算法中,基于两波段组合光谱参数的KNN算法所见模型对LWC的预测效果(r=0.64,RMSE=2.35,RPD=2.01)优于ANN、SVR两种算法。这说明两波段光谱指数和KNN算法在春小麦叶片水分含量的高光谱遥感估算中具有一定的优势。  相似文献   

7.
基于光谱指数的冬小麦冠层叶绿素含量估算模型研究   总被引:4,自引:0,他引:4  
为探索对冬小麦冠层叶绿素含量反应敏感的高光谱波段组合,同时比较不同光谱指数对小麦冠层叶绿素含量的估测效果,通过分析350~2 500nm波段范围内原始光谱反射率及其一阶导数光谱的任意两两波段交叉组合而成的主要高光谱指数与冬小麦冠层叶片叶绿素含量的定量关系,建立冬小麦冠层叶绿素含量估算模型。结果表明,选用归一化光谱指数(NDSI)、比值光谱指数(RSI)、差值光谱指数(DSI)和土壤调节光谱指数(SASI)建立的冬小麦冠层叶绿素含量监测模型决定系数均大于0.71,标准误差均小于1.842。利用独立试验资料进行检验,表现最好的是RSI(FD_(689),FD_(609))和SASI(R_(491),R_(666))L=0.01,预测精度高达98.2%,模型精确度和可靠性较高。  相似文献   

8.
为提高返青期-拔节期-开花期-灌浆期不同覆盖条件下小麦冠层含水量的遥感反演精度,综合分析基于Nir-Red和Nir-Swir光谱特征空间开展作物含水量监测的优势与局限,利用垂直干旱指数(perpendicular drought index,PDI)和短波红外垂直失水指数(shortwave infrared perpendicular water stress index,SPSI)的比值形式,构建了一种基于近红外-红波段-短波红外(Nir-Red-Swir)三波段光谱特征空间的垂直植被水分指数(three-band perpendicular vegetation water index,TPVWI)。结果表明,在不同生育时期,TPVWI与小麦冠层含水量(vegetation water content,VWC)均具有显著相关关系(P<0.01),且对植被含水量的敏感性优于PDI、作物水分监测指数(plant water index,PWI)、SPSI和NDVI 4种植被指数,且在反映小区域内小麦冠层含水量的时空趋势上有较好的表征能力。对比地面实测数据,利用TPVWI建立的作物含水量估测模型的预测精度较高,r与RMSE分别为0.763和2.296%,说明利用综合Nir-Red-Swir三波段光谱空间特征的植被水分指数在监测不同覆盖条件下的作物含水量具有一定的可行性,可丰富当前作物冠层含水量遥感监测的理论方法。  相似文献   

9.
为探讨遥感信息和作物生长模型在作物估产方面的优势互补特性,选取河北省藁城市冬小麦作为研究对象,采集多个关键生育时期的生理生化、农田环境、气象等数据,并获取准同步的环境减灾小卫星HJ-CCD影像数据,采用植被指数反演冬小麦叶面积指数(LAI),基于扩展傅里叶振幅灵敏度检验法(EFAST)对WOFOST作物模型的26个初始参数进行全局敏感性分析,筛选敏感性参数,调整WOFOST模型的核心参数,利用查找表优化算法构建基于WOFOST模型和遥感LAI数据同化的区域尺度冬小麦单产预测模型,并定量预测区域冬小麦单产水平。结果表明,增强型植被指数(EVI)是遥感反演LAI的最佳植被指数(开花期建模r=0.913,RMSE=0.410,灌浆期建模r=0.798,RMSE=0.470),预测能力最强(开花期r=0.858,RMSE=0.531,灌浆期r=0.861,RMSE=0.428);筛选出6个待优化参数,即TSUM1、SLATB1、SLATB2、SPAN、EFFTB3和TMPF4;产量预测精度r=0.914,RMSE=253.67 kg·hm-2,找到了待优化参数的最佳取值,最终完成了单产模拟。  相似文献   

10.
为充分利用高光谱数据红边区域对冬小麦叶绿素含量进行估算,以关中地区冬小麦为研究对象,基于红边波段反射率的一阶导数进行连续小波变换,对变换后得到的小波系数与叶绿素含量进行相关性分析,选取相关性较好的小波系数分别结合偏最小二乘法(PLS)、BP神经网络(BPNN)算法、随机森林(RF)算法和XGBoost算法构建冬小麦叶绿素含量估算模型。结果表明:(1)通过对建模数据和验证数据的决定系数(R)、均方根误差(RMSE)和相对分析误差(relative predictive derivation,RPD)进行比较,利用XGBoost算法构建的估算模型表现最好;(2)通过XGBoost算法的特征重要性分析得到13个有效小波系数,将其与7个红边指数共同作为自变量代入XGBoost算法发现,优化后的模型精度得到显著提高,建模集决定系数(R=0.91)和验证集决定系数(R=0.802)分别提高了1.34%和11.54%。这说明该方法可以作为一种挖掘高光谱敏感特征信息的途径来估算冬小麦叶绿素含量。  相似文献   

11.
为及时准确高效监测小麦叶面积指数(leaf area index,LAI),获取了冬小麦挑旗期和开花期地面实测光谱与无人机高光谱遥感影像数据,并基于查找表建立PROSAIL辐射传输模型得到冬小麦冠层模拟光谱数据,利用数学统计回归模型与偏最小二乘回归法分别构建冬小麦LAI单变量、多变量预测模型,以实测LAI数据对预测结果进行精度评价,将最佳预测模型应用于无人机高光谱影像以分析LAI空间分布情况。结果表明,冬小麦各生育时期的预测模型均具有较高的预测精度,单变量预测模型和多变量预测模型的决定系数分别为0.598~0.717和0.577~0.755,其中以基于植被指数的多变量预测模型表现最优,其在开花期的验证精度最高,RMSE和MAPE分别为0.405和12.90%。在LAI空间分布图中,开花期预测效果优于挑旗期,各试验小区的LAI分布较为均匀。  相似文献   

12.
为了丰富大田尺度下冬小麦叶面积指数的遥感估算方法并提高估算精度,以关中地区冬小麦为对象,基于Sentinel-2多光谱卫星数据与地面同步观测的冬小麦叶面积指数样点数据,应用偏最小二乘回归(PLSR)、反向传播神经网络(BPNN)和随机森林(RF)法构建冬小麦叶面积指数估算模型,进行区域冬小麦叶面积指数遥感反演。结果表明,Sentinel-2多光谱卫星影像中心842nm近红外B8波段与冬小麦叶面积指数相关性最好,样本总体相关系数为0.778;植被指数中反向差值植被指数(IDVI)与冬小麦叶面积指数相关性最好,样本总体相关系数为0.776。各种估算模型中LAI-RF模型预测效果最佳,r~2为0.72,RMSE为0.53,RE为16.83%。基于LAI-RF估算模型,应用Sentinel-2多光谱卫星数据较好地反演了研究区冬小麦叶面积指数区域分布,其结果总体上与地面真实情况接近,说明以Sentinel-2卫星影像数据建立LAI-RF估算模型,可应用于区域冬小麦LAI反演制图。  相似文献   

13.
利用单一植被指数估测叶面积指数存在高光谱遥感丰富的波段信息易丢失和外界因素干扰大的缺点,但若将波段信息全部引入模型又会增加建模难度。为解决利用多波段信息估测叶面积指数的问题,利用主成分分析法(PCA)对光谱数据进行降维,之后将提取的主成分与最小二乘支持向量机(LS-SVM)模型相结合,构建冬小麦叶面积指数的高光谱估测模型,并与以4类植被指数作为LS-SVM输入参数建立的模型进行比较。结果表明,以主成分作为LS-SVM模型的输入参数建立的模型精度最高,模型检验集R2为0.71,检验集RMSE为0.56,估测结果较使用植被指数作为输入参数建立的模型精度高,稳定性好。该方法可为利用多波段信息进行大范围冬小麦叶面积指数的无损测定提供参考。  相似文献   

14.
To determine the most sensitive spectral parameters for powdery mildew detection, hyperspectral canopy reflectance spectra of two winter wheat cultivars with different susceptibilities to powdery mildew were measured at Feekes growth stage (GS) 10, 10.5, 10.5.3, 10.5.4 and 11.1 in 2007–2008 and 2008–2009 seasons. As disease indexes increased, reflectance decreased significantly in near infrared (NIR) regions and it was significantly correlated with disease index at GS 10.5.3, 10.5.4 and 11.1 for both cultivars in both seasons. For the two cultivars, red edge slope (drred), the area of the red edge peak (Σdr680−760 nm), difference vegetation index (DVI) and soil adjusted vegetation index (SAVI) were significantly negatively correlated with disease index at GS 10.5.3, 10.5.4 and 11.1 in both seasons. Compared with other parameters, Σdr680−760 nm was the most sensitive parameter for powdery mildew detection. The regression models based on Σdr680−760 nm were constructed at GS 10.5.3, 10.5.4 and 11.1 in both seasons. These results indicated that canopy hyperspectral reflectance can be used in wheat powdery mildew detection in the absence of other stresses resulting in unhealthy symptoms. Therefore, disease management strategies can be applied when it is necessary based on canopy hyperspectral reflectance data.  相似文献   

15.
为了解连续小波转换对利用冬小麦冠层高光谱数据反演叶片含水量精度的提高效果,以河北省衡水市安平县为研究区,基于野外高光谱数据,提取、筛选其光谱特征敏感波段,应用光谱指数、连续小波变换进行光谱处理,并采用偏最小二乘法构建冬小麦叶片含水量的定量反演模型。结果表明,连续小波变换可明显凸显冬小麦冠层光谱特征,提升其对叶片含水量的敏感性。在连续小波变换下,基于1尺度构建的冬小麦叶片含水量的反演模型为最优模型,模型的决定系数(r~2)和RMSE分别为0.756和0.994%,独立样本验证时r~2和RMSE分别为0.766和1.713%,说明反演模型的拟合效果和预测精度均较高。因此,利用连续小波变换可将冠层光谱信息进行二次分配,能有效将有益信息与噪声信息进行分离,提升光谱信息对冬小麦叶片水含量的敏感性,增强冬小麦叶片水含量的预测能力与稳定性。  相似文献   

16.
为提高冬小麦覆盖度估测精度,从增强近红外与红光差别的数学变换原理出发,构建了一种新型植被指数(NDVIn),再基于2013、2014年冬小麦冠层高光谱和模拟的资源三号卫星宽波段多光谱数据,分别构建基于常规植被指数(NDVI)与NDVIn的冬小麦覆盖度估算模型,然后利用留一交叉验证法对模型精度进行评价。结果表明,当n=6时,新生成的植被指数NDVI6对冬小麦农田覆盖度具有最好的估算性能,利用其基于小麦冠层高光谱及卫星多光谱数据建立的冬小麦覆盖度估算模型的决定系数r2分别为0.84、0.85,RMSE分别为0.092、0.091,模型精度均好于常规指数NDVI的估算结果。说明NDVI6用于估测冬小麦覆盖度具有可行性。  相似文献   

17.
The applicability of the hyperspectral data from the canopy to the prediction of wheat grain quality was assessed for winter wheat. A training experiment and a validation experiment with contrasting nitrogen (N) levels and different cultivars were conducted, respectively, at different locations in Beijing, China. The wheat canopy spectral reflectance over 350–2500 nm, leaf N concentration and chlorophyll (Chl) concentration were measured at different growth stages, and the grain protein content was also determined after harvest. Eight vegetation indices (VIs) were compared relating to leaf N concentration, and the result indicated that the plant pigment ratio (PPR, (R550−R450)/(R550+R450)), a Chl-based index, was most applicable to predict wheat grain protein due to its significant correlation with leaf N concentration at the post-anthesis stage. Based on the relationships among PPR, leaf Chl concentration, leaf N concentration, and grain protein content, the statistical prediction models of grain protein content for Zhongyou9507 (a hard winter wheat) and Jingdong8 (a semi-hard winter wheat) were developed. The root mean square error (RMSE) of the 18 DAA (days after anthesis) model of Zhongyou9507 was 0.175; those of the anthesis model and the 11 DAA model of Jingdong8 were 0.238 and 0.982, respectively. Taking both the precision and accuracy into account, the 18 DAA model of Zhongyou9507 and the anthesis model of Jingdong8 were recommended to predict grain protein content for each cultivar. The result demonstrated that PPR could be used to assess grain quality of winter wheat.  相似文献   

18.
模拟多光谱卫星传感器数据的冬小麦白粉病遥感监测   总被引:1,自引:0,他引:1  
为了解利用遥感技术快速大范围监测小麦白粉病病害情况的可行性,以Landsat5TM波段响应函数为基础,将地面实测冠层高光谱数据模拟为TM多光谱数据,从而分析卫星传感器多光谱波段对病害的响应情况,并构建多光谱指数(PMSI)估测白粉病严重度。在此基础上,采用2010年星-地配套数据对PMSI估测精度进行验证。结果表明,PMSI能够较准确地反映冬小麦白粉病发生的程度,获得较理想的病情严重度反演精度(r2=0.475,RMSE=0.129)。因此采用多光谱卫星遥感影像在小麦大面积种植区域进行病害监测具有应用潜力。  相似文献   

19.
为了探讨多角度遥感在白粉病胁迫下监测小麦叶绿素含量的适宜角度,以易感白粉病品种偃展4110和中感白粉病品种国麦301为试验材料,获取三种不同生长环境(病圃田、接种田和自然感病田)下抽穗至灌浆期小麦冠层多角度反射光谱及叶绿素含量,分析不同时期叶绿素含量变化及其与多角度反射率的关系,建立白粉病胁迫下小麦叶绿素含量监测模型。结果表明,由红边波段构建的光谱参数对白粉病胁迫下叶绿素含量变化反应敏感。优化筛选出的植被指数与叶绿素含量之间的相关性在前向角度观测时优于垂直角度观测,而垂直观测角度好于后向角度观测,整体上以前向20°最佳。植被指数中,光谱参数RES(红边对称度)表现较好,在前向20°下的监测精度达0.725。因此,在前向20℃观察条件下可用RES对白粉病危害后小麦冠层叶绿素含量变化进行有效监测。  相似文献   

20.
为提高冬小麦冠层光谱对叶绿素含量的估算精度,以陕西省乾县冬小麦为研究对象,利用SVC-1024i光谱仪和SPAD-502型叶绿素仪实测了冬小麦冠层反射率和叶绿素含量,分析了一阶导数光谱、10种特征参数和9种植被指数与叶绿素含量的相关性,并利用主成分分析(PCA)对叶绿素敏感的可见光波段(390~780 nm)一阶导数光谱进行降维,将特征值大于1的主分量结合特征参数和植被指数形成不同的输入变量,用偏最小二乘回归和随机森林回归构建冬小麦冠层叶绿素估算模型,并利用独立样本对模型进行验证。结果表明,小麦冠层叶绿素含量与一阶导数光谱在751 nm处的相关性最高(r=0.71),特征参数中红边蓝边归一化(SDr-SDb)/(SDr+SDb)与叶绿素含量的相关性最高(r=0.66),植被指数(VI)中修正归一化差异指数(mND705)相关性最高(r=0.74)。在输入变量相同的情况下,基于随机森林(RF)回归的预测模型均优于偏最小二乘回归(PLSR)模型,其中PCA-VI-RF模型的各精度指标均达到最优(r2=0.94,RMSE=1.05,RPD=3.70),是冬小麦冠层叶绿素...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号