首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
基于视觉伺服控制的机器人手眼标定和逆运动学求解一直是视觉伺服领域的核心问题。随着应用场景的逐渐复杂,传统手眼标定方法已无法满足需求;随着网络深度的增加,单一BP神经网络逆运动学求解算法的误差趋于饱和甚至变大,无法进一步提升网络性能。针对以上问题,本文将手眼标定和逆运动学求解融合为拟合目标图像坐标到机器人各关节角之间的映射关系问题,提出了一种残差BP神经网络算法。使用多个残差网络模块的方式加深BP神经网络的深度,残差模块的输入信息可以在网络内跨层传输,较好地解决了因深度增加网络模型容易产生梯度消失而无法提升网络性能的问题;通过6自由度机器人雅可比方程对逆运动学解的空间进行划分,确定了8个独立的区域,基于独立区域方法对训练数据进行处理,从而避免了多自由度机器人逆运动学多解对网络学习的影响,网络训练精度提升了2个数量级,训练速度提高了2倍。在REBot-V-6R型6自由度机器人输送线分拣系统中进行二维平面抓取和三维实物抓取实验,实验结果验证了该方法的准确性。结果表明,该方法比1层BP神经网络、3层BP神经网络、5层BP神经网络的训练精度分别提高了4个数量级、2个数量级、5个数量级,测试精度提高2个数量级;与传统标定方法相比,本文方法节约了逆运动学求解过程的计算成本,抓取位姿精度提高了1个数量级。  相似文献   

2.
针对采摘机器人领域传统的张正友相机标定方法存在对相机模型参数初值敏感和标定结果不稳定等问题,提出一种基于改进混合蛙跳和LM算法的相机标定方法。该方法把相机标定划分为两步:(1)以混合蛙跳优化为工具,求出相机模型参数的初始值,避免传统张正友相机标定方法直接求取相机模型的参数初值所带来的初值敏感问题。(2)以改进LM算法对第1步求出的相机模型参数初值进行非线性优化求精,避免张正友相机标定方法须求取相机模型优化参数的雅可比矩阵,从而导致标定结果不稳定的问题。采用Open CV编写采摘机器人双目视觉标定系统,分别对传统张正友相机标定方法、基于遗传算法的相机标定方法、基于标准混合蛙跳算法的相机标定方法和本文相机标定方法进行相机标定试验。试验结果表明:本文相机标定方法所获得的左相机焦距的绝对误差为0. 065~0. 506 mm、相对误差为1. 899%~12. 652%,平面靶标图像特征点的平均像素误差为0. 166~0. 175像素;右相机焦距的绝对误差为0. 083~0. 360 mm、相对误差为2. 429%~11. 484%,平面靶标图像特征点的平均像素误差为0. 103~0. 114像素;双目相机之间距离的绝对误差为1. 866~2. 789 mm、相对误差为3. 209%~4. 874%。以上参数精度及收敛速度和稳定性均优于其他相机标定方法,从而验证了该方法所获得的相机标定参数具有较高的准确性和可靠性。  相似文献   

3.
张正友法的摄像机标定试验   总被引:1,自引:0,他引:1  
针对机器视觉领域的摄像机标定问题,采用介于自标定与传统标定之间张正友法,对Sunway-130D数字摄像机进行标定。本研究首先阐述张正友法标定原理,即利用针孔模型匹配模板平面与其所成图像中的角点,计算出图像和模板之间的单应性矩阵,利用该单应矩阵线性解出摄像机内部参数,并由单应矩阵求出理想成像模型下的摄像机外部参数。然后考虑非线性畸变因素,求出畸变系数的初始值,最后对所有的标定参数进行迭代修正,通过非线性优化得到所有标定参数的最优解。制作模板并采集模板图像,利用MATLAB提取模板图像角点坐标并进行标定。结果表明:该方法可以有效地对摄像机进行标定;绝大多数偏差在(-1.5,1.5)像素之间,个别偏差超过1.5个像素,达到像素级精度,有较高标定精度。研究结果为进一步研究农业机械机器人奠定基础。  相似文献   

4.
基于向量内积的机器人实时逆解算法   总被引:1,自引:0,他引:1  
为提高6R机器人逆运动学求解算法的实时性,提出了一种基于向量内积变换的实时高效逆运动学求解算法.将复杂的矩阵方程转换为含有6个未知关节变量的10个纯代数逆运动学方程,并在方程的简化过程中引入符号运算预处理,避免了大量浮点运算带来累积误差.通过相关方程的优化线性组合,有效避免了5、6两关节变量求解时产生增根的情况,大幅提高了逆解算法的效率.试验结果表明,同等求解精度要求下该逆解算法相比于其他算法具有更强的实时性,得到精确的8组封闭解平均仅需0.014 ms,能满足机器人的在线控制要求.  相似文献   

5.
为提高6R机器人逆运动学求解算法的实时性,提出了一种基于向量内积变换的实时高效逆运动学求解算法。将复杂的矩阵方程转换为含有6个未知关节变量的10个纯代数逆运动学方程。并在方程的简化过程中引入符号运算预处理,避免了大量浮点运算带来累积误差。通过相关方程的优化线性组合,有效避免了5、6两关节变量求解时产生增根的情况,大幅提高了逆解算法的效率。试验结果表明,同等求解精度要求下该逆解算法相比于其他算法具有更强的实时性,得到精确的8组封闭解平均仅需0.014ms,能满足机器人的在线控制要求。  相似文献   

6.
采摘机器人视觉伺服策略研究——基于回归数据挖掘的   总被引:2,自引:0,他引:2  
为了实现采摘机器人的准确抓取控制、路径识别和自主导航功能,提出了一种基于回归数据挖掘计算模型的机器人视觉伺服控制系统。首先利用双目相机获取果实图像,然后利用拉普拉斯变换和高斯滤波方法对图片进行平滑和增强处理,并利用Canny算法对图像边缘进行检测和分割处理,完成图像的预处理。对图像进行目标识别,提取图像的特征,并采用回归数据挖掘方法对滤波图像进行检验,最终通过计算得到果实图像的中心位置,将中心位置利用控制器反馈给控制中心,控制中心发出指令,控制末端执行器完成果实的采摘作业。对机器人视觉伺服系统进行了测试,结果表明:利用采摘机器人视觉伺服系统可以准确地计算果实的中心位置,实测位置和计算位置的吻合程度较高,视觉伺服系统的计算的稳定性较好。  相似文献   

7.
基于双目视觉技术的猪生长监测系统标定模   总被引:3,自引:0,他引:3  
针对养猪生产中对猪体生长监测的需求,设计了基于双目视觉的猪生长监测系统的软、硬件,实现了基于非线性摄像机模型双目视觉系统的标定算法.根据摄像机成像原理建立了基于最小二乘法的空间点坐标检测算法.利用标定和检测算法,从标定板图像数目、标定板位置、旋转角度3个方面对系统的标定模式进行了研究.结果表明:利用19幅以上标定板图像能够得到稳定的标定结果;不同位置的标定板图像对检测精度影响较大,应当在全视场内采集标定板图像;标定板的旋转角度对检测精度影响不明显,但是旋转角度增大不利于标定点的完全提取.  相似文献   

8.
针对传统农业机器人抓取过程中视觉识别番茄果实尺寸和姿态存在枝叶遮挡的问题,提出了一种基于视触觉感知的番茄尺寸和姿态解析方法。在果实抓取过程中通过视触觉传感器得到果实外轮廓接触局部点云信息,然后通过相机参数标定以及各手指关节变换矩阵,将不同传感器坐标系下的点云信息变换到同一基坐标系下,进而通过点云改进PCA算法和ICP算法解析抓取果实的尺寸和姿态信息。为了评估所提出解析方法的性能,在实验室环境下进行了番茄尺寸和姿态检测试验。通过游标卡尺测量和深度相机扫描分别获得番茄果实尺寸和姿态的真实值,并与本文方法解析结果进行对比。检测试验结果表明,本文方法获得的番茄横向尺寸和纵向尺寸平均相对误差分别为8.66%和11.08%,番茄果轴与视场投影面的水平夹角和垂直偏转角平均相对误差分别为10.03%和14.02%。本文方法解析的番茄果实尺寸与姿态信息,可应用于番茄果实抓取过程中的姿态调控,从而提高番茄果实抓取采摘的可靠性。  相似文献   

9.
智能抓取搬运机器人能够高效、可靠地完成各种搬运任务,降低工作人员的劳动强度,精准的物体定位是机器人执行搬运任务的基础。本文研究了基于Kinect的机器人抓取系统,可实现物体的类别检测、物体定位及机器人抓取任务。抓取系统由3个子系统(物体检测系统、物体定位系统及机器人抓取系统)组成。首先利用Kinect采集的物体图像信息训练单次多盒检测(Single multi-box detection,SSD)模型,然后根据SSD模型对物体的类别进行检测,得到物体在图像中的边框,并获取边框中物体像素坐标和深度,接着通过Kinect相机手眼标定法将像素坐标和深度转换到机器人基坐标系中,实现物体的定位,最后通过机器人逆运动学求解关节角,驱动机器人运动完成抓取搬运任务。对机器人进行了物体的定位和抓取实验,实验结果表明,物体的定位误差较小,物体抓取搬运实验的平均成功率达到97%,满足物体的抓取搬运需求。  相似文献   

10.
针对传统采棉机器人因单一视角和二维图像信息带来的视觉感知局限问题,本文提出了一种多视角三维点云配准方法,以增强采棉机器人实时三维视觉感知能力。采用4台固定位姿的Realsense D435型深度相机,从不同视角获取棉花点云数据。通过AprilTags算法标定出深度相机RGB成像模块与Tag标签的相对位姿,并基于深度相机中RGB成像模块与立体成像模块坐标系间的转换关系,解算出各个相机间点云坐标的对应变换,进而实现点云间的融合配准。结果表明,本文配准方法的全局配准平均距离误差为0.93cm,平均配准时间为0.025s,表现出较高的配准精度和效率。同时,为满足采棉机器人感知的实时性要求,本文对算法中点云获取、背景滤波和融合配准等步骤进行了效率分析及优化,最终整体算法运行速度达到29.85f/s,满足采棉机器人感知系统实时性需求。  相似文献   

11.
并联机器人末端位姿精度对其工作性能影响较大,建立有效的标定算法是提高机器人位姿精度的重要保证。本文以一种2TPR&2TPS并联机构为研究对象,首先对机器人进行运动学分析,采用全微分法得出机器人的误差模型,根据该模型得出机器人结构参数误差与末端位姿误差的量化关系,以及各误差项误差变动对末端位姿误差的影响规律;接着,建立参数辨识模型和标定效果评价函数,验证了参数辨识模型的有效性,再用该模型辨识机器人的结构参数误差;最后,修正运动学模型完成了机器人的误差标定。实验结果显示,标定后机器人的平均位置精度提升68.62%,距离误差均值由7.710 mm降至2.350 mm,精度提升69.52%,实验结果证明本文的标定算法有效。  相似文献   

12.
为解决移动机器人在同时定位和建图(Simultaneous localization and mapping,SLAM)技术中普遍存在状态精度不高、稳定性差、计算复杂等问题,提出一种基于迭代平方根中心差分卡尔曼滤波(Iterated square root central difference Kalman filter,ISRCDKF)的SLAM自主定位算法,以满足SLAM过程中的实时性、准确性等要求。该算法使用中心差分变换处理SLAM的非线性问题,避免了泰勒公式展开中雅可比矩阵复杂运算;同时在滤波更新过程中,通过直接传递协方差矩阵的平方根因子减少算法的复杂度;在迭代观测更新过程中,使用列文伯格-马夸尔特(Levenberg-Marquardt,L-M)优化方法引入调节参数,实时修正协方差矩阵,达到提高算法精度、增强稳定性的目的。仿真结果表明,在相同的数据模型和噪声环境下,本文提出的ISRCDKF-SLAM算法与基于扩展卡尔曼滤波(Extended Kalman filter,EKF)的SLAM算法、无迹卡尔曼滤波(Unscented Kalman filter,UKF)的SLAM算法和容积卡尔曼滤波(Cubature Kalman filter,CKF)的SLAM算法相比,均方根误差分别降低了47.3%、32.7%和25.0%;与相同计算复杂度的UKF-SLAM算法和CKF-SLAM算法相比,新算法的运行时间分别减少了15.1%和10.8%。将新算法嵌入到移动机器人平台进行现场实验验证,进一步证明了该算法的实用性和有效性。  相似文献   

13.
并联机器人具有高速、高刚度和大负载等明显优势,被广泛应用到农业和工业领域,但多关节导致该类机器人控制精度不高。针对大空间运动3-RRRU并联机器人的运动学建模和误差标定方法展开了系统、深入研究。综合应用DH法和空间矢量法建立了机器人的运动学模型,在此基础上,借助偏微分理论推导并建立机器人的误差模型;应用激光跟踪仪进行不同轨迹下机器人的空间位置数据采集,对一般遗传算法进行改进,以等步距搜索策略实现主要遗传算子的优化,并通过全局数值寻优获取机器人的误差补偿数据,完成标定和补偿工作。实验表明:基于直线标定方式,补偿后直线轨迹跟踪误差控制在0.14~1.34mm,但不适用于曲线轨迹补偿,其实测补偿后的最大误差高达5.08mm。曲线轨迹标定精度高于直线轨迹标定,补偿后将直线和曲线两种路径下的最大误差分别降低至1.18mm和1.56mm。该标定方法自动化程度高,适用于含有大量关节并联机器人的误差标定工作。  相似文献   

14.
对提出的一种半对称三平移Delta-CU并联机器人机构进行误差建模和实验分析。在规划执行末端运动轨迹的基础上,采用外部直接标定和修正系统输入的方法对机构的运动学误差进行补偿。在外部直接标定的过程中,为降低系数矩阵中的随机测量误差对执行末端坐标精度的影响,利用整体最小二乘法求解坐标变换参数;以误差数据为样本,通过模糊神经网络模型进行训练,并将训练好的模糊神经网络模型用于Delta-CU并联机器人机构的误差值预测。实验表明,模糊神经网络模型能够对Delta-CU并联机器人机构误差进行精准的预测,有利于提高Delta-CU并联机器人机构的补偿精度,可为Delta-CU并联机器人机构误差补偿提供参照。补偿后其绝对位置精度由1.187 mm提高到0.4 mm,重复位置精度由0.037 mm提高到0.018 mm。  相似文献   

15.
截面最小二乘圆心偏心误差运动的分离方法   总被引:1,自引:0,他引:1  
被测截面的最小二乘圆心不但是被测截面圆度误差的评定基准,也是圆柱度形状误差的重构基准,由于采用误差分离技术分离出的回转误差运动是截面最小二乘圆心的偏心误差运动和纯回转误差运动的叠加,有效地提取截面最小二乘圆心的位置,一直是研究难题。通过对圆度误差的分离过程和分离出的回转误差运动进行分析,利用三角函数序列的正交性,提出了一种不涉及回转轴纯回转误差运动的一阶谐波分量,完整提取截面最小二乘圆心偏心误差运动的分离方法,并通过实验验证了该项技术的正确性。  相似文献   

16.
运动学参数误差是影响工业机器人绝对定位精度的主要因素,通过误差标定能够有效地提高工业机器人的精度。运动学模型的完整性、连续性与冗余性对运动学参数的辨识精度影响较大。为尽可能地提高机器人的标定精度,并易于实现机器人误差补偿,本文提出一种基于ZRM-MDH模型转换的机器人运动学参数标定方法。首先,基于零参考模型(ZRM)建立TX60型串联工业机器人的位姿误差模型,结合测量位姿误差辨识ZRM的参数;其次,基于圆点分析法将ZRM转换成MDH模型。在TX60型机器人前侧工作区域内任意选择50个测量点,实施运动学参数误差标定。实验表明,基于MDH模型标定后的机器人平均综合定位误差为0.081 mm,而经过ZRMMDH模型转换后的机器人平均综合定位误差为0.062 mm。为验证标定方法的稳定性,在TX60型机器人前侧工作区域内,选择5个区域实施运动学参数误差标定,结果表明,基于ZRM-MDH模型转换获得的标定精度稳定性相对较好。  相似文献   

17.
基于启发式动态规划的履带机器人路径跟随控制方法   总被引:1,自引:0,他引:1  
针对移动机器人传统路径跟随控制方法需要人工调校参数、缺乏自主优化能力的问题,提出了一种基于启发式动态规划(Heuristic dynamic programming, HDP)的路径跟随控制方法。首先,设计履带式机器人路径跟随控制系统结构,建立了误差状态方程;其次,提出了一种基于HDP算法的路径跟随控制方法,综合误差性能指标和跟随稳定性指标设计了回报函数,采用多层前馈神经网络逼近评价器和执行器,并推导了网络参数的在线优化规则;最后,通过数值仿真和系统试验验证了HDP方法的路径跟随性能。试验结果证明,基于HDP算法的控制器跟随直线的平均误差绝对值为0.04m、均方根误差为0.06m;跟随钝角转向曲线的平均误差绝对值为0.01m、均方根误差为0.06m;跟随锐角转向曲线的平均误差绝对值为0.03m、均方根误差为0.09m。该方法不需要对控制参数进行反复调试就能够获得较好的控制效果,提高了移动机器人路径跟随控制方法的环境适应性和自主优化能力。  相似文献   

18.
根据温室环境下移动机器人作业的实时路径规划要求,提出一种基于改进A^*算法与动态窗口法相结合的温室机器人路径规划算法。针对传统A^*算法搜索算法拐点过多的问题,对关键点选取策略进行改进,融合动态窗口法,构建全局最优路径评价函数,采用超声传感器进行局部避障,实现实时最优的路径规划。仿真实验结果证明,与传统A^*、Dijkstra、RRT算法相比,基于改进A^*算法的路径更为平滑和高效。真实环境下实验表明,移动机器人能够实现自主导航,跟踪误差保持在0.22 m以内、定位误差不大于0.28 m,能够满足实际需求。  相似文献   

19.
针对工业机器人在高度制造领域精度不高的问题,本文提出了一种基于POE模型的工业机器人运动学参数二次辨识方法。阐述了基于指数积(Product of exponential,POE)模型的运动学误差模型构建方法,并建立基于POE误差模型的适应度函数;为实现高精度的参数辨识,提出了一种二次辨识方法,先利用改进灰狼优化算法(Improved grey wolf optimizer, IGWO)实现运动学参数误差的粗辨识,初步将Staubli TX60型机器人的平均位置误差和平均姿态误差分别从(0.648mm,0.212°)降低为(0.457mm,0.166°);为进一步提高机器人的精度性能,再通过LM(Levenberg-Marquard)算法进行参数误差的精辨识,最终将Staubli TX60型机器人平均位置误差和平均姿态误差进一步降低为(0.237mm,0.063°),机器人平均位置误差和平均姿态误差分别降低63.4%和70.2%。为了验证上述二次辨识方法的稳定性,随机选取5组辨识数据集和验证数据集进行POE误差模型的参数误差辨识,结果表明提出的二次辨识方法能够稳定、精确地辨识工业机器人运动学参数误差。  相似文献   

20.
刚柔耦合空间闭链机器人轨迹跟踪与振动抑制研究   总被引:1,自引:0,他引:1  
张青云  赵新华  刘凉  戴腾达 《农业机械学报》2021,52(2):401-407,415
针对含多变量高维度空间刚柔耦合闭链机器人的轨迹跟踪和振动抑制问题,提出了一种基于前馈补偿的PD控制方法。首先,采用有限元法对柔性空间构件进行离散,基于浮动坐标系描述柔性构件位移场矢量,并根据Lagrange方程建立考虑刚性末端执行器微小位移的刚柔耦合空间并联机器人动力学模型;然后,利用前馈控制对预先求出的含耦合效应的控制力矩进行补偿,提高刚柔耦合控制系统的响应速度及跟踪性能,同时通过PD控制律保证空间闭链机器人的轨迹精度,并对不同末端载荷作用下的轨迹跟踪精度进行分析;最后,与位置PID算法进行了比较。结果表明:与位置PID算法相比,基于控制算法作用下的刚性末端执行器轨迹精度得到提高,其中,X方向误差降低了89.7%,Y方向误差降低了4.3%,Z方向误差降低了12.9%,柔性空间构件产生的振动得到了有效抑制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号