首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Theoretical simulation of cutting edge wearing when milling wood and melamine coated particle board based on stochastical and analytical methods is presented. Abrasion, high temperature corrosion (HTC) and frictional wearing effects are discussed. Results of computations show good correlation between the observed and predicted wear rate for three different experiments. Relations between predicted tool wear rate from HTC, content (C CP) and size (S CP) of particles of hard mineral contamination and density (D) of cut material is also presented and discussed.  相似文献   

2.
Factors influencing steel tool wear when milling wood   总被引:2,自引:0,他引:2  
The wear of high speed steel cutting tools after milling wood of four selected wood species was studied. For the experiments wood specimens were chosen with very different silica contamination, wood density, and high temperature corrosivity (HTC) of wood towards tool material. Analyses performed show that the silica content and wood density display poor linear correlation with the cutting tools wear, while the correlation of the HTC appeared very good. The silica contamination and the HTC effects overshadow each other. Thus, a theoretical multivariable simulation of the cutting edge wearing process, employing all experimental variables, was applied, providing a very good explanation of the analyzed problem.  相似文献   

3.
Soil affects the anatomy of downy birch wood (Betula pubescens), which raises the question whether the growth of this species differs between mineral and peat soils. The aim of this study was to compare growth, density and structure of xylem of B. pubescens between trees grown in different soils. Both growth and density differed between trees grown in different soils. All measured anatomical characteristics, except double thickness of fibre walls, percentage vessel area and ray number, showed differences between the soil types: the cell dimensions were larger and numbers smaller in trees grown in mineral soil. In peat, high growth rates decreased the wall:lumen ratio of fibres in maturing wood, while no such correlation was observed in trees grown in mineral soil at any studied cambial age. In addition, axial parenchyma may have a different role in trees grown in different soils, as the rapid growth decreased and increased axial parenchyma in mineral and peat soil, respectively. The characteristics affecting wood strength were more similar between trees grown in different soils than those affecting water conductance. The observed differences between trees grown in different soils emphasise rapid growth particularly at young ages and shorter reasonable rotation period in mineral soil.  相似文献   

4.
With emphasis on tree breeding for wood quality in Picea jezoensis, we aimed to evaluate radial and between-family variations in the microfibril angle (MFA) of the S2 layer in the latewood tracheids in 10 open-pollinated families of 43-year-old P. jezoensis trees. In addition, the relationships between MFA/wood density with the modulus of elasticity (MOE) or modulus of rupture (MOR) were investigated. Significant differences in MFA between families were found from the pith toward the bark. MFA showed higher values around the pith area, although some families showed relatively lower values than others around this area. In addition, due to a larger coefficient of variations of MFA near the pith, the potential for juvenile wood MFA improvement may be greater compared with mature wood. MOE was correlated with MFA in juvenile wood and with wood density in mature wood, whereas MOR was mainly correlated with wood density at radial positions in both woods. Therefore, to improve the MOE and MOR of P. jezoensis wood, both MFA and wood density would be factors to consider in both juvenile and mature woods. On the other hand, there are indications that, only wood density would be an important criterion for improving mature wood properties.  相似文献   

5.
ABSTRACT

Information regarding carbon concentration and wood density are lacking in Chilimo dry Afromontane forest.

The aim of this study was to estimate carbon concentration and wood density for Allophyllus abyssinicus, Olea europaea, Olinia rochetiana, Rhus glutinosa, and Scolopia theifolia. A total of 105, 30–50 mm thick wood discs were collected and oven dried at 102°C and 67°C to constant weight, chopped and finally grinded into 0.2 mm with a grinding mill. Carbon concentration was analyzed using the ash method, while wood density was estimated using the water displacement method. The highest carbon concentration (57.12%) was found for O. rochetiana, however, the lowest carbon concentration (56.43%) was found for A. abyssinicus. Stem parts had higher carbon concentration (56.98%) than branch (56.74%) and leave (54.53%) parts. O. europaea exhibited the highest wood density (0.67 g cm?3) value than other species. However, the lowest wood density (0.42 g cm?3) was exhibited for A. abyssinicus. Wood density was also showed a decreasing trend along with increases in stem height and maximum wood density (0.62 g cm?3) was found under stump position, while, the minimum wood density (0.4 g cm?3) was found under tree commercial height.  相似文献   

6.
The efficiency of the indirect selection for wood density using the Pilodyn in Cryptomeria japonica was studied by comparing the Pilodyn penetration (PP) depth and the direct measurement of wood density in three test sites. The influence of the genotype by environment (G × E) interaction of wood density was estimated using the Pilodyn with common 12 C. japonica clones in 10 test sites in Kanto breeding region in Japan. The PP depth was highly correlated with wood density, and the genetic correlation between them was −0.88. The indirect selection using the Pilodyn realized 87% of the genetic gain obtained by the direct selection of wood density. The G × E interaction in PP depth was small. The ratio of the variance component of the G × E interaction to that of genotype was only 0.096 in the PP depth, whereas it was 0.700 in tree height and 1.410 in diameter at breast height. These findings indicate that the Pilodyn is useful for the genetic improvement of wood density in Cryptomeria japonica. The small G × E interaction in wood density estimated using the Pilodyn indicates that the relative clonal performance in wood density is stable among diverse environments in Kanto breeding region in Japan.  相似文献   

7.
Radial variations of wood properties (basic density, fiber length, vessel element length, and compression strength) in plantation-grown Casuarina equisetifolia in Bangladesh were investigated for effective utilization of the wood. Samples disks at breast height were randomly collected from trees in a 10-year-old plantation in Cox’s Bazar Forest Division, Bangladesh. The basic density showed a near-constant value up to 30 mm from the pith and then rapidly increased up to 60 mm from the pith. The fiber length and vessel element length gradually increased from the pith to bark. When radial variation of wood properties was determined according to relative distance from the pith, similar radial patterns were observed among the sample trees, indicating that the wood properties in C. equisetifolia may be related to the growth rate. The compression strength parallel to the grain (CS) increased from the pith to bark. A significant positive correlation was found between the air-dried density and the CS. The results obtained indicated that wood around the pith has a relatively low density, and wood outside the pith area has a relatively high density, suggesting that it could be used as structural lumber. Part of this report was presented at the 58th Annual Meeting of Japan Wood Research Society, Tsukuba, March 2008  相似文献   

8.
SEM and light-microscopical observations, supported by chemical microanalysis with an EDXA system, revealed that light-saturated pixels observed in X-ray negatives of sessile oak (Quercus petraea Liebl.) wood were caused by inorganic deposits present inside multiseriate ray and axial parenchyma cells. Calcium oxalate crystals, silica grains and amorphous granules with varied mineral compositions have been identified. The wood strips of three out of six sampled trees contained measurable amounts of mineral inclusions which were quantified using image analysis. Based on the variations of mineral content observed between trees and within and between annual rings of the same tree, some hypotheses were formulated concerning the factors involved in the formation of inorganic deposits in oak wood. Their occurrence varies depending on the mineral concerned and seems to be controlled largely by a tree effect. The time of formation appears to coincide with a shifting of the oak wood’s functions as a result of heartwood formation processes (inter-annual scale) or changes in leaf phenology and climate (intra-annual scale). In addition, the technical consequences of their presence as well as their effects on wood density measurements through microdensitometry are discussed.  相似文献   

9.
Genetic parameters for various wood density traits were estimated in 29-year-old trees of 18 full-sib families of hybrid larch (Larix gmelinii var. japonica × Larix kaempferi) F1. Intra-ring density variation (IDV) was also evaluated using a model that expresses the pattern curve from earlywood to latewood as a power function. A high IDV indicates an abrupt change in wood density from earlywood to latewood. The ring width and wood density traits of individual rings were determined by X-ray densitometry. Overall wood density (RD) was shown to increase with increasing ring number, ranging from 0.42–0.59 g/cm3, whereas IDV of individual rings decreased gradually from pith outwards. Estimates of individual tree narrow-sense heritability of RD and IDV were 0.66 and 0.67, respectively. IDV showed negative genetic and phenotypic correlations with RD (r g = −0.99, r p = −0.72). The predicted genetic gains in latewood proportion and IDV were higher than that of RD. These results suggest that the intra-ring density variation is under moderate genetic control equivalent to wood density. The trend of increasing wood density from earlywood to latewood was associated with changes in both tracheid diameter and cell wall thickness.  相似文献   

10.
The performance of laboratory X‐ray computed tomography (XCT) for the non‐destructive imaging of root wood was evaluated. Lateral roots of oriental cherry (Prunus serrulata var. spontanea) and Japanese zelkova (Zelkova serrata) were severed in spring and maintained in soil for 6 months. Without sectioning, XCT revealed the phloem, xylem and vascular cambium structures in the root wood. A virtual transverse section showed a ring of woundwood covering the severed, lateral root of the two trees. Different levels of X‐ray absorption were evident around the cut surfaces of P. serrulata; however, they were rarely detected in Z. serrata. More adventitious roots were observed on Z. serrata than on P. serrulata. Distinct white spots in the rays were only detected in Z. serrata. These results suggest that XCT has potential applications in forest pathology, providing virtual sections of wound closure, wood density distribution, organ redifferentiation, and mineral deposition in root wood.  相似文献   

11.
《Southern Forests》2013,75(2):147-153
Tree diameter under and over bark at breast height (dbh), wood density and bark thickness were assessed on samples from control-pollinated families of Eucalyptus grandis, E. urophylla, E. grandis × E. urophylla and E. urophylla × E. grandis. The material was planted in field trials in the coastal Zululand region of South Africa. At 75 months, between three and seven of the best trees per family were felled and wood samples collected. Genetic parameters for wood density, bark thickness and bark percentage (ratio of double bark thickness to overbark diameter) and the inter-trait correlations for the different species and hybrids were calculated. Genetic parameter estimates for wood density, bark thickness and bark percentage in the E. urophylla × E. grandis hybrids showed these traits to be under total additive genetic control. This was confirmed by the intermediate hybrid means for these traits relative to those of the parental species. There was a very low correlation between dbh and wood density for the E. urophylla × E. grandis hybrids (rG = –0.07 and rP = 0.064). Amongst the E. urophylla families there was a moderate positive and significant phenotypic correlation between wood density and bark thickness (rP = 0.391), and between wood density and bark percentage (rP = 0.442).  相似文献   

12.
Age trends in variance components and heritability of overall wood density, earlywood and latewood density, and latewood proportion were investigated in 29-year-old trees of 19 full-sib families of hybrid larch (Larix gmelinii var. japonica × Larix kaempferi) F1. The age–age correlation and optimum selection age for these traits were also estimated and genetic and phenotypic correlations between wood density and radial growth rate were calculated for each growth ring. Intraring wood density data were obtained using X-ray densitometry. The coefficient of additive genetic variance was stable over all ages, whereas the coefficient of environmental variances gradually decreased with increasing age, resulting in increases in heritability estimates with age for overall density. The latewood proportion had the highest heritability estimates at all ages, ranging from 0.44 to 0.66. Overall density and its various components at 28 years of age showed strong genetic correlations with their respective traits at all younger ages. Optimum selection ages for the wood density traits ranged from 8 to 14 years, at which point maximum gain efficiencies per year were obtained. There were negative correlations between wood density and radial growth rate at early ages, although these relationships tended to be weaker with increasing age. These results suggest that selection at a young age is effective for wood density, but particular care must be taken in selecting trees with an improved radial growth rate because rapid growth will result in a low-density wood product, especially in the early growth period.  相似文献   

13.
Flat-sawn specimens of eight wood species, albizia (Paraserianthes falkata, 0.23 g/cm3), Japanese cedar (Cryptomeria japonica, 0.31 g/cm3), red lauan (Shorea sp., 0.36 g/cm3), European spruce (Picea abies, 0.44 g/cm3), Douglas fir (Pseudotsuga douglasii, 0.50 g/cm3), elm (Ulmus sp., 0.51 g/cm3), Japanese beech (Fagus crenata, 0.64 g/cm3), and Japanese birch (Betula maximowicziana, 0.71 g/cm3), were impregnated with low molecular weight phenol-formaldehyde (PF) resin and their compressive deformations were compared. The volume gain (VG) and weight gain due to 20% resin solution impregnation were different among species. Furthermore, the specific volume gain (VG/specific gravity), indicating the degree of swelling of the cell wall, also varied from 17.7% for European spruce to 26.4% for elm. Oven-dried specimens of each species were compressed using hot plates fixed to an Instron testing machine. The deformation behavior of resin-impregnated wood up to 10MPa was significantly different among the species. Stress development during cell wall collapse for low density wood was minimal. As a consequence, a significant increment of density occurred up to 2MPa for low density wood such as albizia and Japanese cedar. When PF resin-impregnated wood was compressed up to 2MPa and the pressure was kept constant for 30min, the density of Japanese cedar reached 1.18g/cm3, about 30% higher than the density of compressed Japanese birch, which possesses an original density that is 2.5 times higher than that of Japanese cedar. The mechanical properties of resin-impregnated wood, especially low density wood, increased with density. Hence, it is manifested that low density wood species have an advantage as raw materials for obtaining high-strength wood at low pressing pressure.  相似文献   

14.
Seventy‐four half‐sib families of lodgepole pine (Pinus contorta ssp. latifolia Engelm.) plus trees were measured for vigour, height growth, stem diameter, wood density and ring width in two Swedish field trials at age 9. Height growth, wood density and ring width differed between families within provenances with variance components of 3–8 %. Coefficients of variation were highest for height growth and lowest for ring width. Heritabilities were similar for height growth and wood density but lower for ring width. These genetic parameters seemed to be equal for all provenances. Indirect selection for high dry stem biomass was more effective using height growth than wood density, and a correlated response in wood density of 2.1 % of mean by selecting the 15 highest parent trees was indicated. Juvenile wood density looks uncertain as a selection criterion for mature wood density.  相似文献   

15.
[目的]评估Resistograph钻刺法间接测定尾叶桉×细叶桉木材密度的可靠性,检测杂交亲本对子代表型的效应以及生长与木材密度的相关,评选速生、优质的尾细桉杂种。[方法]基于10株尾叶桉与10株细叶桉不完全析因交配产生的56个杂交组合的7.5年生试验林,利用79株分析容积法与Resistograph钻刺法测定的木材密度的相关,通过方差分析检测亲本对杂种生长和木材密度的效应,结合多重比较和独立淘汰法进行材积和木材密度的联合选择。[结果]容积法与Resistograph钻刺法测定的木材密度的表型相关系数为0.52(P0.001),遗传相关系数为0.55(P0.05);树高、胸径及材积的母本间和父本间均呈极显著差异(P0.001或0.01),但母本×父本互作的效应不显著;对钻刺木材密度,父本间呈极显著差异(P0.001),母本×父本互作显著(P0.05),但母本间差异不显著;树高、胸径和材积间的表型相关和遗传相关均极显著(P0.001),其与钻刺木材密度的表型相关极显著(P0.001),但遗传相关不显著;评选出速生、木材密度较高的杂交组合14个、单株17株。[结论]Resistograph钻刺法是一种间接测定尾细桉木材密度的简便、经济和可靠的方法;母本和父本选择以及母本与父本的组配对培育速生、材质优良的尾细桉杂种均较重要;尾细桉生长与木材密度的遗传相关不显著,需要对这两类性状分别进行选择;评选的尾细桉杂交组合和单株为培育速生、优质的桉树良种提供了有用的材料。  相似文献   

16.
Three drought-tolerant eucalypt genotypes have been investigated for a broad spectrum of properties to provide a basis for comparison on their suitability for various end-uses. The genotypes included were a Eucalyptus grandis × E. camaldulensis hybrid, E. gomphocephala and E. cladocalyx, selected based on previous studies that indicated good potential to tolerate arid conditions, reasonably good volume growth and straightness of stems. In this study, information was added on differences between species and parts of stems in growth (volume and biomass) and properties of wood (density and stiffness), fibres (dimensions and microfibril angle) and vessels (size and numbers). We found high wood densities and stiffness values for E. cladocalyx and E. gomphcephala, making them suitable for construction wood. Logs from the mid-part of the stem had the best timber properties, as the butt logs showed the highest microfibril angle and lowest wood stiffness due to longitudinal juvenility. Such juvenility was also to some degree observed for wood density and fibre length. The information gained will be especially helpful for selecting species and processing options for small farm and community plantations for producing higher-value products that may be sold to generate much-needed income as well as for local uses, such as fuelwood and charcoal.  相似文献   

17.
The effects of initial tree spacing on wood density at breast height were examined for 22-year-old Japanese larch (Larix kaempferi). The experiment involved the use of three plots with different initial tree spacing densities (300, 500, and 1000 trees/ha). For five trees selected from each plot, the total tree height, diameter at breast height, height to the base of the live crown, and crown diameter were measured. Ring width and wood density for individual growth rings were determined by X-ray densitometry. A mixed-effects model was applied for fitting the radial variation in wood density in relation to initial spacing. Models having various mean and covariance structures were tested in devising an appropriate wood density model. The model, consisting of the mean structure with quadratic age effects and heterogeneous first-order autoregressive covariance, was able to describe the radial variation in wood density. Closer spacing of trees (1000 trees/ha) resulted in a faster increase in wood density from the pith outward than for more widely spaced trees, indicating that initial tree spacing may influence the age of transition from juvenile to mature wood.  相似文献   

18.

Pine plantations are an important wood source in Brazil, with Pinus taeda being most frequently planted. Most pinewood is directed to the paper and pulp industry, but there is an increasing demand for wood for solid end-uses, requiring large stems from longer rotations which can be obtained using P. taeda as the canopy in two-aged stands. We evaluated radial growth and wood density at different stem heights of P. taeda in the highlands of Southern Brazil over a production period of 36 years and subjected to shelterwood harvest. Cross-sectional disks were obtained from 15 trees in different stem heights; 10 were used for growth analyses and 5 for growth and density analyses. We used disk images and X-ray techniques for growth and density analyses, respectively. Samples were analyzed for ring (width and density), earlywood, and latewood (width, density, and proportion). Ring width varied between 0.4 and 1.7 cm, with the widest rings in the first years (3–5 years.) of growth. Ring density increased with age, with higher densities on the lower stem portions. Mature wood started to be formed from the 16th ring onwards. Shelterwood harvest affected both ring width and density, but the effects on ring width lasted for at least 5 years, while the effects on wood density were short-lasting. Mature P. taeda trees increased their size after the shelterwood harvest without compromising their wood density. Longer production periods of P. taeda as retained trees in the canopy of two-aged stands provide high-quality wood for structural purposes.

  相似文献   

19.
A trial set-up with methods for sampling, treatment and analysis of small wood chips are presented in this paper, to determine important wood and fibre properties, like basic density, dry density, volume swelling of wood, Kraft pulp yield, fibre length, fibre coarseness, fibre width, lumen width and fibre wall thickness. The required time for one sample is about 1.5 man-hour, but this requires relatively larger series and trained personnel. Acceptable measurement accuracy is achieved when the volume of the wood sample is at least 1.5 ml, except that of wood volume swelling. To gain acceptable measurement accuracy for volume swelling, the wood volume should be increased to at least 3 ml, and preferably more than 5–6 ml per sample. The level of pulp yield and wood density do not show a significant effect on the measurement accuracy for fibre cross-section dimensions. Fibre coarseness, on the other hand, has a significant influence on these accuracies. A double measurement of fibre coarseness will improve the accuracy to an acceptable level. The method presented here may, together with information about trees and growth locations, form the basis for greater insight into the mechanisms involved in development of wood and fibre properties in trees, which in turn may provide better control and utilisation of wood for pulp and paper production.Abbreviations CWD cell wall density in dry wood=1500 kg/m3 - Ww dry weight of wood (kg) - Vmax green (wet) volume of wood (m3) - Vmin dry volume of wood (m3) - BD basic wood density (kg/m3) - DD dry wood density (kg/m3) - VS maximum volume swelling of wood (%) - Wp dry weight of pulp (kg) - PY pulp yield (%) - C fibre coarseness, the average weight of a unit length of fibre (g/m) - CL average chip length (mm) - CWT average cell wall thickness (m) - FW average fibre width (m) - l average native fibre length in solid wood - L chip length - lc average fibre length in wood chip (mm) - Lc length-weighted fibre length in wood chip (mm) - lw native average fibre length in wood (mm) - Lw native length-weighted fibre length in wood (mm) - LW average lumen width (m) - llw average native fibre length, length weighted, in wood - X average fibre length in chip - Xlw average fibre length, length weighted, in chip  相似文献   

20.
Abstract

Wood density is an important quality variable, closely related to the mechanical properties of the wood. Precise wood density measurements in the log sorting would enable density sorting of logs for products such as strength-graded wood and finger-jointed wood. Density sorting of logs would also give more homogeneous drying properties and thus improve the quality of the final products. By compensating the radiographs from an X-ray log scanner for the varying path lengths using outer shape data from a three-dimensional (3D) scanner, it is possible to make precise estimates of both green and dry density. Measurements on simulated industrial data were compared with densities measured in computed tomographic (CT) images for 560 Scots pine (Pinus sylvestris L.) logs. It was found that green sapwood density could be measured with predictability R 2=0.65 and root mean square error (RMSE) of 25 kg m?3. Green and dry heartwood densities were measured with similar precision: R 2=0.79 and RMSE=32 kg m?3 for green density and R 2=0.83 and RMSE=32 kg m?3 for dry density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号