首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 703 毫秒
1.
本文对中国10种人工林和4种天然林的幼龄材与成熟材及4个树种的人工林木材与天然林木材的构造特征、化学性质、物理性质、力学性质的33项材性指标差异进行了比较研究。结果表明,在幼龄材与成熟材之间,在统计上表现出差异显著性的为幼龄材比成熟材生长轮宽,管胞列数多,管胞短,直径小,微纤丝角大,密度小,径向干缩小,差异干缩大,流体扩散性高,抗弯强度、抗弯弹性模量、顺纹抗压强度、径面顺纹抗剪强度、径面抗劈力和冲击韧性低等15项,即46%的测试项目差异显著;表明在木材加工和用作结构材时应将幼龄材和成熟材视作两个性质不同的总体来考虑,在培育结构材时应研究如何缩短幼年期或改善幼年期材性。在人工林与天然林木材之间,采取人工林幼龄材性质与天然林幼龄材性质相比,人工林成熟材性质与天然林成熟材性质相比,结果表明,多数性质在统计上差异不显著,只有人工林木材比天然林木材胞壁率小、顺纹抗压强度低、差异干缩大、流体扩散性高等4项,即只有12%的很少数测试项目差异显著;表明有可能通过人工培育的方法培育出与天然林木材性质相近的木材。  相似文献   

2.
本文对中国10种人工林和4种天然林的幼龄材与成熟材及4个树种的人工林木材与天然林木材的构造特征,化学性质,物理性质,力学性质的33项材性指标差异进行了比较研究。结果表明,在幼齿林与成熟材之间,在统计上表现差异显著性的为幼龄材比成熟材生长轮宽,管胞列数多,管胞短,直径小,微纤丝角大,密度小,径向干缩法,差异干缩大,流体扩散性高,抗弯强度,抗弯弹性模量,顺纹抗压强度,径面顺纹抗剪强度,径面抗劈力和冲击  相似文献   

3.
人工林马尾松木材性质的变异   总被引:7,自引:0,他引:7       下载免费PDF全文
本文研究了广西人工林马尾松木材性质的变异及幼龄材与成熟材的差异。结果表明 ,幼龄材与成熟材的分界年龄在 14  16a ,解剖性质在径向上的变异规律为 :射线比量、树脂道比量、胞壁率、胞腔直径、胞壁厚、管胞长度、管胞宽度和晚材壁腔比是自髓心向外呈递增趋势 ,管胞比量和晚材率为递减趋势 ,早材壁腔比和早材腔径比则近似于一条直线。方差分析结果表明 :树脂道比量、胞壁率、胞壁厚、管胞长度和管胞宽度 ,幼龄材与成熟材差异达显著或极显著水平。 5项木材物理力学性质均为成熟材高于幼龄材 ,且均达差异显著水平。木材性质间的相关分析表明 :木材基本密度与管胞长度、管胞宽度、射线比量、树脂道比量、胞壁率呈显著的正相关关系 ,木材气干密度与抗弯强度、抗弯弹性模量、顺纹抗压强度也呈显著的正相关关系  相似文献   

4.
贵州马尾松人工林木材物理力学性质研究   总被引:5,自引:0,他引:5  
本文对贵州林科院试验林场生长的人工林马尾松木材物理力学性质进行了测定,并与贵州产45年树龄的天然林木材的主要强度指标作了比较。结果表明:人工林马尾松木材基本密度、全干缩率、顺纹抗压强度、抗弯强度和抗弯弹性模量在幼龄材与成熟材之间存在显著差异。而人工林与天然林之间的木材密度和主要强度指标差异不大。  相似文献   

5.
本研究对田间试验林中8年生转基因741杨与非转基因741杨木材物理力学性质进行了对比分析。结果表明,转基因741杨的横纹抗压比例极限应力除了全部弦向略低于非转基因741杨外,干缩性、抗弯强度、顺纹抗压强度转基因741杨均高于非转基因741杨。除了干缩性差异不显著外,大部分性质差异显著,均达0.01极显著水平。抗弯强度、抗弯弹性模量、顺纹抗压强度和木材横纹全部径向抗压极限应力差异达0.01极显著水平。绝干密度、弦面握钉力和冲击韧性差异达0.05显著水平。其余性质的差异并不显著。  相似文献   

6.
成熟材含量的高低决定木材性质的优劣,合理界定幼龄材与成熟材的分界点,准确预测成熟材材质有利于木材高效加工利用.为了确定人工林班克松的成熟期和预测成熟材解剖性质,采用支持向量机(SVM)界定幼龄材与成熟材的分界点,在此基础上利用幼龄材解剖性质预测成熟材解剖性质.结果表明:人工林班克松幼龄材与成熟材的分界点在树木生长的第18年;成熟期解剖性质明显优于幼龄期,变化较幼龄期平缓;成熟预测误差低、相关性高;预测曲线能够体现解剖性质整体的变化趋势,但对解剖性质测试集突变点及其之后的变化情况表现不足.  相似文献   

7.
随着天然林保护工程的实施 ,我国木材资源结构正在进行由主要利用天然林木材到利用人工林木材的转变 .由于人工林木材所含幼龄材比例相当高 ,木材资源结构的变化反过来必将对我国的木材加工工业及林产品工业带来一系列影响 .该文综述了我国木材资源的现状 ,比较了人工林幼龄材与天然林成熟材的木材基本特性 ,探讨了人工林木材性质特征与营林培育的关系 ,阐述了木材质量与不同最终用途之间的关系 ,并对加强开展人工林木材性质的研究提出了几点建议  相似文献   

8.
徐有明 《木材工业》1992,6(3):44-48
本文就中条山油松株内幼龄材与成熟材材性差异的比较研究,讨论对幼龄期划分的依据。根据木材解剖特征、物理力学性质的径向变异规律,确定其幼龄期为14年。随着树干高度的增加,油松木材幼龄期逐渐缩短、株内幼龄材范围及所占断面上的比例变小。株内幼龄材与成熟材材性差异显著。幼龄材管胞长度短、直径小,胞壁薄,微纤丝角度大,生长轮较宽,晚材率低,浸提物含量高,基本密度较大。幼龄材的力学强度远远小于成熟材。  相似文献   

9.
对江汉平原人工林落羽杉物理力学性能进行了研究,结果表明:落羽杉的气干密度为0.413 g/cm3,气干密度等级为轻;综合强度为74 MPa,强度等级为Ⅰ级;径向横纹抗压强度略大于弦向横纹抗压强度;端面硬度最高,弦面硬度与径面硬度差别不大。落羽杉南北面近树皮处木材的密度、抗弯强度、弹性模量、顺纹抗压强度均大于近髓心处,南北方向对落羽杉的密度、顺纹抗压强度在5%水平上差异均不显著,而对其抗弯强度、弹性模量在1%水平上差异显著。  相似文献   

10.
通过对红皮云杉人工森与天然林木材主要材性指标的测定和比较,主要从材性的角度研究和探讨人工森红皮云杉木材主要利用途径。结果表明:红皮云杉人工森幼龄林不适宜作工种建筑用材,但成熟林可以替代天然林红皮云杉子相应的实木利用。人工林无论是幼龄材还是成熟材均适于作制浆造纸用材。  相似文献   

11.
人工林杉木和杨树木材物理力学性质的株内变异研究   总被引:4,自引:0,他引:4  
按照中国国家标准研究杉木和I-214杨树木材的抗弯弹性模量、抗弯强度、顺纹抗压强度和密度,同时按照日本国家标准研究2个树种的顺纹抗剪强度.结果表明:杉木的抗弯强度、顺纹抗压强度和密度由胸高直径处向上呈波浪形增加,抗弯弹性模量则稳定降低,但不同高度间杉木的物理力学性质没有显著差异;近树皮处木材的物理力学性质高于近髓心处木材,并有极显著差异.对于I-214杨树,只有抗弯弹性模量从髓心到树皮逐渐增加,其他的物理力学性质,最小值在从髓心到树皮的过渡区,最大值在近树皮处,从髓心到树皮,杨树的物理力学性质有极显著的差异.杉木和杨树的径面顺纹抗剪强度从髓心到树皮有极显著差异,并且近树皮的高于近髓心的木材,而弦面顺纹抗剪强度从髓心到树皮没有显著差异.木材密度与力学性质有很好的线性相关关系,木材密度是一个很好的力学强度的预测手段.  相似文献   

12.
32个杉木无性系木材密度和力学性质的变异*   总被引:10,自引:3,他引:10       下载免费PDF全文
32个杉木无性系间,木材密度和抗弯弹性模量、抗弯强度、顺纹抗压强度均有较大差异,无性系内株间亦存在一定差异。木材密度与抗弯弹性模量、抗弯强度、顺纹抗压强度间的相关极显著,相关系数分别为0.3957、0.8368和0.9020;木材密度与生长速度呈负的遗传相关。  相似文献   

13.
ABSTRACT

A study to determine the quality of laminated veneer lumber (LVL) from samama wood (Anthocephalus macrophyllus) was carried out. Samama is a fast-growing endemic wood in eastern Indonesia. Factorial of three factors in RAL design was used to investigate the influence of veneer thickness, juvenile proportion and veneer lay-up to the quality of the resulted samama LVL. The veneer thicknesses were 1.5 and 3.0?mm. Juvenile proportions were arranged in five levels, which were 100% of juvenile veneer, 100% of mature veneer and combination of both juvenile and mature with juvenile proportion of 14%, 43% and 71%. Two veneer lay-up used in this study were loose side met loose side and tight side met loose side. The result of the study showed various specific gravity of LVL by different proportions of juvenile. This factor also affected the other physical traits. Shear strength of the LVL was equal to the solid wood, yet MOE and MOR were affected by juvenile proportion and veneer lay-up. LVL developed from 100% of mature veneer exhibited the highest MOE and MOR, yet no significant difference was noted in MOE and MOR between LVL 100% of juvenile and other tested juvenile proportions.  相似文献   

14.
Three concentrations (2.8%, 2.0%, 1.2%) of Ammoniacal Copper Quaternary (ACQ) was selected to treat Lodgepole pine wood for evaluating ACQ treatment on mechanical properties of blue-stained wood. The bending modules of elasticity (MOE), modules of rupture (MOR), toughness and shearing strength parallel to grain on tangential surface, are tested according to the criteria GB1927-1943-91. Non-treated sample were also tested according to the same procedure. The results showed that the three groups specimen impregnated by different concentrations of ACQ solution met the AWPA standard 2003 of America (UC4A 6.4g/cm^3). There were significant difference of toughness between treated wood and non-treated wood (p=0.01), but there were no statistically significant differences among three concentrations in terms of toughness, and toughness of treated wood was approximately 20% lower than non-treated. MOR, MOE as well as sheafing strength parallel to grain were found to be not significantly different between treated wood and non-treated one, and there were no statistically significant difference among three concentrations of ACQ too. Toughness, MOR, MOE and sheafing strength parallel to grain increased with decrease of concentration of ACQ, but they were hardly affected by ACQ preservatives.  相似文献   

15.
With emphasis on tree breeding for wood quality in Picea jezoensis, we aimed to evaluate radial and between-family variations in the microfibril angle (MFA) of the S2 layer in the latewood tracheids in 10 open-pollinated families of 43-year-old P. jezoensis trees. In addition, the relationships between MFA/wood density with the modulus of elasticity (MOE) or modulus of rupture (MOR) were investigated. Significant differences in MFA between families were found from the pith toward the bark. MFA showed higher values around the pith area, although some families showed relatively lower values than others around this area. In addition, due to a larger coefficient of variations of MFA near the pith, the potential for juvenile wood MFA improvement may be greater compared with mature wood. MOE was correlated with MFA in juvenile wood and with wood density in mature wood, whereas MOR was mainly correlated with wood density at radial positions in both woods. Therefore, to improve the MOE and MOR of P. jezoensis wood, both MFA and wood density would be factors to consider in both juvenile and mature woods. On the other hand, there are indications that, only wood density would be an important criterion for improving mature wood properties.  相似文献   

16.
INTRODUCTION The main body of ancient architecture is wood construction in China, and the main bearing components of the buildings usually use timber, such as pillar, beam, purlin, crossbeam and rafter. Timber is a kind of biomaterial and will be damaged by fungal attack or insects after long time use, which will cause wood frames destroyed ultimately. Timber decay not only exists in its surface, but also usually begins with the inner of wood. It is therefore imperative to consider using …  相似文献   

17.
Development of optimal ways to predict juvenile wood stiffness, strength, and stability using wood properties that can be measured with relative ease and low cost is a priority for tree breeding and silviculture. Wood static modulus of elasticity (MOE), modulus of rupture (MOR), radial, tangential, and longitudinal shrinkage (RS, TS, LS), wood density (DEN), sound wave velocity (SWV), spiral grain (SLG), and microfibril angle (MFA) were measured on juvenile wood samples from lower stem sections in two radiata pine test plantations. Variation between inner (rings 1–2 from pith) and outer (rings 3–6 from pith) rings was generally larger than that among trees. MOE and MOR were lower (50%) in inner-rings than in outer-rings. RS and TS were higher (30–50%) for outer-rings than inner-rings, but LS decreased rapidly (>200%) from inner-rings to outer-rings. DEN had a higher correlation with MOR than with MOE, while MFA had a higher correlation with dry wood MOE than with MOR. SLG had higher significant correlation with MOE than with MOR. DEN and MOE had a weak, significant linear relationship with RS and TS, while MOE had a strong negative non-linear relationship with LS. Multiple regressions had a good potential as a method for predicting billet stiffness (R 2 > 0.42), but had only a weak potential to predict wood strength and shrinkage (R 2 < 0.22). For wood stiffness acoustic velocity measurements seemed to be the most practical, and for wood strength and stability acoustic velocity plus core density seemed to be the most practical measurements for predicting lower stem average in young trees.  相似文献   

18.
杉木材性株内变异的研究Ⅰ.木材力学性质和木材密度   总被引:2,自引:0,他引:2  
对15株浙江产杉木株内不同高度和圆周不同方位上木材的抗弯强度、抗弯弹性模量、顺纹抗压强度和木材密度的差异,木材密度的径向变异模式和木材力学性质与木材密度的相关关系进行了测定和分析。主要结果是:抗弯强度和抗弯弹性模量在株内不同高度上差异特别显著;顺纹抗压强度和木材密度未表现出显著差异;在圆周不同方位上,三项力学性质和木材密度均为南北向高于东西向,差异不显著;木材密度径向变异模式在不同高度和不同方位上均为接近水平有一定波动的直线;三项力学性质与木材密度的相关关系在不同高度和不同方位上均特别显著,但不同力学性质与木材密度的相关系数有明显差异,不同高度上和圆周不同方位上,亦有差异。  相似文献   

19.
Variations of certain anatomical and mechanical indices within tree stems of aged sugi (Cryptomeria japonica) trees planted in Akita prefecture were studied. The determination of the juvenile/mature wood boundary was also discussed, and the effects of wood structure on mechanical properties were investigated. On the basis of radial and vertical variation of the anatomical and mechanical indices, modulus of elasticity (MOE)/ shear modulus (G) was chosen as the index for determining the juvenile/mature wood boundary. The increase rates of MOE/G at the points of 1%, 2%, and 3% were discussed. It was found that for aged trees, all three points were thought to be effective for dividing juvenile and mature wood. However, for younger trees, the point of 2% was recommended, which was mostly consistent with the result obtained by the increase rate of 1% for tracheid length (TL). Among mechanical properties, the MOE showed more significant juvenile/mature wood differences than did modulus of rupture (MOR) and . By correlation analysis, it was suggested that microfibril angle largely contributed to the indices of MOE and G, and specific gravity largely contributed to the indices of MOR and .Part of this report was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, March 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号