首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄土高原藓结皮覆盖土壤导水性能和水流特征   总被引:1,自引:0,他引:1  
生物结皮具有特殊的水文物理性质,为探究其对土壤水分渗透性和水流特征的影响,以黄土高原风沙土和黄绵土上3种典型地表覆盖类型(裸地、藓结皮、藓结皮-草本植物混合)为对象,采用环刀法和染色示踪法对其导水性质与水流特征进行探究。结果表明:藓结皮对2种土壤类型0~5 cm土层土壤理化性质影响较大,与裸地相比土壤容重降低了9.85%~10.00%,土壤黏粒含量增加了1.01~1.29倍,表层有机质含量提高了2.73~3.02倍;藓结皮使0~5 cm土层土壤饱和导水率降低了61.32%~88.89%,而在5~10 cm土层饱和导水率则有明显上升。另外,由于草本植物的影响,藓结皮-草本植物0~5 cm土层与藓结皮土壤相比土壤饱和导水率提高了1.32~6.43倍;黄绵土藓结皮与藓结皮-草本植物的染色面积比均高于裸地,且水分下渗深度增加了10 cm,而风沙土藓结皮与风沙土裸地的染色面积比差异不明显。综上所述,藓结皮和藓结皮-草本植物的存在改变了表层土壤水分渗透性以及水流运动特征和水分下渗深度,影响着黄土高原土壤水分保持和生态恢复。  相似文献   

2.
Biological soil crusts(BSCs) are bio-sedimentary associations that play crucial ecological roles in arid and semi-arid regions. In the Gurbantunggut Desert of China, more than 27% of the land surface is characterized by a predominant cover of lichen-dominated BSCs that contribute to the stability of the desert. However, little is known about the major factors that limit the spatial distribution of BSCs at a macro scale. In this study, the cover of BSCs was investigated along a precipitation gradient from the margins to the center of the Gurbantunggut Desert. Environmental variables including precipitation, soil particle size, soil p H, electrical conductivity, soil organic carbon, total salt, total nitrogen, total phosphorus and total potassium were analyzed at a macro scale to determine their association with differing assemblages of BSCs(cyanobacteria crusts, lichen crusts and moss crusts) using constrained linear ordination redundancy analysis(RDA). A model of BSCs distribution correlated with environmental variables that dominated the first two axes of the RDA was constructed to clearly demonstrate the succession stages of BSCs. The study determined that soil particle size(represented by coarse sand content) and precipitation are the most significant drivers influencing the spatial distribution of BSCs at a macro scale in the Gurbantunggut Desert. The cover of lichen and moss crusts increased with increasing precipitation, while the cover of cyanobacteria crusts decreased with increasing precipitation. The cover of lichen and moss crusts was negatively associated with coarse sand content, whereas the cover of cyanobacteria crusts was positively correlated with coarse sand content. These findings highlight the need for both the availability of soil moisture and a relatively stable of soil matrix, not only for the growth of BSCs but more importantly, for the regeneration and rehabilitation of disturbed BSC communities in arid and semi-arid lands. Thereby, this study will provide a theory basis to effectively increase soil stability in desert regions.  相似文献   

3.
Biological soil crusts(BSCs) are capable of modifying nutrient availability to favor the establishment of biogeochemical cycles. Microbial activities serve as critical roles for both carbon and nutrient transformation in BSCs. However, little is known about microbial activities and physical-chemical properties of BSCs in the Gurbantunggut Desert, Xinjiang, China. In the present research, a sampling line with 1-m wide and 20-m long was set up in each of five typical interdune areas selected randomly in the Gurbantunggut Desert. Within each sampling line, samples of bare sand sheet, algal crusts, lichen crusts and moss crusts were randomly collected at the depth of 0–2 cm. Variations of microalgal biomass, microbial biomass, enzyme activities and soil physical-chemical properties in different succession of BSCs were analyzed. The relationships between microalgal biomass, microbial biomass, enzymatic activities and soil physical-chemical properties were explored by stepwise regression. Our results indicate that microalgal biomass, microbial biomass and most of enzyme activities increased as the BSCs developed and their highest values occurred in lichen or moss crusts. Except for total K, the contents of most soil nutrients(organic C, total N, total P, available N, available P and available K) were the lowest in the bare sand sheet and significantly increased with the BSCs development, reaching their highest values in moss crusts. However, pH values significantly decreased as the BSCs developed. Significant and positive correlations were observed between chlorophyll a and microbial biomass C. Total P and N were positively associated with chlorophyll a and microbial biomass C, whereas there was a significant and negative correlation between microbial biomass and available P. The growth of cyanobacteria and microorganism contributed C and N in the soil, which offered substrates for enzyme activities thus increasing enzyme activities. Probably, improvement in enzyme activities increased soil fertility and promoted the growth of cyanobacteria, eukaryotic algae and heterotrophic microorganism, with the accelerating succession of BSCs. The present research found that microalgal-microbial biomass and enzyme activities played important roles on the contents of nutrients in the successional stages of BSCs and helped us to understand developmental mechanism in the succession of BSCs.  相似文献   

4.
Biological soil crusts(BSCs) play an important role in surface soil hydrology. Soils dominated with moss BSCs may have higher infiltration rates than those dominated with cyanobacteria or algal BSCs. However, it is unnown whether improved infiltration in moss BSCs is accompanied by an increase in soil hydraulic conductivity or water retention capacity. We investigated this question in the Tengger Desert, where a 43-year-old revegetation program has promoted the formation of two distinct types of BSCs along topographic positions, i.e. the moss-dominated BSCs on the interdune land and windward slopes of the fixed sand dunes, and the algal-dominated BSCs on the crest and leeward slopes. Soil water retention capacity and hydraulic conductivity were measured using an indoor evaporation method and a field infiltration method. And the results were fitted to the van Genuchten–Mualem model. Unsaturated hydraulic conductivities under greater water pressure(–0.01 MPa) and water retention capacities in the entire pressure head range were higher for both crust types than for bare sand. However, saturated and unsaturated hydraulic conductivities in the near-saturation range(–0.01 MPa) showed decreasing trends from bare sand to moss crusts and to algal crusts. Our data suggested that topographic differentiation of BSCs significantly affected not only soil water retention and hydraulic conductivities, but also the overall hydrology of the fixed sand dunes at a landscape scale, as seen in the reduction and spatial variability in deep soil water storage.  相似文献   

5.
Biological soil crusts (BSCs) are an important type of land cover in arid desert landscapes and play an important role in the carbon source-sink exchange within a desert system. In this study, two typical BSCs, moss crusts and algae crusts, were selected from a revegetated sandy area of the Tengger Desert in northern China, and the experiment was carried out over a 3-year period from January 2010 to November 2012. We obtained the effec- tive active wetting time to maintain the physiological activity of BSCs basing on continuous field measurements and previous laboratory studies on BSCs photosynthesis and respiration rates. And then we developed a BSCs carbon fixation model that is driven by soil moisture. The results indicated that moss crusts and algae crusts had significant effects on soil moisture and temperature dynamics by decreasing rainfall infiltration. The mean carbon fixation rates of moss and algae crusts were 0.21 and 0.13 g C/(m2.d), respectively. The annual carbon fixations of moss crusts and algae crusts were 64.9 and 38.6 g C/(m2.a), respectively, and the carbon fixation of non-rainfall water reached 11.6 g C/(m2.a) (30.2% of the total) and 8.8 g C/(m2.a) (43.6% of the total), respectively. Finally, the model was tested and verified with continuous field observations. The data of the modeled and measured CO2 fluxes matched notably well. In desert regions, the carbon fixation is higher with high-frequency rainfall even the total amount of seasonal rainfall was the same.  相似文献   

6.
黄土地与沙地生物结皮的发育特征及其生态功能异同   总被引:1,自引:0,他引:1  
基于课题组已有研究成果,选取陕北水蚀风蚀交错区内气候条件相同但土壤质地迥异的试验区,探讨黄土地和沙地生物结皮发育特征及其生态效应的异同。结果表明:(1)苔藓结皮是2种土地生物结皮的重要类型,其中,黄土地的优势藓种为尖叶对齿藓[Didymodon constrictus(Mitt.)Saito.]、真藓(Bryum argenteum Hedw.)、狭网真藓(B.algovicum Sendt.);沙地的优势藓种为黄色真藓(B.pallescens Scheich.)、弯叶真藓(B.recurvulum Mitt.)、银叶真藓(B.argenteum Hedw.)。沙地乔灌植物下生物结皮盖度(77.5%)、厚度(11.8 mm)及容重(1.9 g·cm~(-3))均高于黄土地生物结皮,而黄土地多年生草本植物下生物结皮抗剪强度(26.5 k Pa)高于沙地生物结皮,总体上,沙地生物结皮发育的更好。(2)黄土地的入渗增幅和0~200 cm剖面的平均土壤含水率增幅均显著高于沙地(P0.05),且在旱季和雨季其0~200 cm剖面的平均土壤含水率增幅分别比沙地高1.4%和1.9%。(3)两地生物结皮均表现出了较好的减蚀作用,其减蚀效率分别为81.0%和90.6%。  相似文献   

7.
Winter snowpack is an important source of moisture that influences the development ofbiological soil crusts(BSCs)in desert ecosystems.Cyanobacteria are important photosynthetic organismsin BSCs.However,the responses of the cyanobacterial community in BSCs to snowpack,snow depth andmelting snow are still unknown.In this study,we investigated the cyanobacterial community compositionand diversity in BSCs under different snow treatments(doubled snow,ambient snow and removed snow)and three snow stages(stage 1,snowpack;stage 2,melting snow;and stage 3,melted snow)in theGurbantunggut Desert in China.In stages 1 and 2,Cyanobacteria were the dominant phylum in the bacterialcommunity in the removed snow treatment,whereas Proteobacteria and Bacteroidetes were abundant inthe bacterial communities in the ambient snow and doubled snow treatments.The relative abundances ofProteobacteria and Bacteroidetes increased with increasing snow depth.The relative abundances ofCyanobacteria and other bacterial taxa were affected mainly by soil temperature and irradiance.In stages 2and 3,the relative abundance of Cyanobacteria increased quickly due to the suitable soil moisture andirradiance conditions.Oscillatoriales,Chroococcales,Nostocales,Synechococcales and unclassifiedCyanobacteria were detected in all the snow treatments,and the most dominant taxa were Oscillatorialesand Chroococcales.Various cyanobacterial taxa showed different responses to snowpack.Soil moisture andirradiance were the two critical factors shaping the cyanobacterial community structure.The snowpackdepth and duration altered the soil surface irradiance,soil moisture and other soil properties,whichconsequently were selected for different cyanobacterial communities.Thus,local microenvironmentalfiltering(niche selection)caused by snow conditions may be a dominant process driving shifts in thecyanobacterial community in BSCs.  相似文献   

8.
选择古尔班通古特沙漠的北部(一号点)、中部(二号点)、南部(三号点)3个不同样点的裸沙和藻结皮、地衣结皮与苔藓结皮3种生物结皮类型,对比研究了草本植物多样性的差异性及其主要环境影响因素。结果表明:(1)不同生物结皮类型的土壤理化性质有明显差异,土壤有机质、全氮、全磷、全钾含量以及黏粒、粉粒和细沙的含量随生物结皮演替显著上升,而中沙和粗沙的含量呈显著下降趋势,在沙漠不同区域呈现明显的空间异质性,二号样点中裸沙和藻结皮的养分含量和pH明显低于一号点和三号点。(2)草本植物的物种丰富度和Shannon-Wiener指数随生物结皮发育呈明显上升趋势,草本植物的物种组成、群落结构在不同类型生物结皮和沙漠不同区域均具有显著差异。(3)在土壤理化特征中,有机质、速效P和全K含量,以及pH和粉粒含量是影响草本植物分布的关键因子。(4)不同类型生物结皮之间的微地形和种类组成差异、种子生物学特性以及生物结皮在不同尺度下的土壤环境异质性共同影响草本植物在生物结皮中的物种组成和丰度,最终导致草本植物群落结构在生物结皮中的演替变化。  相似文献   

9.
吴楠  张元明  潘惠霞 《干旱区研究》2012,29(6):1032-1038
古尔班通古特沙漠地衣结皮对放牧踩踏干扰及其所引起的生境异质性具有重要的指示作用。研究表明:① 放牧踩踏干扰主要集中于结皮层(0~5 cm),随机调查的样方中,90%的样方干扰率均低于30%,生物土壤结皮(BSCs)破损尚处于较安全的范围;② 放牧踩踏干扰降低了BSCs总盖度,不同类型的结皮对践踏干扰的反应具差异性,其中,真菌-藻类共生形成的地衣结皮与干扰率呈极显著负相关(P<0.01),干扰率>30%的样方中,抗风蚀能力较强的苔藓结皮、地衣结皮盖度均显著低于未受干扰样方,地衣共生体的破坏导致真菌数量显著增加(P<0.05);③ 有机质、土壤容重等土壤理化指标均与干扰率呈负相关,干扰率>30%的样方中各指标均低于未受干扰样方。其中,土壤容重是对放牧干扰比较敏感的指标,与地衣结皮盖度亦呈极显著正相关(P<0.01),与流沙盖度呈显著负相关(P<0.05)。  相似文献   

10.
As one of the most important biological factors that maintain the stability of the largest fixed and semi-fixed desert in China,the Gurbantunggut Desert,the biological soil crusts (BSCs) develop well and play critical ecological roles in the desert ecosystem. In this paper,we briefly summarize our research findings since 2002 including species composition,distribution pattern and ecological functions of BSCs in the desert. Our results indicate abundant species diversity of BSCs in the Gurbantunggut Desert in comparison to other deserts in China. At the scales of sand dune or whole desert,the distribution patterns of BSCs are location-specific. The existence of BSCs in this desert could:(1) accelerate the formation of desert soil and the weathering of minerals; (2) accumulate organic matter in surface soil through related species in soil crusts; (3) enhance the abilities of sand surface to resist wind erosion; (4) influence seed germination of vascular plants; and (5) enhance the production of dew deposition on sandy soil surface.  相似文献   

11.
Conventional tillage practices used on the Loess Plateau lead to different soil surface micro-topography which results in forming two types of soil crusts. The objective of this study was to explore the formation position, properties and erosion characteristics of structural crusts and depositional crusts under the influences of the microtopography in the rainfall experiments. Two simulated rainstorms were applied in the experiments. The first rainfall event was used for soil crust formation, then the following simulated rainfall storms at 40 mm h?1, 60 mm h?1, and 80 mm h?1 rates were applied to the soil boxes set to a 17.6% (10°) slope under three tillage types (contour tillage, artificial digging, and straight slope conditions) to investigate the resulting runoff discharge rate and sediment yield on crusted soil surface. Results show that: (1) structural crusts formed on the mounds, and depositional crusts formed in the depressions after the first rainfall events; structural crusts exhibit a lower thickness, bulk density, higher porosity and shear strength than depositional crusts; (2) structural crusts increased the runoff yield less and decreased the sediment yield more than depositional crusts; and (3) the runoff yield was significantly greater, and the sediment yield was lower on the crusted soil surface than that on the uncrusted soil surface, regardless of the effect of the tillage treatments.  相似文献   

12.
Vegetation near-soil-surface factors can protect topsoil from erosion,however,their contributions to the reduction of soil erosion,especially under natural rainfall events,have not been systematically recognized.This study was performed to quantify the effects of near-soil-surface factors on runoff and sediment under natural rainfall events on grasslands dominated by Bothriochloa ischaemum(Linn.)Keng(BI grassland)and Artemisia gmelinii Thunb.(AG grassland)in two typical watersheds on the Loess Plateau,China in 2018.By successive removal of the plant canopy,litter,biological soil crusts(BSCs)and plant roots,we established five treatments including plant roots,plant roots+BSCs,plant roots+BSCs+litter,intact grassland and bare land in each grassland type.In total,twenty runoff plots(5 m×3 m)with similar slopes and aspects were constructed in the two types of grasslands.Results showed that plant canopy,litter and roots reduced runoff,while BSCs,which swelled in the presence of water,increased runoff.In contrast,all of these factors reduced sediment yield.In addition,the reductions in runoff and sediment yield increased with I30(maximum 30-min rainfall intensity)for each vegetation near-soil-surface factor except for BSCs.Among these factors,plant canopy had the largest contribution to runoff reduction,accounting for 48.8% and 39.9% in the BI and AG grasslands,respectively.The contributions of these vegetation near-soil-surface factors to sediment yield reduction were similar(21.3%-29.9%)in the two types of grasslands except for BSCs in the AG grassland(10.3%).The total reduction in runoff in the BI grassland(70.8%)was greater than that in the AG grassland(53.1%),while the reduction in sediment yield was almost the same in both grasslands(97.4%and 96.7%).In conclusion,according to the effects of different vegetation near-soil-surface factors on runoff and sediment production,our results may provide more complete insight and scientific basis into the effects of various vegetation related factors in controlling soil erosion.  相似文献   

13.
Soil organic carbon(SOC) and soil inorganic carbon(SIC) are important C pools in the Loess Plateau of Northwest China, however, variations of SOC and SIC stocks under different cultivation practices and nitrogen(N) fertilization rates are not clear in this area. A long-term field experiment started in June 2003 was conducted to investigate the SOC and SIC stocks in a calcareous soil of the Chinese Loess Plateau under four cultivation practices, i.e., fallow(FA), conventional cultivation(CC), straw mulch(SM), and plastic film-mulched ridge and straw-mulched furrow(RF), in combination with three N fertilization rates, i.e., 0(N0), 120(N120), and 240(N240) kg N/hm~2. Results indicate that the crop straw addition treatments(SM and RF) increased the contents of soil microbial biomass C(SMBC) and SOC, and the SOC stock increased by 10.1%–13.3% at the upper 20 cm soil depth in comparison to the 8-year fallow(FA) treatment. Meanwhile, SIC stock significantly increased by 19% at the entire tested soil depth range(0–100 cm) under all crop cultivation practices in comparison to that of soil exposed to the long-term fallow treatment, particularly at the upper 60 cm soil depth. Furthermore, moderate N fertilizer application(120 kg N/hm~2) increased SOC stock at the upper 40 cm soil depth, whereas SIC stock decreased as the N fertilization rate increased. We conclude that the combined application of crop organic residues and moderate N fertilization rate could facilitate the sequestrations of SOC and SIC in the calcareous soil.  相似文献   

14.
生物土壤结皮作为典型的有机地被层,广泛分布在干旱半干旱地区。由于其具有良好的水土保持及土壤稳定等功能,可有效控制土地沙漠化,防治水土流失,因此,生物土壤结皮恢复被看作是荒漠生态系统修复和重建的关键。本文系统综述了国内外学者在生物结皮领域开展的研究工作,包括生物土壤结皮的生物组成、演替过程、生态功能、干扰响应、人工培育及生态恢复。以期深入认识生物土壤结皮的结构和功能及干旱半干旱地区的荒漠化治理提供参考。  相似文献   

15.
关于黄土高原退耕还林(草)问题   总被引:7,自引:4,他引:7  
论述了退耕还林 (草 )是黄土高原水土保持、生态环境建设中一项战略性措施 ,分析了在满足农村人口粮食的基本需求情况下 ,退耕坡地仍有很大潜力 ,以及从自然环境特点、历史时期植被分布来看 ,黄土高原广大地区种树种草是可行的 ;并提出了退耕还林 (草 )必须重视的有关问题  相似文献   

16.
在黄土高原半干旱雨养条件下以露地种植为对照(CK),设置了4种玉米整秆带状覆盖方式:带状3行(MS3),带状4行(MS4),带状5行(MS5),带状6行(MS6),比较研究了不同带幅对冬小麦产量、土壤水分变化的影响。结果表明:适宜带幅(MS3、MS4)的秸秆带状覆盖能显著改善土壤水分状况并提高冬小麦产量和水分利用效率,MS3、MS4分别较CK增产69.1%、41.3%,水分利用效率提高88.1%、39.1%。MS3与MS4对土壤含水量在不同时期、不同土层均具有增墒和降墒的双重效应,但增墒效应更为突出,全生育期平均分别较CK提高土壤含水量1.00和0.35个百分点。MS3可以显著改善土壤水分在各生育时期各土层的分布情况,其在播种期~越冬期、返青期~孕穗期的供水效果,以及60cm以下土层对60 cm以上土层的水分补给效果均好于其它处理,有利于冬小麦生长、成穗,提高穗粒数,因此MS3更适合黄土高原半干旱雨养地区的冬小麦生产。  相似文献   

17.
通过在坡度为20°耕地和荒草坡面对降水、土壤水密集观测,结合模拟降雨实验,从降雨入渗、蒸散发等过程分析讨论了影响黄土高原丘陵沟壑区坡地土壤水分动态的主要因素。结果表明:1)降雨入渗量△S主要受控于雨强和降雨量,坡耕地的入渗量随着雨强增加而衰减的速度快于荒坡,坡耕地有利于中等雨强大雨的下渗,雨强增大时两坡面的降雨转化率逐渐接近,且植被的再分配作用凸显,甚至使短历时暴雨时坡耕地的入渗速度低于荒坡,长历时的大、暴雨或连续降雨利于深层入渗,坡面耕作或在裸地上种植冰草后降雨转化率增约50%;2)7月~10月上旬为土壤水补给期,土壤水分在枯水年及平水年处于负平衡,在丰水年获得补给,最终以蒸散发消耗;3)荒地主要耗水层在20cm,耕地土壤水分活跃层及作物主要耗水层延伸至30cm。总体上,农作物增大蒸散发量、增加土壤水分利用深度,农业生产活动对减少降雨径流、增加土壤水资源量、强化水分小循环有重要作用。  相似文献   

18.
黄土地表生物结皮对土壤贮水性能及水分入渗特征的影响   总被引:5,自引:1,他引:4  
采用双环法对山西省偏关县3种结皮覆盖下(苔藓藻结皮、藻结皮和薄层藻结皮)土壤的贮水性能和渗透特征进行了对比研究.结果表明:不同结皮覆盖下土壤的贮水能力受结皮厚度和孔隙度状况的影响较大,0~10 cm土层饱和贮水量为502.69~525.80 t/hm2 ,滞留贮水量为169.71~198.29 t/hm2;初渗速率的变化范围为5. 19~11.10 mm/min,无结皮最高,苔藓藻结皮最低;稳渗速率变化范围为1.6 7~2.67 mm/min.采用的3种入渗模型(Kostiakov模型、Horton模型和Ph ilip模型)中Horton模型的拟合值更接近于实测值, 决定系数R2在0.98~0.99,更适用于描述本研究区具有生物结皮土壤的入渗特征.  相似文献   

19.
Biological soil crusts are widely distributed in arid and semiarid regions. They have an important eco- logical role, especially by modifying physical and chemical properties of soils. Biological crusts may also modify seed germination and seedling establishment. The effects vary widely according to the type of crust and the vas- cular plant species. The objective of this study was to determine the effect of moss-dominated biological soil crusts on the emergence, biomass and survival of Poa ligularis Nees ex Steud. under different irrigation regimes. We col- lected seeds of P. ligularis and biological soil crusts composed of two species of mosses: Syntrichia princeps (De Not.) Mitt and Ceratodon purpureus (Hedw.) Brid. from an area in the Monte of Argentina. The result showed that seedling emergence of P. ligularis was higher in treatments with bare soil than in soil covered by crusts, and also in those with watering to field capacity. Mean emergence time was higher in treatments with bare soil and watering to field capacity. Seedling biomass also showed significant differences between treatments. These results suggest that biological soil crusts dominated by mosses do not promote P. ligularis emergence, although they would not affect its survival.  相似文献   

20.
CLDAS和GLDAS土壤湿度资料在黄土高原的适用性评估   总被引:3,自引:0,他引:3  
本研究基于2011~2013年3~9月CMA陆面数据同化系统(CLDAS)和全球陆面数据同化系统(GLDAS) Noah陆面模式提供的表层10 cm土壤湿度数据,以国家气象信息中心提供的站点土壤湿度观测资料为参考,通过对比分析两套模拟数据在黄土高原区域的时空差异,并分别计算其与观测资料的相关系数(Corr)、平均偏差(MBE)和均方根误差(RMSE)等统计特征值,就两套模拟数据在黄土高原地区的适用性进行综合对比和评估,旨在选出一种适用于研究黄土高原地区土壤湿度时空特征的大范围、长时间序列的替代资料。结果显示:(1)两套陆面模式资料均能较好模拟黄土高原地区土壤湿度的空间变化特征,主要呈现出从西北向东南和西南增加的趋势,其中CLDAS具有较高的空间分辨率,能够较好刻画研究区细部特征;(2)从站点角度的统计特征值来看,两套资料的Corr值普遍偏高,CLDAS有71%和63%的站点分别达到极显著和显著差异水平,而GLDAS的略低,分别为70%和62%;研究区内各套资料的MBE和RMSE分布均类似;正负偏差站点个数相差不大,分布区间主要为-0.05~0.05,其中CLDAS有26和32个站点分别处于-0.05~0和0~0.05之间,而GLDAS则为28和24; GLDAS的RMSE主要集中在0.05~0.07之间,而CLDAS绝大部分低于0.05;(3)从时间序列来看,GLDAS资料与实测最为接近,但在春季存在一定程度的偏干情况,偏干程度小于CLDAS;(4)从整个研究区土壤湿度的模拟状况来看,GLDAS的Corr、MBE和RMSE值分别为0.821、0.0126和0.0221,较CLDAS资料具有更小的平均偏差、均方根误差和更大的相关系数。总体来说,两套陆面模式资料在黄土高原区域土壤湿度模拟上均存在各自的优势,均可作为土壤湿度观测的替代资料,对于土壤湿度研究和业务应用都具有积极的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号