首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
R. Lal 《Geoderma》1976,16(5):403-417
Nutrient element losses in runoff and eroded sediments were monitored during 1972 on different slopes and under different soil and crop management treatments. The experiments were conducted on 25 × 4 m field runoff plots, established on natural slopes of 1, 5, 10 and 15%. The soil and crop management treatments consisted of bare fallow (plowed), maize-maize (plowed and mulched), maize-maize (plowed), maize-cowpeas (no-till), and cowpeas-maize (plowed).Total loss of nutrient elements in runoff and eroded soil materials was significantly affected by slope and by soil and crop management treatments. Total annual nutrient element losses in runoff were 55 kg/ha for bare-fallow, 17 kg/ha for maize-maize (plowed), 12 kg/ha for cowpeas-maize (plowed), 2.3 kg/ha for maize-maize (plowed and mulched) and 4.3 kg/ha for maize-cowpeas (no-till). The concentration of nitrate in seepage water was two or three times higher than in surface water. Nutrient losses in eroded soil materials from the mulched and no-till treatments were negligible. From the plowed treatments, greatest losses were of organic matter and total nitrogen. The enrichment ratios were 2.4 times for organic carbon, 1.6 times for N, and 5.8 times for available phosphorus.  相似文献   

2.
Soil erosion remains a serious problem on most agricultural fields especially in the humid tropics. Experiments were conducted between 2003 and 2005 to test the efficiency and efficacy of using vetiver grass strip (VGS), vetiver grass mulch (VGM) and an agronomic practice of using an organomineral fertilizer (OMF) capable of improving soil structure and a control, as treatments, on soil and water conservation and improvement of maize yields. The treatments, in three replicates, were laid out in a randomized complete block design on 7% runoff plots on an Alfisol in the sub humid region of Southern Nigeria. Soil physical conditions were significantly best under VGM plots and least under VGS plots. Nevertheless, runoff and soil loss were generally in the increasing order of VGS, VGM and OMF. Although mean runoff and soil loss on VGS plots were 36.6% and 28% of the value of the control plot in 2003, when 2 tonnes/ha of vetiver grass mulch was applied to the control plot in 2004, these values were increased to 61.5% and 48.4%, respectively indicating a significant reduction of runoff and soil loss on the mulched plots. Vetiver grass mulch (VGM) at 6 tonnes/ha was more effective than VGS plots in reducing runoff than soil loss. Whereas mean runoff for VGM, VGS and OMF plots were 28.67, 38.44 and 42.44 mm, respectively, the corresponding mean soil losses at 6 tonnes/ha were 980.5 kg/ha, 389 kg/ha and 1251 kg/ha, respectively. Mean soil losses were 629 kg/ha and 591.5 kg/ha higher on VGM than VGS plots at 4 tonnes/ha and 6 tonnes/ha, respectively. Mean No3-N levels of runoff water on the VGS plots were 40.4% and 65.6% of the levels of the OMF and the control plots, respectively over 2003 and 2004. Nutrient loads of eroded sediments were highest for OMF plots and least for VGS plots. Carbon, Nitrogen and P contents of eroded sediments were 22–23.5%, 12–35.9%, and 20.6–37.6% lower on VGS plots than other treatments.

The significant beneficial effect of OMF in producing the highest yields was dwarfed by the potential danger of water pollution by nutrient loads in the absence of a soil erosion control measure. Although the differences were not significant, grain yields on VGM plots were 4% and 47.4% higher than on VGS plots when 4 and 6 tonnes/ha of grass mulch were applied.  相似文献   


3.
R. Lal 《Geoderma》1976,16(5):363-375
The effect of slope, crop rotation and residue management on runoff and soil loss was investigated using field runoff plots of 25 m × 4 m on natural slopes of 1, 5, 10 and 15% on an Alfisol on the International Institute of Tropical Agriculture (IITA) research site near Ibadan, Nigeria. The soil and crop management treatments consisted of conventionnally plowed bare fallow, maize-maize (conventionally plowed and mulched), maize-maize (conventionally plowed), maize-cowpeas (zero-tillage), and cowpeas-maize (conventionally plowed). The effect of two contour lengths of 12.5 and 37.5 m was also investigated for the maize-cowpeas rotation.Soil erosion under slopes of 5, 10 and 15% is severe for these soils and if not controlled can limit crop growth.Mulching and no-till treatments had negligible runoff and soil loss. During 1973 the annual runoff losses from the 15% slope were 36, 2 and 2% of the total annual rainfall for the bare-fallow, mulched and no-till treatments, respectively. Annual soil losses during 1973 from the 15% slope were 230 t/ha from bare-fallow, 0.0 t/ha from maize-maize (mulched), 41 t/ha from maize-maize (conventional plowing), 0.1 t/ha from maize-cowpeas (no-till) and 43 t/ha from cowpeas-maize (plowed). Significant soil erosion was associated with only a few extremely intense storms. The soil loss during a single rainstorm increased exponentially with an increase in slope gradient. There was no definite relationship between contour length and runoff or soil loss.  相似文献   

4.
Protected cultivation, mainly represented by plastic-film mulching, has greatly improved crop production worldwide since the 1950s. However, despite its widespread use in tropical USA, Europe and China, its use in sub-Saharan Africa is not widespread. A field experiment was conducted using cocoyam (Colocasia esculenta L. Schott) to evaluate the effects of two tillage systems (tilled and no-till) and plastic-film mulch (black and clear plastic-film mulch) on soil properties and cocoyam growth and yield in 2003 and 2004 planting seasons on a Typic paleudult in southeastern Nigeria. The experiment comprised six treatments and was laid out in the field using randomized complete block design replicated three times. Results showed that 70–80% of the corms emerged 7–8 days (21 days after planting [DAP]) earlier in both tilled and no-till plastic-film mulched plots when compared to the unmulched plots. At later stages of crop development, the plants in the tilled black plastic-film mulched plots were taller by 61–67% than those in the unmulched no-till plots, which had the lowest plant height (27–30 cm). At 98 DAP, there were no significant treatment differences in leaf area index (LAI) between tilled and no-till mulched plots with LAI of 15.5–19.8. However, LAI was reduced in both unmulched plots by 35–54% when compared to the mulched plots. On the average soil temperature was higher in plastic-film mulched plots than that under plots without mulch by about 2 °C. Results show significantly lower soil bulk density (between 1.10 and 1.26 Mg m−3) in both tilled clear and black plastic-film mulched plots when compared to the corresponding no-till clear or black plastic-film mulched plots (1.40–1.45 Mg m−3). For the two seasons studied volumetric water content (VWC) in tilled black plastic-film mulched plots were significantly higher than VWC in other mulched plots by between 10 and 38% in 2003 and between 17 and 30% in 2004. At harvest (270 DAP) the highest corm yield was obtained in tilled black plastic mulched plots (29.1 Mg ha−1). This was higher (P = 0.05) than yields obtained in no-till, no mulch plots by 72%. Yields were also higher in tilled black plastic mulched plots when compared to tilled clear plastic mulched plots, no-till black plastic mulched plots and no-till clear plastic mulched plots by 29, 47 and 59%, respectively. These findings suggest that plastic mulched plots provide a better soil environment for cocoyam than unmulched plots and that tilled mulched plots especially tilled black plastic mulched plots provide superior edaphic environment for cocoyam when compared to other treatments used.  相似文献   

5.
The mechanization of field operations like seeding, spraying and harvesting in continuous zero-tillage may lead to a severe compaction of the surface layer of coarse textured tropical soils, especially when mulch is sparse or missing. Therefore, a 2 year (1982–1984) field experiment was initiated on an Alfisol in Nigeria to study the effect of tillage, mechanization and mulch on soil structure and physical properties. Three zero-tillage treatments and a plough treatment were compared. The disk-plough and one of the no-till treatments were highly mechanized: all the field work was performed with tractors and machines, and consisted of secondary bush clearing, crop cultivation and harvest. On the other two no-till treatments, the impact of machine load was reduced, wither by hand harvesting or by performing all field operations manually. These four tillage-traffic systems were either treated with mulch or left unmulched. There were four growing seasons, with maize (Zea mays L.) as a test crop.

After 2 years of zero-tillage the bulk density (BD) and penetration resistance (PR) were significantly greater on plots with high mechanization compared with hand treated plots. Plots with hand harvest but otherwise mechanized were in between. Because of the hard-setting nature of the soil, the plougheed plots with and without mulch exhibited a dramatic change in PR and BD during the season. On no-till the infiltration transmissivity (A) was greater and BD and PR were less in the mulched compared with the unmulched treatments.

The gravel content of the topsoil was negatively correlated with BD and positively correlated with A. Geostatistical analysis revealed that within the experimental area there was a similar spatial distribution of gravel content and A after the first season. Because of the superimposing effect of gravel on BD, which cannot be accounted for by considering the gravel content per se, BD was adjusted by means of covariance analysis for evaluation of the treatment effects already mentioned.

It was concluded that mechanization of a no-till system on sandy Alfisols may only be successful in the long run if appropriate measures like mulching, crop rotation and fallow systems are applied to regenerate soil structure and to enhance macroporosity.  相似文献   


6.
Tillage-caused alterations in water infiltration, surface runoff, subsurface flow and sediment transport in surface and subsurface flow were studied for a clayey Mollic Ochraqualf for corn-soybean rotation in northwestern Ohio. Measurements were made on field runoff plots, 0.04 ha each, established in 1975. There were 4 tillage treatments: (A) continuous no-till for 12 years; (B) no-till for 10 years followed by plow-till for 2 years; (C) plow-till for 10 years followed by no-till for 2 years; (D) continuous plow-till for 12 years. Twelve years of continuous no-till and plow-till systems resulted in differences in soil water sorptivity and transmissivity coefficients of Philip's infiltration model for the traffic zone (TZ) and the row zone (RZ) sites. Average soil-water sorptivity in plow-till treatments was 9.1 times that in no-till treatments. In no-till, sorptivity in RZ was 4.8 times that in TZ. The infiltration data was better described by the Kostiakov model than by the Philip model. Surface runoff was somewhat more in plow-till than in no-till treatments. Subsurface flow was generally more in plow-till than no-till treatments. In no-till plots, the threshold value of subsurface flow, below which there was no surface flow, was about 22% of the annual precipitation. No such relation was observed for plow-till treatment. In general, sediment load was low, but was more for plow-till than no-till treatments. The mean sediment load in surface runoff ranged from 0.09 to 0.35 t ha−1 year−1 in plow-till plots compared with 0.015–0.117 t ha−1 year−1 in the no-till treatment.  相似文献   

7.
The yield of direct-seeded and transplanted upland rice was investigated for seven tillage methods for an ultisol in a high rainfall region of southeastern Nigeria. The tillage methods were: two compaction passes of a 6-t roller with and without residue mulch; six compaction passes with mulch; ploughing with and without mulch and no-till with and without mulch. Soil compaction decreased seedling emergence and shoot and root growth. Residue mulching decreased seedling emergence by 35.6% in direct-seeded rice. There were more leaves, productive tillers and dry matter in the ploughed plots. Root densities at 10–20- and 20–30-cm depths were higher by 157 and 47%, respectively, in ploughed treatments. The highest grain yields of 6.3 and 6.1 Mg ha−1 in ploughed plots for the first and second seasons, respectively, were associated with greater uptake of P, Na, Fe and Zn at flowering and of N, Mg, K, Mn and Cu at both maximum tillering and flowering growth stages. The grain yield in the first season was 2.1 and 2.5 Mg ha−1 for two- and six-compaction pass mulched plots, respectively. In the second season, the yields of no-till and compacted treatments were identical and ranged from 1.5 to 2.4 Mg ha−1. Mulching decreased grain yield by 43, 27 and 12% on compacted, no-till and ploughed plots, respectively, due to transient flooding and mechanical impedance to seedling emergence by the mulch cover. Within the unmulched treatments, ploughing increased rice yield by 71 and 35% over two compaction passes and the no-till treatments, respectively. The least bulk density and penetrometer resistance were also observed in ploughed plots.  相似文献   

8.
The year to year carry-over effects of biomass additions under different plant populations on runoff and erosion are unclear. The objective of this study was to quantify the impact of different plant populations on residue cover to elucidate the effects of residue cover on runoff and erosion. The residue management system involved shredding of corn (maize) biomass after harvest, incorporating the residue in the spring, and leaving the land fallow until it was no-till planted the following spring. Runoff and soil losses were measured on 18 runoff plots with plots arranged in two areas with each having three randomized treatments (0%, 50%, and 100% plant population) with three replications. The two areas were managed as a fallow/no-till corn rotation in two cycles of alternating years. Surface residue cover was highly dynamic with significant changes between cycles and seasons in response to the management practices. The annual soil losses were reduced by 47% and 54% for the 50% and 100% plant populations, respectively compared to the control. However, the annual soil loss even for the 100% plant population was still nearly seven times the tolerable soil loss limit of 7 ton ha−1. The normal erosion protection afforded by no-till practices was lost by the incorporation of residue the previous year.  相似文献   

9.
黔西喀斯特区秸秆覆盖对坡耕地产流产沙特征的响应   总被引:1,自引:0,他引:1  
基于2018-2019年野外径流小区定位观测资料,以玉米单作无秸秆覆盖处理(M0)为对照,探索了玉米单作处理和不同秸秆覆盖量(M1~M5,1111,2222,3889,5556,6944 kg/hm^2)对贵州省黔西喀斯特区坡耕地产流产沙特征的影响。结果表明:(1)不同降雨等级下,秸秆覆盖具有较好的水土保持效果,并随覆盖量的增加,产流、产沙总量逐渐减少,但M4与M5处理之间无显著差异(p>0.05);(2)玉米苗期—拔节期各处理产流和产沙量大于后2个阶段,并且各阶段各覆盖处理产流产沙均低于对照;(3)秸秆覆盖对地表产流产沙影响显著,与对照相比,年均径流深减少21.85%~50.46%,土壤侵蚀模数减少50.10%~85.87%;(4)随着秸秆覆盖量的增加,各处理产流、产沙呈下降趋势,但当秸秆覆盖量超过5556 kg/hm^2后,继续增加秸秆至6944 kg/hm^2时,水土保持效果变化不明显。秸秆覆盖是控制喀斯特地区坡耕地水土流失的有效途径,6000 kg/hm^2左右的覆盖量即可起到较好的水土保持效果。  相似文献   

10.
Wheel traffic and tillage effects on runoff and crop yield   总被引:1,自引:0,他引:1  
Traffic and tillage effects on runoff, soil water and crop production under rainfall were investigated over a period of 6 years on a heavy clay vertosols (vertisols) in Queensland, Australia. A split plot design was used to isolate traffic effects, while the cropping program and treatments were broadly representative of extensive grain production practice in the northern grain region of Australia. Treatments subject to zero tillage and stubble mulch tillage each comprised pairs of 90 m2 plots, from which runoff was recorded. A 3 m wide controlled traffic system allowed one of each pair to be maintained as a non-wheeled plot, while the complete surface area of the other received a single annual wheeling treatment from a working 100 kW tractor.

Mean annual runoff from controlled traffic plots was 81 mm (36.3%) smaller than that from wheeled plots, while runoff from zero tillage was reduced by 31 mm (15.7%). Traffic and tillage effects appeared to be cumulative, so the mean annual runoff from controlled traffic and zero tillage plots, representing best practice, was 112 mm (47.2%) less than that from wheeled stubble mulch plots, representing conventional cropping practice. Rainfall infiltration into controlled traffic zero tillage soil was thus 12.0% greater than into wheeled stubble mulched soil. Rainfall/runoff hydrographs show that wheeling produced a large and consistent increase in runoff, whereas tillage produced a smaller increase. Treatment effects were greater on dry soil, but were still present in large and intense rainfall events on wet soil.

Plant available water capacity (PAWC) in the 0–500 mm zone increased by 10 mm (11.5%) and mean grain yields increased by 337 kg/ha (9.4%) in controlled traffic plots, compared with wheeled plots. Mean grain yield of zero tillage was 2–8% greater than that of stubble mulch plots for all crops except for winter wheat in 1994 and 1998. Increased infiltration and plant available water were probably responsible for increased mean grain yields of 497 kg/ha (14.5%) in controlled traffic zero tillage, compared with wheeled stubble mulch treatments. Dissipation of tractive and tillage energy in the soil is the apparent mechanism of deleterious effects on the soils ability to support productive cropping in this environment. Controlled traffic and conservation tillage farming systems appear to be a practicable solution.  相似文献   


11.
Soil water erosion is a major agricultural concern in tropical Africa with high precipitation and low soil fertility where Oxisols are generally distributed. A field experiment was conducted in east Cameroon during the rainy season in 2013 to investigate the effects of surface mulching with the residues of Imperata cylindrica on soil losses and surface runoff water generation in a cassava cropland on an Oxisol. Three treatments were established using two small plots for each treatment: bare plot (BA), cassava plot (CA) and cassava with mulch plot (CM). Soil loss and surface runoff water were measured, and water budgets of rainfall, surface runoff and soil moisture within rainfall events were measured in all treatment plots. Runoff coefficients in all treatment plots were suppressed below 8·0% because the large volume of large pores of surface soil of Oxisols contributed to the high drainage capacity over a rainy season even under wet soil moisture conditions. Total soil loss in CM was decreased by 49% compared with that in BA and CA, despite there not being a large difference in runoff water among treatments. These results suggest that surface mulching with the residues of I. cylindrica can substantially suppress soil losses caused by particle detachment by raindrops, while it maintain soil surface with originally high permeability in cassava croplands on Oxisols. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A field experiment was conducted in the semi arid tropics to study the effects of soil structural modification on cropping systems. The aim was to improve crop production and land resource protection using innovative soil management practices. Tillage, mulch and perennial/annual rotational based systems were compared for 5 years in an Alfisol at ICRISAT in India. Crop yield parameters, including grain and biomass yield, leaf area index, crop cover, and plant height were measured. Results indicate significant benefits to annual crop yield (maize, sorghum) from improved water supply due to mulching with farmyard manure or and rice straw, and due to rotation with prior-perennial crops. Grain yields were 16 to 59% higher in mulched treatments compared to unmulched treatments, with similar increases for fodder yields. Annual crop yields after 4 years of perennials were 14 to 81% higher than unmulched treatments, except for low fertility maize grown after buffel grass. The interaction with chemical fertility was less clear than for water supply. The results have implications for soil management throughout the semi-arid tropics.  相似文献   

13.
Abstract. During three consecutive years (1993–1995) a split-plot design with three replications was used to study the biological and physical role of mulch in the improvement of crusted soil water balance and its productivity in the north of Burkina Faso. The main treatment was the use of an insecticide, to obtain plots with and without soil fauna (SF and NSF). The subsidiary treatment consisted of four mulch types randomly applied on subplots. These were straw of Pennisetum pedicellatum applied at 3 t ha−1, woody material of Pterocarpus lucens applied at 6 t ha−1 and composite (woody material and straw) treatments applied at 4 t ha−1. In addition there was a control, with no mulch (bare plot). Data on soil faunal activity, runoff, sediment accumulation from wind blown soil, vegetation cover and vegetation dry matter yield were collected on all plots.
The biological activity (mainly termites) in mulched plots was the key element in the efficacy of mulching to rehabilitate crusted soil. Water infiltration and dry matter yield were statistically lower on NSF plots than on SF plots and runoff and dry matter yield were not different from the values obtained on bare plots. A significant correlation was found between runoff, all vegetation data and termite-voids. Sediment accumulation due to the physical barrier of the mulch was not found to be a significant factor in the improvement of vegetation performance and the reduction of runoff.  相似文献   

14.
The submontaneous tract of Punjab comprising 10% of the state, is prone to soil erosion by water. Soils of the area are coarse in texture, low in organic matter and poor in fertility. High intensity rains during the monsoon season result in fertile topsoil removal. There is an urgent need to control soil erosion in this region so as to improve soil productivity. A field study was conducted to estimate the effect of tillage and different modes of mulch application on soil erosion losses. Treatments comprised two levels of tillage, viz. minimum (Tm) and conventional (Tc) in the main plots and five modes of straw mulch application, viz. mulch spread over whole plot (Mw), mulch spread on lower one-third of plot (M1/3), mulch applied in strips (Ms), vertical mulching (Mv) and unmulched control (Mo), in subplots in a replicated split plot design. Rate of mulch application was 6 t ha−1 in all modes. Compared with Mo, Mw reduced runoff by 33%. Runoff and soil loss were 5 and 40% higher under Tc than under Tm. Though other modes of straw mulch application (M1/3, Ms and Mv) controlled soil loss better than Mo, their effectiveness was less than Mw. Tm was more effective in conserving soil moisture than Tc. Compared with Mo, Mw had 3–7% higher soil moisture content in the 0–30 cm soil depth under Tm. Minimum soil temperature of the surface layer was 1.4–2.4 °C lower under Mw than under Mo. Straw mulching reduced maximum soil temperature and helped in conserving soil moisture. Minimum tillage coupled with Mw was highly effective in reducing soil erosion losses, decreasing soil temperature and increasing moisture content by providing maximum surface cover.  相似文献   

15.
玉米秸秆覆盖对坡面产流产沙过程的影响   总被引:11,自引:4,他引:11  
通过室内土槽模拟试验,研究不同降雨条件下玉米秸秆覆盖对沙坡地产流时间和产流产沙过程的影响。处理分为8种降雨强度和5个水平的秸秆覆盖度:0、15%、30%、60%和90%。40组模拟降雨结果表明:华北保护性耕作研究区域沙壤土条件下的产流时间与降雨强度符合幂函数关系;秸秆覆盖能延缓地表径流的产生,自然降雨(雨强10~80 mm/h)过程中,15%、30%、60%和90%秸秆覆盖较无覆盖分别推迟产流时间1.0~15.4、2.1~22.1、3.4~48.2和5.9~73.6 min;秸秆覆盖对地表径流和产沙影响显著,降雨历时1 h,30%秸秆覆盖减少径流总量17.9~/o~38.7%,减少产沙总量34.1%~48.0%0 30%秸秆覆盖水土保持效果显著,考虑到过多的秸秆覆盖(80%)会造成播种机堵塞,所以在保护性耕作研究实践中,建议保持30%~60%(1 400~3 100 kg/hm~2)的玉米秸秆覆盖,以达到较好的水土保持效果和播种质量,该研究可为保护性耕作研究区域适宜的玉米秸秆覆盖量提供依据。  相似文献   

16.
R. Lal 《Geoderma》1976,16(5):419-431
Erosion-induced changes in the physical characteristics of the surface soil under different soil and crop management treatments were monitored over a period of two years. These studies were conducted on field runoff plots established on natural slopes of 1, 5, 10 and 15%. The soil and crop management treatments consisted of bare-fallow, maize-maize (plowed and mulched), maize-maize (plowed), maize-cowpeas (no-till) and cowpeas-maize (plowed).Soil erosion increased the gravel content and decreased the silt and clay contents of the surface horizon. The moisture retention capacity of the surface soil decreased significantly. The infiltration rate decreased from 3.5 cm/min on all plots in February 1972 to 0.2 cm/min under bare-fallow, to 0.6 cm/min under maize-maize (mulch), to 1.5 cm/min under maize-cowpeas (no-till) and to 0.1 cm/min under maize-maize (plowed) in February 1974. Maize yields on the mulch and no-till treatments were maintained while those on plowed plots declined. Artificial soil removal resulted in significant reductions of maize and cowpea yields.  相似文献   

17.
Soil-surface seals and crusts resulting from aggregate breakdown reduce the soil infiltration rate and may induce erosion by increasing runoff. The cultivated loess areas of northwestern Europe are particularly prone to these processes.Surface samples of ten tilled silty loamy loess soils, ranging in clay content from 120 to 350 g kg−1 and in organic carbon from 10 to 20 g kg−1, were packed into 0.5 m2 plots with 5% slopes and subjected to simulated rainfall applied at 30 mm h−1. The 120 minutes rainfall events were applied to initially field-moist soil, air-dried soil and rewetted soil to investigate the effect of soil moisture content prior to rainfall. Runoff and eroded sediments were collected at 5 minutes intervals. Aggregate stability of the soils was assessed by measuring particle-size distribution after different treatments.All soils formed seals. Runoff rates were between 70 and 90% by the end of the rainfall event for field-moist plots. There were large differences between soil runoff rates for the air-dried and rewetted plots. Interrill erosion was associated with runoff, and sediment concentration in runoff readily reached a steady-state value. Measurements of aggregate stability for various treatments were in good agreement with sealing, runoff and erosion responses to rainfall. Runoff and erosion were lower for air-dried plots than for field-moist plots, and were either intermediate or lowest for rewetted plots, depending on soil characteristics. Soils with a high clay content had the lowest erosion rate when they were rewetted, whereas the soil with a high organic-carbon content had the lowest erosion rate in air-dry conditions. The results indicate the complexity of the effect of initial moisture content, and the interactions between soil properties and climate.  相似文献   

18.
采用侵蚀针与径流小区定位观测相结合的方法,比较黑色薄膜覆盖与绿肥覆盖、割草覆盖、生物篱、施用除草剂等传统经济林水土流失治理措施的水土保持效果,探讨在锥栗林中黑色薄膜覆盖防治水土流失的可行性。结果表明:不同处理的水土及养分流失量总体上均显著小于对照。其中,绿肥覆盖与施用百草枯2种处理的液体径流量在试验期间均低于其他3种处理措施。由于覆膜减少了降雨的入渗量,与其他处理相比,黑色薄膜覆盖的液体径流量较大,其固体流失量则在不同月份均最低,施用百草枯处理的固体流失量也显著小于其他传统处理。通过对不同处理的坡面侵蚀空间分异特征进一步分析得出,与对照相比,绿肥覆盖、生物篱、施用百草枯3种处理的坡面净侵蚀现象随着处理时间的延长而逐渐减少,而黑色薄膜覆盖与割草覆盖处理的坡面净沉积作用明显。因黑色薄膜覆盖可实现"肥与水隔离",大量的液体流失并未造成过多的养分损失,仅5—6月的液体全P、全K和铵态N大于对照,7—10月,液体养分流失量也显著小于对照,且黑色薄膜覆盖在试验期间固体养分流失量总体上均显著小于其他处理。此外,黑色薄膜覆盖大大缩短了果实捡拾时间,降低了人工成本。黑色薄膜覆盖措施在减轻坡面土壤侵蚀、减少土壤养分流失方面效果显著,相对其他措施在锥栗林的水土保持方面具有优势,但较强的膜上径流具有加剧侵蚀的倾向,限制其实际应用。可结合设置覆膜比例,采用有孔薄膜、坡面微工程等减少液体径流,以达到薄膜覆盖的最佳效果。  相似文献   

19.
研究了在侵蚀坡地采用条沟一草块的特殊建植草地方法。在治理后的3个月内,用条沟一草块建植草地的小区土壤侵蚀量仅为140kg,比整地未种、原坡面和全垦等高种草的小区分别减少了823k、249kg和670kg。用条沟一草块建植草地的小区当年土壤侵蚀为1500t/km^2,比整地未种、原坡面和全垦等高种草分别减少了10591t/km^2、3514t/km^2和7760t/km^2;第2年以后,条沟一草块草地的土壤侵蚀量均在700t/km^2以下,严重侵蚀区减轻为轻度流失区。治理当年,植被覆盖率由原来的25%提高到85%,能在短期内控制水土流失。治理3年后坡地草被物种由6种发展到16种,促进了良性发展。  相似文献   

20.
Abstract. In the Sahel, promising technologies for agricultural intensification include millet stover mulching and ridging. A four year on‐farm experiment was set‐up in order to assess the effect of various combinations of these two technologies on crop development and yield in a millet (Pennisetum glaucum (L.) R. Br.) ‐ cowpea (Vigna unguiculata (L.) Walp.) intercropping system. Treatments included bare surface, ridging, a surface applied banded millet stover mulch (2 t ha–1) and a banded millet stover mulch (2 t ha–1) buried in ridges. The latter three treatments were implemented exclusively in the cowpea rows, with an annual rotation between the millet and cowpea rows. On bare and ridged plots, millet yields fell below 100 kg grain ha–1 after the first year. This was ascribed mainly to soil acidification and loss of soil organic matter rather than to soil physical constraints or water availability despite extensive surface crusting and high soil penetration resistance and bulk density. Compared to the bare plots, ridging increased cowpea hay production by 330% over the four years which was attributed to lower soil penetration resistance and bulk density but also to a reduction of 0.15 cmol+ kg–1 exchangeable acidity in the ridges. Except during the severe drought year of 1997, millet grain yield in the banded mulch treatment remained fairly stable over time at 526 ± 9 kg ha–1. However, a detailed analysis revealed yield compensation mechanisms between various yield components depending on the timing of occurrence of the abiotic stresses. Cowpea productivity was always higher in buried banded mulch plots than in surface applied banded mulch plots but the former treatment appeared unable to sustain millet yields. This decline was attributed to a greater nutrient uptake by cowpea and more rapid acidification in the buried mulch treatment compared to the banded mulch treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号