首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
CIDEC的亚细胞定位及其功能初步研究   总被引:1,自引:0,他引:1  
CIDEC(也称FSP27)高表达于脂肪组织,可以促进细胞内脂肪积累等。为探究CIDEC促进脂滴融合的机制,本研究利用脂肪酸处理HepG2细胞,测定细胞内脂滴直径和数目的变化,发现处理后脂滴的直径和数量无显著性差异。将含有CIDEC的重组载体转染细胞,脂肪酸处理24 h后测定脂滴直径和数量变化,进一步利用共聚焦显微镜分析其亚细胞定位,并检测与脂滴生成、生长等相关基因表达量的变化。结果表明,过表达CIDEC后脂滴的直径显著增加,脂滴的数量极显著减少;亚细胞定位发现,CIDEC位于脂滴周围。此外,PLIN1、CREB1、CREB8的表达量有所下降,CIDEA、CFD表达量有所上升,推测CIDEC可能与这些蛋白互作引起脂滴融合。本研究结果为探究CIDEC促进脂滴融合的分子机制奠定了基础。  相似文献   

2.
微波辅助提取中pH值与脱色对苹果果胶的影响   总被引:1,自引:1,他引:0  
为了得到高得率、高品质的苹果果胶,该文利用不同pH值的盐酸溶液对苹果渣中果胶进行微波辅助提取(Microwave-assisted extraction, MAE),之后对果胶提取液进行大孔树脂XAD-16HP脱色,研究了pH值与脱色对果胶得率和品质的影响。结果表明:微波辅助提取工艺中随着pH值的升高,果胶得率、半乳糖醛酸质量分数和总离子含量减少,酯化度、黏均分子量和总多酚增加,褐变度无显著变化;大孔树脂吸附脱色后果胶褐变度、总多酚、彩度C*值显著下降,色调角H°值显著增加,半乳糖醛酸质量分数和酯化度没有  相似文献   

3.
王飞  封琼  刘程智  林琳  田兵  华跃进 《核农学报》2012,26(6):900-905
从不同种奇球菌属(Deinococci)细菌中分离提取类胡萝卜素,并利用高效液相色谱分析了提取物的组成和性质。通过DPPH自由基和超氧自由基清除试验,比较了不同菌种来源的类胡萝卜素提取物的抗氧化能力,结果发现,D.radiopugnans和D.radiodurans提取物的体外抗氧化能力最强,在浓度为0.6μg/ml时DPPH自由基清除率都达到46%左右;D.radiopugnans提取物的超氧自由基清除活性较强,在浓度为3μg/ml时清除率达到42.99%。同时,采取体外蛋白质氧化抑制试验和脂类氧化抑制能力测定分析比较了不同种类提取物对大分子的保护作用,结果表明D.radiopugnans和D.radiodurans提取物具有较强的生物大分子氧化防护功能。以上研究为从具有极端环境适应能力的奇球菌属筛选抗氧化活性类胡萝卜素,并进一步研究其作用机制提供了基础。  相似文献   

4.
适量卵磷脂改善低酯苹果果胶凝胶流变性   总被引:1,自引:0,他引:1  
为了进一步了解卵磷脂在果胶凝胶中的作用,该文考察卵磷脂对果胶凝胶流变性的影响,以低酯苹果果胶为原料,在钙离子浓度为12 mmol/L条件下,加入质量分数0.2%~1.2%的卵磷脂,考察凝胶过程中储能模量(G′)与损耗模量(G″)变化。通过凝胶结构形成速度(structure developing rate,SDR)流变学分析方法探讨在果胶凝胶过程中卵磷脂对凝胶体系的影响,结果显示:卵磷脂的添加对果胶钙凝胶的形成速度(SDR)和储能模量(G′)有影响,在整个温度变化范围内,卵磷脂添加量小于0.4%时对SDR曲线和G′曲线的影响不明显;卵磷脂添加量为0.4%时SDR曲线和G′曲线明显上升,显示出较快的凝胶速度和较强的凝胶强度;当卵磷脂添加量大于0.4%时,SDR曲线和G′曲线下降。凝胶形成动力学研究显示,加入0.4%的卵磷脂,使果胶的凝胶过程在高温区和低温区的差别更大,活化能差别也较大(P0.05):高温区活化能为290.6 k J/mol,低温区活化能为67.1 k J/mol。电镜扫描显示添加0.4%卵磷脂的果胶钙凝胶结构更为均匀紧密。研究结果为卵磷脂/果胶体系的应用提供理论参考数据。  相似文献   

5.
小米脂氧合酶活性与储藏稳定性关系   总被引:2,自引:0,他引:2  
为研究小米中脂氧合酶(LOX)活性和储藏稳定性的关系,初步探索小米褪色机制,以褪色快的小米品种(‘谷丰2号’、‘公谷63号’)、褪色慢的小米品种(‘大青秸’、‘红苗牛头沟’)为试验材料,对其进行人工老化处理,并测定人工老化处理前后小米的脂氧合酶活性、米色、类胡萝卜素、丙二醛(MDA)含量的变化。同时,利用HPLC对小米类胡萝卜素提取液进行分析,比较4个小米品种中叶黄素、玉米黄质及β-胡萝卜素的变化差异,分析小米脂氧合酶活性与类胡萝卜素及其主要组分的相关性。结果表明,经老化处理后,4个小米品种的LOX活性、米色b*值和类胡萝卜素含量均下降,MDA含量升高。‘大青秸’、‘红苗牛头沟’小米与‘谷丰2号’、‘公谷63号’小米相比,其米色、类胡萝卜素含量和MDA含量变化较小,储藏稳定性较好。HPLC分析表明,老化处理前后4个小米品种叶黄素、玉米黄质的变化无明显差异,而β-胡萝卜素含量的变化存在明显差异;相关性分析表明,老化处理前后LOX活性与β-胡萝卜素含量呈负相关,表明LOX可能与β-胡萝卜素发生偶联,进而导致小米类胡萝卜素含量降低。本研究结果为耐储藏小米的遗传育种提供了一定的理论基础。  相似文献   

6.
皖南烟叶香气成分因子及关联度分析   总被引:1,自引:0,他引:1  
为探讨各类香气物质对皖南地区烟叶特殊香型形成的作用,本试验对皖南地区四种典型土壤所产烟叶香气进行了因子分析,及香气综合评定值与土壤养分的关联度分析。结果表明:利用因子模型在阐明以因子形式表现的香气物质变量间的关联时,可信度高。因子分析证明类胡萝卜素类物质降解产生的香气物对烤烟香气影响最显著,可推断烤烟的香气特色主要是由烟叶中类胡萝卜素类降解产物的量及协调程度决定的,这其中又以巨豆三烯酮最为重要。在皖南地区烟株生长及香气品质形成过程中,土壤pH值起重要作用,土壤速效钾、全磷影响作用逐渐增加,碱解氮、有机质影响作用逐渐降低。  相似文献   

7.
李鑫月  郭振清  张寒  李红强 《核农学报》2022,36(9):1746-1754
脂滴包被蛋白3(Plin3)和脂滴包被蛋白5(Plin5)是细胞内脂滴包被蛋白(PAT)家族的成员,在脂滴合成方面具有重要作用。为探究Plin3和Plin5在长白猪中的序列和表达特征,利用PCR技术扩增该基因,采用生物信息学分析两者的序列特征,并利用实时荧光定量PCR技术检测其在长白猪11个不同组织中的表达特征。结果表明,长白猪Plin3序列全长1 403 bp,Plin5全长1 397 bp,两种蛋白二级结构均以α-螺旋为主,无规则卷曲次之,不存在跨膜结构,无信号肽结构,有多个磷酸化位点。检测两种基因在不同组织中的表达水平发现,Plin3在长白猪的11个组织中均有表达,其中在脾脏中的相对表达量显著高于其他组织(P<0.05),肝脏次之;Plin5在脂肪组织中的相对表达量显著高于其他组织(P<0.05),而在大肠和小肠中不表达。本研究为进一步探究长白猪Plin3和Plin5在脂质代谢中的作用机制提供了理论依据。  相似文献   

8.
微波辅助提取黄皮果肉果胶工艺参数优化   总被引:2,自引:1,他引:1  
为优化微波辅助提取黄皮果肉中果胶的工艺,采用均匀设计法,考察了微波功率、提取时间、液料比及提取液pH值4个因子对黄皮果胶得率的影响。利用SAS软件对试验数据进行模型拟合和回归分析,确定提取时间和液料比是影响果胶得率的重要因子,并最终获得微波辅助提取黄皮果胶的最优工艺参数为:微波功率600W,提取时间8min,液料比24:1mL/g,提取液pH值2.0。在此条件下果胶得率为3.59%。通过对果胶基本特性的测定分析,该工艺提取的黄皮果胶品质基本符合国家标准,可为黄皮果胶提取的工业化放大提供参考。  相似文献   

9.
成熟脂肪去分化技术可为研究脂肪细胞分化提供均一的前体脂肪细胞。本研究分离培养了猪成熟脂肪细胞,并去分化为前体脂肪细胞。本实验采用Ⅱ胶原酶消化后离心分离1~3日龄仔猪(Susscrofa)皮下脂肪组织,天花板法培养获得成熟脂肪细胞。显微镜下观察脂肪细胞去分化形态学变化,并在成脂诱导培养液的作用下诱导再分化。采用油红O染色法检测分化不同时期细胞脂滴聚集效率,脂滴的累积随诱导的进行不断增加。RT-PCR检测成熟脂肪细胞标志基因过氧化物酶体增殖物活化受体(PPARγ)和和脂肪酸结合蛋白4(FABP4)的mRNA相对表达量,分化早期基因表达水平较低,其表达水平在分化过程中持续增高,在分化后期PPARγ相对表达量与诱导分化前增加了2.8倍,FABP4增加了约62倍(差异显著P<0.05)。说明去分化获得的前体脂肪细胞在成脂诱导培养液作用下,可有效地分化为成熟脂肪细胞。本研究优化了猪成熟脂肪细胞分离和培养体系,并通过去分化获得具有再分化能力的前体脂肪细胞,为进一步深入研究猪脂肪细胞分化与代谢提供技术平台。  相似文献   

10.
为明确超高压辅酶法在低酯果胶生产中的可行性,该研究以传统碱法为对照,研究了超高压(200、300 MPa)辅助果胶甲酯酶法对果胶的理化性质、分子量分布及流变性质的影响。结果表明,与传统碱法相比,超高压辅酶法制备的低酯果胶的表观黏度、固有黏度及黏均分子量均显著大于碱法低酯果胶(P0.05),而黏流活化能较低(P0.05),说明其黏-温敏感性更低。通过尺寸排阻色谱分析,超高压辅酶法制备的低酯果胶与脱酯前没有显著性差异(P0.05),说明该法对果胶分子无降解作用。以上结果表明超高压辅酶法(200、300 MPa)避免了传统碱法的果胶分子降解,该法制备的低酯果胶黏度更高,可作为一种制备低酯果胶的高效、环保的新型技术。  相似文献   

11.
Although yellow maize (Zea mays) fractions and products are a source of dietary carotenoids, only limited information is available on the bioavailability of these pigments from maize-based foods. To better understand the distribution and bioavailability of carotenoid pigments from yellow maize (Z. mays) products, commercial milled maize fractions were screened for carotenoid content as were model foods including extruded puff, bread, and wet cooked porridge. Carotenoid content of maize fractions ranged from a low of 1.77-6.50 mg/kg in yellow maize bran (YCB) to 12.04-17.94 mg/kg in yellow corn meal (YCM). Lutein and zeaxanthin were major carotenoid species in maize milled fractions, accounting for approximately 70% of total carotenoid content. Following screening, carotenoid bioaccessibility was assessed from model foods using a simulated three-stage in vitro digestion process designed to measure transfer of carotenoids from the food matrix to bile salt lipid micelles (micellarization). Micellarization efficiency of xanthophylls was similar from YCM extruded puff and bread (63 and 69%), but lower from YCM porridge (48%). Xanthophyll micellarization from whole yellow corn meal (WYCM) products was highest in bread (85%) and similar in extruded puff and porridge (46 and 47%). For extruded puffs and breads, beta-carotene micellarization was 10-23%, but higher in porridge (40-63%), indicating that wet cooking may positively influence bioaccessibility of apolar carotenes. The results suggest that maize-based food products are good dietary sources of bioaccessible carotenoids and that specific food preparation methods may influence the relative bioaccessibility of individual carotenoid species.  相似文献   

12.
Epidemiological studies have consistently demonstrated that there is an association between carotenoid-rich food intakes with a low incidence in chronic diseases. Nevertheless, there is not an association between the intake of total dietary carotenoids and chronic health incidence in the European population, probably because of different carotenoid food sources and bioavailability. The objective of this study was to evaluate the small and large intestine bioaccessibilities of major dietary carotenoids from fruits and vegetables in a common diet. A bioaccessibility model that includes enzymatic digestion and in vitro colonic fermentation was employed. Lutein presented greater small intestine bioaccessibility (79%) than beta-carotene (27%) or lycopene (40%). With regard to large intestine bioaccessibility, similar amounts of lycopene and beta-carotene were released from the food matrix (57%), whereas small amounts of lutein (17%) were released. These results suggest that 91% of the beta-carotene, lutein, and lycopene contained in fruits and vegetables is available in the gut during the entire digestion process. Colonic fermentation is shown to be important for carotenoid availability in the gut.  相似文献   

13.
Pulp from "slightly ripe", "moderately ripe", or "fully ripe" mangoes was digested in vitro in the absence and presence of processed chicken as a source of exogenous fat and protein to examine the impact of stage of ripening of mango on micellarization during digestion and intestinal cell uptake (i.e., bioaccessibility) of beta-carotene. The quantity of beta-carotene transferred to the micelle fraction during simulated digestion significantly increased as the fruit ripened and when chicken was mixed with mango before digestion. Qualitative and quantitative changes that occur in pectin from mango pulp during the ripening process influenced the efficiency of micellarization of beta-carotene. Finally, the uptake of beta-carotene in micelles generated during simulated digestion by Caco-2 human intestinal cells confirmed the bioaccessibility of the provitamin A carotenoid in mango.  相似文献   

14.
The present investigation aimed to expand the knowledge of bioaccessibility of carotenoids, tocopherols, and tocotrienols from cereal products such as pasta. Because most of the published approaches assessing the bioaccessibility of lipophilic micronutrients dealt with fruits and vegetables, a prevalent in vitro digestion procedure was modified. Additionally, several digestion parameters were evaluated with regard to their impact on the bioaccessibility of carotenoids and vitamin E from pasta. Overall, the estimated values were highly dependent on the amount of bile extract present in the digestive medium and to a lesser extent on the simulated gastric pH and the incubation time with digestive enzymes. The bioaccessibility of carotenoids and vitamin E from durum wheat pasta was quite high (71 ± 5 and 70 ± 4%, respectively), whereas these micronutrients were considerably less accessible from pasta containing 10% eggs (57 ± 1 and 49 ± 5%, respectively).  相似文献   

15.
Epidemiological studies have shown that consumption of carotenoid-rich fruits and vegetables is associated with a reduced risk of developing chronic diseases. beta-Carotene, alpha-carotene, and beta-cryptoxanthin are precursors of vitamin A, a nutrient essential for human health. However, little is known about the bioavailability of carotenoids from whole foods. This study characterized the intestinal uptake performance of carotenoids using monolayers of differentiated Caco-2 human intestinal cells and mimicked human digestion to assess carotenoid absorption from carrots and corn. Results showed that Caco-2 cellular uptake of beta-carotene and zeaxanthin was higher than that of lutein. Uptake performances of pure carotenoids and carotenoids from whole foods by Caco-2 cells were both curvilinear, reaching saturated levels after 4 h of incubation. The time kinetics and dose response of carotenoid uptake presented a similar pattern in Caco-2 cells after plating for 2 and 14 days. Furthermore, the applicability of this new model was verified with whole grain corn, showing that cooked corn grain significantly enhanced carotenoid bioavailability. These results support the feasibility of the in vitro digestion cell model for assessing carotenoid absorption from whole foods as a suitable and cost-effective physiological alternative to current methodologies.  相似文献   

16.
Among various factors influencing β-carotene (Bc) bioavailability, information on interactions between carotenoids or other micronutrients such as flavonoids during a meal that contains different plant-derived foods is quite limited. Because orange-fleshed sweet potato (OFSP) is an important Bc-rich staple food, a source of vitamin A in developing countries, this study focused on the effect of citrus fruit juice carotenoids and flavonoids on Bc bioaccessibility from OFSP. In vitro digestion coupled with the Caco-2 cell culture model was used to evaluate the bioaccessibility and cellular uptake of Bc from OFSP in the presence of pink grapefruit (pGF) or white grapefruit (wGF) juices. The addition of grapefruit juices significantly decreased the bioaccessibility, by up to 30%, but not the cellular uptake of Bc from boiled OFSP. Lycopene, but more probably naringin, present in grapefruit juices was suspected to be responsible for the inhibitory effect of the citrus juices on Bc bioaccessibility. This inhibition was apparently due in part to competition for incorporation between Bc and naringin into mixed micelles during in vitro digestion. In contrast, Bc uptake from dietary micelles was not impaired by naringin.  相似文献   

17.
A study was made of the effect of high-pressure processing (HPP) and thermal treatment (TT) on plant bioactive compounds (tocopherols, carotenoids, and ascorbic acid) in 12 fruit juice-milk beverages and of how the food matrix [whole milk (JW), skimmed milk (JS), and soy milk (JSy)] modulates their bioaccessibility (%). HPP (400 MPa/40 °C/5 min) produced a significant decrease in carotenoid and ascorbic acid bioaccessibility in all three beverages and maintained the bioaccessibility of tocopherols in JW and JS while decreasing it in JSy. TT (90 °C/30 s) produced a significant decrease in tocopherol and carotenoid bioaccessibility in all three beverages and increased the bioaccessibility of ascorbic acid. With regard to the food matrix, α-tocopherol and ascorbic acid bioaccessibility was greatest in JW beverages and lowest in JSy beverages, whereas no significant differences were found among the three beverages in terms of carotenoid bioaccessibility. HPP-treated samples showed higher tocopherol and carotenoid bioaccessibility than TT-treated samples, thus indicating that HPP combined with a milk matrix positively modulates the bioaccessibility of certain types of bioactive components of food, mainly those of a lipophilic nature.  相似文献   

18.
Epidemiological data have shown a link between dietary intake of tomatoes and tomato products (rich in carotenoids) and a decreased risk of chronic diseases. The carotenoid profile in tomato products depends on tomato variety as well as the thermal conditions used in processing. The final carotenoid profile may affect the bioaccessibility and bioavailability of these biomolecules. Therefore, nondestructive, reliable methods are needed to characterize the structural and stereochemical variation of carotenoids. CDCl(3) rapid extraction was used to extract carotenoids from tomato juice as an alternative rapid procedure that minimizes solvents and time consumption prior to NMR analysis. The profile of these biomolecules was characterized by application of high-resolution multidimensional NMR techniques using a cryogenic probe. The combination of homonuclear and heteronuclear two-dimensional NMR techniques served to identify (all-E)-, (5Z)-, (9Z)-, and (13Z)-lycopene isomers and other carotenoids such as (all-E)-beta-carotene and (15Z)-phytoene dissolved in the extracted lipid mixture. The use of one-dimensional NMR enabled the rapid identification of lycopene isomers, thereby minimizing further isomerization of (all-E)-lycopene as compared to HPLC data. On the basis of the assignments accomplished, the carotenoid profile of typical tomato juice was successfully determined with minimal purification procedures.  相似文献   

19.
To compare the in vitro bioaccessibility of lutein, zeaxanthin, beta-cryptoxanthin, lycopene, and alpha-and beta-carotenes from relevant dietary contributors, a gastrointestinal model was used to assess the stability, isomerization, carotenol ester hydrolysis, and micellarization. Salivar, gastric, duodenal, and micellar phases were extracted, with and without saponification, and analyzed by using a quality-controlled HPLC method. The stability of carotenoids under digestion conditions was >75%, regardless of the food analyzed, whereas micellarization ranged from 5 to 100%, depending on the carotenoid and the food. cis-Isomers were maintained in processed foods, but increased in fresh foods. Xanthophyll ester hydrolysis was incomplete (<40%), and both free and ester forms were incorporated into supernatants, regardless of the xanthophyll involved and the food assessed. In vitro bioaccesibility varies widely both for different carotenoids in a given food and for a given carotenoid in different foods. Although in vitro bioaccesibility may not be enough to predict the in vivo bioavailability, it may be relevant for the food industry and for food-based dietary guidelines.  相似文献   

20.
A carotenoid-rich salad meal with varying amounts and types of triglycerides (TG) was digested using simulated gastric and small intestinal conditions. Xanthophylls (lutein and zeaxanthin) and carotenes (alpha-carotene, beta-carotene, and lycopene) in chyme and micelle fraction were quantified to determine digestive stability and efficiency of micellarization (bioaccessibility). Micellarization of lutein (+zeaxanthin) exceeded that of alpha- and beta-carotenes, which was greater than that of lycopene for all test conditions. Micellarization of carotenes, but not lutein (+zeaxanthin), was enhanced (P < 0.05) by addition of TG (2.5% v/w) to the meal and was dependent on fatty acyl chain length in structured TG (c18:1 > c8:0 > c4:0). The degree of unsaturation of c18 fatty acyl chains in TG added to the salad purée did not significantly alter the efficiency of micellarization of carotenoids. Relatively low amounts of triolein and canola oil (0.5-1%) were required for maximum micellarization of carotenes, but more oil (approximately 2.5%) was required when TG with medium chain saturated fatty acyl groups (e.g., trioctanoin and coconut oil) was added to the salad. Uptake of lutein and beta-carotene by Caco-2 cells also was examined by exposing cells to micelles generated during the simulated digestion of salad purée with either triolein or trioctanoin. Cell accumulation of beta-carotene was independent of fatty acyl composition of micelles, whereas lutein uptake was slightly, but significantly, increased from samples with digested triolein compared to trioctanoin. The results show that the in vitro transfer of alpha-carotene, beta-carotene, and lycopene from chyme to mixed micelles during digestion requires minimal (0.5-1%) lipid content in the meal and is affected by the length of fatty acyl chains but not the degree of unsaturation in TG. In contrast, fatty acyl chain length has limited if any impact on carotenoid uptake by small intestinal epithelial cells. These data suggest that the amount of TG in a typical meal does not limit the bioaccessibility of carotenoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号