首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以毛竹为炭前驱体,KOH作活化剂,通过调节KOH用量在相同活化条件下制备了具有不同孔隙结构的竹基活性炭材料,通过扫描电镜、BET氮气吸附、直流充放电、交流阻抗和循环伏安等结构与电化学性能分析方法,考察了碱炭比对竹基活性炭材料结构和性能的影响.研究结果表明:随着碱炭比增大,活性炭材料的比表面积与总孔容、中孔孔客、微孔孔客...  相似文献   

2.
以毛竹为炭前驱体,KOH作活化剂,制备具有高比表面积的活性炭(HSAAC)材料,考察了KOH与竹炭的质量比(碱炭比)对活性炭孔结构、吸附性能和电容性能的影响。结果表明:随着碱炭比值的增加,活性炭的比表面积、中孔容积和总孔容增大,微孔孔容先增大后减小;碘吸附值、亚甲基蓝吸附值均呈现先增大后减小的趋势,碱炭比值为4时达到最大,分别为2 168和569 mg/g。当碱炭比值为4时,可制得比表面积为2 610 m2/g、总孔容为1.24 cm3/g(其中微孔孔容0.81 cm3/g,中孔孔容0.382 cm3/g)的活性炭材料。以其为电极材料组装的电容器在30%H2SO4电解液中的比电容为206 F/g。  相似文献   

3.
以废弃的松子壳为原料,采用水蒸气活化法制备松子壳活性炭,系统研究了炭化温度、活化温度、活化时间、活化剂用量等关键工艺因素对活性炭产品性能的影响,分析其对碘吸附值和亚甲基蓝吸附性能的影响。结果显示,松子壳活性炭最佳工艺条件为:炭化温度为500℃、活化温度为860℃、活化时间为90 min、水蒸气流量为2.5 m L/min,此时松子壳活性炭得率为26.08%,碘吸附值为1 338 mg/g,亚甲基蓝吸附值为300 mg/g。松子壳活性炭孔径主要集中在3 nm左右,其平均孔径为2.396 nm,BET比表面积为105 2.68 m~2/g,总孔容积为0.630 6 cm~3/g,微孔容积为0.355 8 cm~3/g,占总孔容积的56.43%。  相似文献   

4.
我国竹材资源丰富,以竹废料为原料,制备可用于超级电容器电极材料的竹活性炭,有助于推动竹产业发展,助力国家“双碳”目标实现。在本研究中,分别采用KOH共热和水热处理对竹粉进行活化,并对制备的竹活性炭进行电化学性能、比表面积、表面微观形貌等测试。实验结果表明,KOH共热活化法的最佳条件为炭化温度350℃,活化温度900℃,升温速率2℃/min,碱炭质量比4∶1;制备的活性炭比表面积为3 299 m2/g, 0.5 A/g电流密度下的比电容为287.8 F/g, 5 000次充放电测试后,电容保持率为95%~105%。水热活化法的最佳条件为KOH质量分数20%,反应温度150℃,反应时间12 h,制备的活性炭比表面积为192.91 m2/g, 0.5 A/g电流密度下的比电容为170.4 F/g,电容保持率为88.89%。2种方法制备的活性炭孔径结构都是以微孔为主,中孔混合分布,含有少量大孔;2种活性炭均含有双层或多层石墨烯结构,但水热活化法制备的活性炭石墨化程度更高,制备条件更温和。研究结果既可为超级电容器用活性炭的研究提供了理论思路,也有效地扩...  相似文献   

5.
CMC粘接法制备柱状成型活性炭   总被引:1,自引:0,他引:1  
以羧甲基纤维素钠(CMC)为粘接剂制备了柱状成型活性炭,研究了炭化温度、CMC添加量对产物吸附性能、孔结构及强度的影响。结果表明,随着炭化温度的升高,柱状成型活性炭的比表面积、亚甲基蓝吸附值和碘吸附值均呈现下降趋势;随着CMC添加量的增加,柱状成型活性炭的比表面积、总孔容、微孔容、平均孔径及亚甲基蓝吸附值、碘吸附值及对甲苯的吸附能力均逐渐降低,其强度逐渐增大。CMC粘接法制备柱状成型活性炭的最佳工艺为炭化温度200℃,CMC添加量10%,产物比表面积可达844.9 m2/g,亚甲基蓝吸附值和碘吸附值分别为189.2及968.2 mg/g,强度可达99.83%,甲苯的吸附率达65.5%。  相似文献   

6.
KOH活化制备高比表面积竹活性炭研究   总被引:9,自引:0,他引:9  
研究了KOH浸渍量、活化温度、活化时间等因素对活性炭收率、微孔结构和吸附性能的影响,结果表明:当碱,竹比为0.7,炭化温度为500℃,炭化时间为1h,活化温度为800℃,活化时间为20min时,所制得的活性炭的微孔比表面积达2492m^2/g、碘吸附值2382mg/g、亚甲基蓝吸附值558mg/g。  相似文献   

7.
磷酸活化法制备纤维素基颗粒活性炭   总被引:1,自引:0,他引:1  
以微晶纤维素为原料,在不添加黏结剂的条件下,采用磷酸活化法制备纤维素基颗粒活性炭。分析了捏合过程和炭活化工艺对活性炭耐磨强度、吸附性能和孔隙结构的影响。研究结果表明,炭活化温度的升高及保温时间的延长有利于颗粒活性炭强度的提高;随着浸渍比值的升高,颗粒活性炭的碘吸附值、亚甲基蓝吸附值、比表面积、总孔容积、微孔容积和中孔容积均呈不断上升的趋势;浸渍比值较小,较细微孔结构发达,浸渍比值较大,较大微孔结构发达。在较佳的工艺条件下:捏合温度150℃,浸渍比值1.25,捏合时间55 min,炭活化温度450℃和保温时间1.0 h,制得颗粒活性炭的碘吸附值、亚甲基蓝吸附值、强度、比表面积、总孔容积、微孔容积、中孔容积和平均孔径分别为896.6 mg/g、131.3 mg/g、94.69%、1 377.3 m2/g、1.083 cm3/g、0.514 cm3/g、0.569 cm3/g和3.14 nm。  相似文献   

8.
竹节制备高比表面积活性炭的研究   总被引:12,自引:4,他引:12  
以竹节为原料,采用KOH化学活化法制备高比表面积活性炭。研究了炭化温度、活化温度和KOH与生节炭的质量比对活性炭的收率和吸附性能的影响,并对所得活性炭的比表面积和微孔结构进行了初步探讨。结果表明:在炭化温度为700℃、碱/炭质量比为4、活化温度为900℃、活化时间为1h时可制表面积为2610m^2/g的高比表面积活性炭,其碘吸附值为2300mg/g、亚甲基基蓝值为570mg/g,均为普通活性炭的2-3倍。  相似文献   

9.
双电层电容器用活性炭的制备及微结构研究   总被引:1,自引:0,他引:1  
以核桃壳为原料通过化学-物理活化法制备出比表面积大(1 500~2 000m2/g)、堆积密度大(0.35~0.45 g/cm3)、孔径在2~50nm之间及孔径<2 nm的孔容积均大于0.45 cm3/g、单元静电容量>30F/cm3,可作为双电层电容器电极用的高性能活性炭,为双电层电容器用活性炭的产业化开发探索了一条切实可行之路.利用扫描电子显微镜(SEM)观察了化学催化剂的添加对炭化得率、炭化料结构的影响以及不同烧失率对活性炭孔隙结构的调控作用,且催化炭化提高炭化得率10%以上,气体活化前驱体孔隙也有较大的发展.利用Milestone 200比表面积孔径分析仪对气体活化前后活性炭孔隙结构进行了对比分析,表明气体活化前后,活性炭的微孔、中孔容积均提高0.20~0.30 cm3/g.  相似文献   

10.
为改善工业物理法产普通活性炭的孔隙结构,提高其作为离子液体超级电容器电极材料的性能,采用水蒸气活化法,分别对煤质活性炭(CAC)、椰壳活性炭(CSAC)和竹基活性炭(BAC)进行二次活化,探讨了工艺条件对活性炭孔隙结构的影响,并利用恒电流充放电、循环伏安曲线和交流阻抗等方法对3种活性炭制作的双电层电容器的电化学性能进行了研究。结果表明:二次水蒸气活化能够显著提高活性炭中孔孔容,从而大大提高吸附性能,3种活性炭的碘吸附值、亚蓝吸附值均相比原料有较大提升;二次水蒸气活化对CSAC的孔隙结构和比电容量影响最显著,二次活化椰壳活性炭的BET比表面积可达1 972 m2/g,电流密度0.5 A/g时,超级电容器的比电容量可达106 F/g,是原料(43F/g)的2.5倍。  相似文献   

11.
以林业废弃物杉木树皮作原料,通过低温炭化和KOH高温活化两步法制备了具有高表面积和孔隙率的杉木树皮基活性炭并应用于超级电容器电极材料。以碱炭比和活化温度为试验因素,以电流密度0.5 A/g下的质量比电容为响应值,进行中心复合设计(CCD)和响应面分析。研究结果表明:杉木树皮基活性炭的比表面积最高可达1 522 m2/g,最大孔容可达0.84 cm3/g,此时平均孔径为1.12 nm,且同时存在大量的中孔和微孔。碱炭比和活化温度的交互作用对比电容的影响显著,响应面法优化得到杉木树皮基活性炭最佳制备工艺为:碱炭比值为3,活化温度605℃,此条件下炭材料的比电容为185.7 F/g。对优化条件下制备的活性炭进行电化学性能测试发现:在0.5 A/g条件下的最大比电容为188 F/g,且具有良好的倍率性能(85.1%)。  相似文献   

12.
以椰壳炭化料为原料,通过KOH活化法制备高比表面积活性炭,并探索温度、时间和活化比对活性炭吸附性能的影响.通过单因素试验发现,活化温度800℃,活化时间60 min,活化比值为5的条件下活性炭的吸附性能最优.制备出的活性炭比表面积为3 360 m2/g,总孔孔容为1.798 cm3/g,平均孔径为2.140 nm,对碘的吸附性能为2809 mg/g,对亚甲基蓝溶液的吸附性能为675mg/g.  相似文献   

13.
以毛竹炭化料为原料,经KOH活化、盐酸溶液洗涤,制得活性炭样品AC1。采用H2O2氧化-超声波法对活性炭AC1进行深度除钾,考察了不同条件对活性炭中K+含量的影响,并通过N2吸附-脱附等温线、循环伏安、恒流充放电和交流阻抗等方法对活性炭的孔结构及电化学性能进行了表征。结果表明:在H2O2质量分数为0.6%,超声波处理温度为60℃,超声波处理时间为8 h条件下,处理后的活性炭AC2的K+仅为52 mg/kg,比表面积达3 156 m2/g,总孔容积1.625 cm3/g,中孔率79.8%,平均孔径2.208 nm。活性炭AC2用作电极材料时比电容达297 F/g,相比AC1提高28%,经3 000次循环后,电容保持率为95%,比AC1提高6个百分点,具有优异的电化学性能。  相似文献   

14.
以椰壳为原料,采用热解活化法制备微孔发达活性炭.研究了活化温度、活化时间对活性炭孔结构和吸附性能的影响.实验结果表明:活化温度为900℃,活化时间为4h,可制得比表面积为994.42 m2/g的微孔发达活性炭,其碘吸附值为1 295 mg/g,亚甲基蓝吸附值为135 mg/g.N2吸附结果表明活性炭的平均孔径在2nm左右,总孔容积为0.503 9 cm3/g,其中微孔容积为0.430 3 cm3/g,微孔率达85.39%.对该活性炭进行CO2动态吸附实验,CO2饱和吸附容量为56.61 mg/g,在热解活化法制备椰壳过程中,随着活化温度的升高和活化时间的延长,活性炭的得率有不同程度的降低.  相似文献   

15.
热解活化法制备微孔发达椰壳活性炭及其吸附性能研究   总被引:1,自引:0,他引:1  
以椰壳为原料,采用热解活化法制备微孔发达活性炭。研究了活化温度、活化时间对活性炭孔结构和吸附性能的影响。实验结果表明:活化温度为900℃,活化时间为4 h,可制得比表面积为994.42 m2/g的微孔发达活性炭,其碘吸附值为1 295 mg/g,亚甲基蓝吸附值为135 mg/g。N2吸附结果表明活性炭的平均孔径在2 nm左右,总孔容积为0.503 9 cm3/g,其中微孔容积为0.430 3 cm3/g,微孔率达85.39%。对该活性炭进行CO2动态吸附实验,CO2饱和吸附容量为56.61 mg/g,在热解活化法制备椰壳过程中,随着活化温度的升高和活化时间的延长,活性炭的得率有不同程度的降低。  相似文献   

16.
以椰壳为原料,水蒸气活化法制备了椰壳活性炭(AC),并以乙醇和水作为溶剂,采用水热法将AC与石墨烯(GR)按质量比90∶0、90∶5、90∶54、90∶90和54∶90复合,将制得的复合材料(GAC1~GAC5)作为电极应用于超级电容器。通过氮气吸脱附、X射线衍射(XRD)、扫描电镜(SEM)方法表征了活性炭的孔结构和表面形貌;采用循环伏安(CV)、恒电流充放电(GCD)方法分析比较不同复合比例下超级电容器电极材料的性能。实验结果表明:在炭化温度800℃,活化温度900℃及活化时间1.5 h的条件下制备的椰壳活性炭比表面积为2482 m^2/g,其孔径主要分布在2~4 nm,孔容可达1.33 cm^3/g,在6 mol/L KOH电解液中比电容为85 F/g,石墨烯改性的复合材料GAC-5作为电极材料具有优异的电化学性能,在电流密度1 A/g时比电容可达186 F/g。  相似文献   

17.
以黄藤为原材料,分别在500~1 200℃(每100℃为一个变化梯度)的温度条件下对其进行热解,研究热解温度对黄藤炭导电性能的影响。结果表明,800℃为黄藤炭化的一个节点,当炭化温度小于800℃时,得率随温度升高而减小,藤炭中含一定量的酯基、酚羟基、羧基等官能团,但随温度升高,其峰强逐渐减弱,样品中未出现石墨化结构,比表面积最大仅为30.89 m~2/g,在700℃时其电阻值高达830Ω;当炭化温度高于800℃时,得率基本保持在24%左右,未含有机官能团,石墨化程度随温度升高而增大,比表面积在900℃时达最大值342.69 m~2/g,材料电阻值仅为2.6Ω,具有优良的导电特性。  相似文献   

18.
玉米芯制备高比表面积活性炭的研究   总被引:12,自引:3,他引:9  
以农业废弃物玉米芯为原料,KOH为活化剂,在炭化温度400~600 ℃,KOH与炭化后原料质量比(mKOH/mC)为3:1~5:1,活化温度850 ℃,活化时间为1.2 h条件下,可制得比表面积大于2 700 m2/g的活性炭.活性炭结构具有以微孔为主,孔径分布窄的特征.  相似文献   

19.
为了考察碱/炭比、炭化温度以及活化温度对活性炭纤维孔结构的影响,以木粉为原料经液化、纺丝、固化、炭化及KOH活化工艺过程制备了木材苯酚液化物活性炭纤维;采用正交实验方法优化了活性炭纤维制备工艺。结果表明:诸因素中的显著性依次为活化温度〉炭化温度〉碱/炭比;优化组活性炭纤维的比表面积为1546m^2/g;400℃炭化温度下制备的活性炭纤维具有较高的中孔比率。  相似文献   

20.
以工业滤纸为炭基材料,聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段聚醚(普朗尼克F127)为软模板,1,3,5-三甲苯为扩孔剂,在添加3-氨基苯酚(氮源)和六次甲基四胺的条件下进行水热合成反应制得纸基复合材料,并经炭化制得氮掺杂介孔炭化复合材料(NMC-700),进一步KOH活化后制得活化氮掺杂介孔炭化复合材料(ANMC-700),同时以工业滤纸直接炭化制得的炭化滤纸(C-700)样品为对照,采用SEM、TEM、XRD、XPS等方法对3种炭材料进行了表征。研究结果表明:ANMC-700表面形成了粒径0.6~7μm的炭微球,孔结构由随机分布、蠕虫状的孔组成,比表面积高达1 559 m~2/g,孔容为0.80 cm~3/g,且氮原子已经成功掺杂到炭骨架中,含氮量为3.60%,含氧量为13.65%。电化学性能测试结果表明:以6 mol/L KOH为电解质溶液,在1 A/g的电流密度下,ANMC-700的比电容可达284 F/g,在20 A/g的电流密度下其比电容仍能保持在173 F/g,并在此电流密度下经过10 000次循环充放电,其电容保持率在98.6%,表现出良好的电化学稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号