首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
为探究蛋白质与多糖之间的相互作用,以大豆分离蛋白(SPI)-壳聚糖(CS)复合体系为研究对象,采用浊度法、电位分析、粒径分析、黏度测定及等温滴定量热法研究两者间的复合物形成状态、机理以及复合过程中的热量变化。结果表明,当pH值为3.0时,不同复合比对SPI-CS复合溶液的浊度影响不大;当CS浓度大于SPI浓度且SPI/CS复合比为1∶30时,复合溶液的粒径分布出现明显的两个峰,电位值变化不大,且两者之间的静电相互作用力微弱,几乎无热量变化。当pH值为6.0时,SPI-CS复合溶液浊度值升高,并在SPI/CS复合比为1∶10时CS达到饱和,此时复合溶液的电位值由原来的负值变为正值,两者间由于静电相互作用形成复合物使得平均粒径分布明显增大;等温滴定量热法研究结果表明,SPI和CS之间的相互作用为放热反应(ΔH0)。本研究为蛋白质和多糖在食品工业等领域的应用提供了理论依据。  相似文献   

2.
乔自鹏  李书明  王奇志 《核农学报》2019,33(10):1967-1974
为更好的资源化利用入侵植物胜红蓟,提高芦柑的保鲜效果,本研究以胜红蓟精油为油相,吐温-80为表面活性剂,乙醇为助表面活性剂,碳酸钠和羧甲基壳聚糖水溶液为水相,采用拟三元相图筛选最优纳米级复合微乳液体系,并检测其在不同浓度(2.5、5.0、10.0和20.0 mg·mL-1)下对意大利青霉、指状青霉和扩展青霉的抑菌活性和芦柑染菌抑制效果,用最优浓度处理芦柑果实,探究其对芦柑在不同贮藏条件下(25℃和4℃)的保鲜效果。结果表明,最优复合微乳液体系(A80)的配方为胜红蓟精油∶乙醇∶吐温-80∶3%碳酸钠∶0.5%羧甲基壳聚糖=0.13∶0.38∶0.13∶1∶3,其粒径为34.47 nm。复合微乳液体系浓度为20 mg·mL-1时,对意大利青霉、指状青霉和扩展青霉的抑菌效果最好,抑制率分别为64.86%、60.23%和86.96%,对芦柑的染菌抑制率为76.48%。此浓度复合微乳液A80对4℃贮藏条件的芦柑保鲜效果最好,贮藏30 d后芦柑失重率为22.24%,对照组失重率为26.47%,腐烂率为11.33%,较对照组降低50%。构建的胜红蓟精油复合微乳液体系处理芦柑,不仅可以有效抑菌,延缓芦柑果实水分散失和重量损失,而且能延长芦柑的保鲜期。本研究结果为胜红蓟精油天然保鲜剂的开发和芦柑储藏保鲜提供了一定的理论基础。  相似文献   

3.
为研究燕麦蛋白的理化性质,本研究采用碱提酸沉法提取燕麦蛋白,并分析不同pH值与温度对燕麦蛋白溶解性、ζ-电位和粒径分布的影响。结果表明,在等电点附近(pH值5.0),燕麦蛋白的表面电荷数最低,蛋白粒度较大,溶解性和乳化性较低。当pH值远离等电点时,燕麦蛋白的表面电荷增加,蛋白粒度逐渐减小,溶解度升高,乳化性也随之升高;随着温度升高(55~95℃),燕麦蛋白聚集体解离,粒度变小,溶解度增加,稳定性变好;温度进一步升高(121、130℃),燕麦蛋白重新聚集形成粒径较大的聚集体,溶解度降低,稳定性变差。本研究结果为燕麦蛋白资源的利用提供了重要的理论指导。  相似文献   

4.
为了探究不同挤压温度(40、60、80、100和120℃)对大豆分离蛋白(Soy Isolate Protein,SPI)与葡萄籽原花青素(Grape Seed Proanthocyanidin Extract,GSPE)复合物功能性质及结构特性的影响。该研究以溶解度、乳化性、乳化稳定性、ζ-电位、粒度为指标,利用荧光光谱、红外光谱分析该复合体系中大豆分离蛋白功能性质及结构的变化。结果表明:相较于挤压SPI,经过挤压处理的SPI-GSPE复合物的溶解度、乳化活性指数、乳化稳定性指数、ζ-电位绝对值及持水性均显著提高(P<0.05),其表面疏水性、持油性显著下降(P<0.05)。随着挤压温度的升高,SPI-GSPE复合物的溶解度、持油性及乳化活性均先增大后减小且在80℃达到最大值,而其表面疏水性先减小后增大且最小值在80℃,ζ-电位绝对值、乳化稳定性及持水性均随温度的升高而降低。粒径分析结果表明,挤压处理后SPI与GSPE形成了更加致密的复合物;荧光光谱及红外光谱结果表明,与GSPE的复合及挤压处理使SPI氨基酸残基所处微环境发生变化,蛋白结构发生变化。以上结果表明挤压温度为80℃时SPI-GSPE复合物功能性质提高幅度最大,为GSPE与SPI复合提高SPI的功能性质提供参考。  相似文献   

5.
超声处理改善不同比例大豆-乳清混合蛋白理化性质   总被引:3,自引:3,他引:0  
为了探究超声作用对不同比例大豆-乳清混合蛋白功能性质的影响。该试验以大豆蛋白与乳清蛋白为原料,对粒径、ζ-电位、内源性荧光光谱、扫描电子显微镜等结构性质,以及乳化活性、乳化稳定性、质构、持水性等理化特性和功能特性进行研究。结果表明:当SPI-WPI(soy protein isolate-whey protein isolate)质量比为5:5时,乳化活性与乳化稳定性最大(65.5 m2/g,16.3 min),同时粒径分布由双峰转为单峰,体积平均粒径D[4,3]达到最小值(205.6 nm)、ζ-电位绝对值达到最大(21.4m V),此时混合体系稳定性最好。内源性荧光光谱显示有荧光物质释放,荧光强度持续增强,说明超声处理改变了混合体系蛋白结构。超声处理后混合蛋白比例在5:5时,具有最佳的凝胶性质,硬度达到最高(475.61 N),持水性达到最大(85.32%),与扫描电子显微镜的结果一致,显示此时混合蛋白体系形成致密、均一、有规则凝胶网络结构。该研究可为大豆-乳清混合蛋白的应用提供技术支撑。  相似文献   

6.
大豆油体乳液稳定性和流变性分析   总被引:2,自引:1,他引:1  
研究大豆油体乳液的基本物理化学性质,将为其工业应用提供参考。以水为介质提取大豆油体,方法无毒,利于食用。对其在不同pH值(pH值2~8)、NaCl浓度(0~250?mmol/L)和加热处理(30~90℃,30?min)条件下的Zeta电位、平均粒径和乳析稳定性进行测定,并对其流变性进行考察。大豆油体乳液的Zeta电位为+20?mV~-40?mV(pH值2~8),等电点约为4.5。在pH值≤3和pH值≥6条件下,平均粒径均为0.4?μm左右;而在3<pH<6时,产生了乳析现象。在较高NaCl浓度下(>25?mmol/L),粒径较大和发生了乳析现象。大豆油体乳液在30~90℃加热处理时较稳定。大豆油体乳液呈现出弱凝胶的性质,其黏度随着油质量分数的降低而降低。研究表明,大豆油体乳液在一定的环境条件下是稳定的。  相似文献   

7.
绣球菌渣复合基质对黄瓜幼苗素质及产量的影响   总被引:2,自引:0,他引:2  
为减少绣球菌渣废弃物带来的潜在农业面源污染的风险,探讨其资源化利用的可行性,本试验将绣球菌渣与草炭、珍珠岩进行复配,研究不同绣球菌渣复合基质理化性质的差异,黄瓜幼苗生长、生理生化特性及成苗栽培后产量差异,探讨不同基质配方对黄瓜幼苗素质的影响。结果表明,绣球菌渣复合基质的理化性质均在适合黄瓜生长的范围内;配方(绣球菌渣∶草炭∶珍珠岩=1∶1∶1)与对照(CK,草炭∶珍珠岩=2∶1)相比,出苗后20 d,幼苗根冠比、可溶性糖、叶绿素含量分别提高9.84%、25.89%、56.67%,且根系活力是CK的1.79倍;单株果数和产量分别提高17.82%和10.80%,绣球菌渣最佳使用比例为33%。本研究结果为绣球菌渣资源化利用提供了理论依据。  相似文献   

8.
为了建立一种金刚烷胺(AMD)检测的新方法,以盐酸黄连素/羟丙基-P-环糊精(BRH/HP-β-CD)为荧光探针,将HP-β-CD分别与BRH、AMD相互作用,测定AMD、BRH/HP-β-CD及两者结合的荧光强度变化规律,并验证分析该荧光分光光度法的适用性。结果表明,HP-β-CD与BRH生成1∶1的包合物并显著增强黄连素水溶液的荧光强度,当加入AMD后,BRH/HP-β-CD包合物的荧光强度逐渐减弱,据此成功建立一种以BRH/HP-β-CD为荧光探针的金刚烷胺检测新方法。当AMD溶液浓度在0.05~4.5 mg·L-1范围内时与荧光猝灭值△F之间呈线性关系,相关系数为0.989 3,检测限(S/N=3)为0.03 mg·L-1。溶液pH值和常见的药物赋形剂均不会对测量结果造成干扰,将本方法用于盐酸金刚烷胺药片的分析,其回收率在92%~101%范围内,相对标准偏差小于1%,说明该方法能够成功用于金刚烷胺的测定。本研究为以超分子包合物为荧光探针用于金刚烷胺类药物的检测提供了理论依据。  相似文献   

9.
闫佼  任新宇  魏宏宇  彭帅英  程新 《核农学报》2022,36(11):2275-2285
为探究菌糠多糖-纳米硒复合物对水稻的促生效果,以茶树菇菌糠多糖为原料,采用抗坏血酸为还原剂制备菌糠多糖-纳米硒复合物,并初步探索其对水稻种子萌发及水稻幼苗生长的影响。结果表明,当茶树菇菌糠多糖占比为10%、Vc与亚硒酸钠的配比为4∶1、反应时间为4 h、反应温度为50℃时,可以获得粒径最小且稳定的菌糠多糖-纳米硒复合物。该条件制备的茶树菇菌糠多糖-纳米硒复合物有一定的体外抗氧化能力,对水稻生长具有明显促进作用,且其促生效果高于单一的菌糠多糖,其中对水稻根部发育的影响尤为显著。进一步研究表明,当水稻幼苗叶面喷施菌糠多糖-纳米硒复合物浓度为20 mg·L-1时,根和叶中可溶性蛋白含量比对照分别提高了72.62%和27.80%,叶中可溶性糖含量增加了180.87%,叶绿素a、叶绿素b、类胡萝卜素含量分别增加了67%、58%、21%。叶面喷施对水稻的促生效果显著高于根部添加处理。本研究为菌糠多糖在农业领域的推广应用提供了理论与实践参考,同时也为利用外源性物质提高农作物生长提供了依据。  相似文献   

10.
为探究茶多酚(Tea Polyphenols, TPs)对辛烯基琥珀酸酐(Octenyl Succinic Anhydride, OSA)酯化淀粉纳米颗粒(Starch Nanoparticles,SNPs)及其稳定的Pickering乳液性质的影响,该研究在制备OSA-SNPs的过程中添加TPs,研究TPs对OSA-SNPs的理化性质和乳化性能的影响。结果发现,添加TPs使OSA-SNPs的平均粒径增加、表面Zeta电位绝对值下降、接触角减小(P<0.05)。通过傅立叶红外光谱扫描发现,TPs与OSA-SNPs之间存在氢键和疏水相互作用。在TP-OSA-SNPs稳定的乳液中,增加TP-OSA-SNPs的质量浓度(从0.5 g/mL至2.0 g/mL),乳滴平均直径明显减小(P<0.05);当TP-OSA-SNPs的质量浓度增加至2 g/mL时,乳液形成了油滴紧密堆积的界面结构,能够抑制油滴迁移。通过加速氧化试验发现,与OSA-SNPs相比,TP-OSA-SNPs稳定的乳液中氢过氧化物值(Peroxide Value, POV)相对较低(P<0.05),说明TP-OSA-SNPs具有延缓乳液中油脂氧化的作用。结果表明,这种新型具有抗氧化功能的食品级颗粒乳化剂,对构筑淀粉基Pickering乳液载体具有潜在价值。  相似文献   

11.
In the present study emulsions were made with various potato protein preparations, which varied in protease inhibitor and patatin content. These emulsions were characterized with respect to average droplet size, plateau surface excess, and the occurrence of droplet aggregation. Droplet aggregation occurred only with potato protein preparations that contained a substantial amount of protease inhibitors and could be prevented only at pH 3. The average droplet size of the emulsions made with potato proteins appeared to be related to the patatin content of the preparation used. Average droplet size was found to be dominated by the patatin-catalyzed lipolytic release of surface active fatty acids and monoglycerides from the tricaprylin oil phase during the emulsification process. Addition of monoglycerides and especially fatty acids, at concentrations representative of those during emulsification, was shown to cause a stronger and much faster decrease of the interfacial tension than that with protein alone and to result in a drastic decrease in droplet size. The patatin used was shown to have a lipolytic activity of 820 units/g with emulsified tricaprylin as the substrate. Because of the droplet aggregating properties of the protease inhibitors, the patatin-rich potato preparations seem to be the most promising for food emulsion applications over a broad pH range, provided the lipolytic activity can be diminished or circumvented.  相似文献   

12.
Tea catechins have been shown to reduce plasma cholesterol and suppress hypertriacylglycerolemia by reducing triglyceride absorption. However, the mechanism is not yet clear. One of the possible mechanisms is that tea polyphenols may modify dietary fat emulsification in the gastrointestinal tract. The digestive enzyme (lipase) acts on specific emulsion interface properties (droplet size and surface area). Therefore, changes in these properties may modify emulsification and lead to changes in dietary fat digestion and absorption. In this study, the effect of both green and black tea on the changes of emulsification was examined by measuring the droplet size and the surface area. A model emulsion system containing olive oil, phosphatidylcholine (PC), and bile salt was developed to simulate small intestinal conditions. Initial changes in droplet size (from 1.4 to 52.8 microm and from 1.4 to 25.9 microm) of the emulsion were observed in the presence of 1.04 mg/mL and 0.10 mg/mL of total catechins prepared from green and black tea, respectively. Both teas caused similar changes on the emulsion properties; however, black tea was more effective than green tea. The underlying mechanisms of actions of tea polyphenols are discussed.  相似文献   

13.
Measurement of the intensity (I(MAX)) and/or wavelength (lambda(MAX)) of the maximum in the tryptophan (TRP) emission spectrum using front-face fluorescence spectroscopy (FFFS) can be used to provide information about the molecular environment of proteins in nondiluted emulsions. Many protein-stabilized emulsions in the food industry are flocculated, and therefore, we examined the influence of droplet flocculation on FFFS. Stock oil-in-water emulsions stabilized by bovine serum albumin were prepared by high-pressure valve homogenization (30 wt % n-hexadecane, 0.35 wt % BSA, pH 7). These emulsions were used to create model systems with different degrees of droplet flocculation, either by changing the pH, adding surfactant, or adding xanthan. Emulsions (21 wt % n-hexadecane, 0.22 wt % BSA) with different pH (5 and 7) and molar ratios of Tween 20 to BSA (R = 0-131) were prepared by dilution of the stock emulsion. As the surfactant concentration was increased, the protein was displaced from the droplet surfaces, which caused an increase in both I(MAX) and lambda(MAX), because of the change in TRP environment. The dependence of I(MAX) and lambda(MAX) on surfactant concentration followed a similar pattern in emulsions that were initially flocculated (pH 5) and nonflocculated (pH 7). Relatively small changes in FFFS emission spectra were observed in emulsions (21 wt % n-hexadecane, 0.22 wt % BSA, pH 7) with different levels of depletion flocculation induced by adding xanthan. These results suggested that droplet flocculation did not have a major impact on FFFS. This study shows that FFFS is a powerful technique for nondestructively providing information about the molecular environment of proteins in concentrated and flocculated protein-stabilized emulsions. Nevertheless, in general the suitability of the technique may also depend on protein type and the nature of the physicochemical matrix surrounding the proteins.  相似文献   

14.
The interaction between four flavonoids (catechin, epicatechin, rutin, and quercetin) and bovine serum albumin (BSA) was investigated using tryptophan fluorescence quenching. Quenching constants were determined using the Stern-Volmer equation to provide a measure of the binding affinity between the flavonoids and BSA. The binding affinity was strongest for quercetin and ranked in the order quercetin > rutin > epicatechin = catechin. The pH in the range of 5-7.4 does not affect significantly (p < 0.05) the association of rutin, epicatechin, and catechin with BSA, but quercetin exhibited a stronger affinity at pH 7.4 than at lower pH (p < 0.05). Quercetin has a total quenching effect on BSA tryptophan fluorescence at a molar ratio of 10:1 and rutin at approximately 25:1. However, epicatechin and catechin did not fully quench tryptophan fluorescence over the concentration range studied. Furthermore, the data suggested that the association between flavonoids and BSA did not change molecular conformation of BSA and that hydrogen bonding, ionic, and hydrophobic interaction are equally important driving forces for protein-flavonoid association.  相似文献   

15.
采用广义回归神经网络建立酪蛋白乳化性与疏水性关系   总被引:2,自引:1,他引:1  
为了研究琥珀酰化修饰后酪蛋白乳化性与疏水性关系,该文以琥珀酰化牦牛乳酪蛋白为研究对象,分析了不同酰化程度酪蛋白乳化性及疏水性变化趋势,采用广义回归神经网络建立了牦牛乳酰化酪蛋白乳化性与疏水性关系模型。结果显示,琥珀酰化牦牛乳酪蛋白乳化性和疏水性均与酰化程度、pH值有关,pH值为5以上,随着酰化程度的增加,酪蛋白乳化活性增大;等电点附近,酪蛋白乳化活性较差,等电点之后乳化活性迅速增大。pH值介于2-6时,所有酪蛋白乳化稳定性较强,pH值介于6-11之间时,酪蛋白乳化稳定性差异较小,pH值为12时乳化稳定性有所增加。酪蛋白内荧光与1-苯胺基萘-8-磺酸(1-aniline napthalene-8-sulfonic acid,ANS)外源荧光最大荧光强度和最大发射波长随酰化程度及pH值变化表现出较为复杂的关系。通过广义回归神经网络(generalized-regression-neu-network,GRNN)建立了牦牛乳酪蛋白疏水性参数、pH值、酰化程度与乳化性关系,网络模型对乳化性的预测相对误差小于10%,预测结果良好。研究结果为酪蛋白乳化性研究提供了参考依据。  相似文献   

16.
The structural modification of globular proteins (bovine serum albumin, BSA) in the aqueous phase of emulsions produced by homogenization was studied using front-face fluorescence spectroscopy (FFFS). A series of hydrocarbon oil-in-water emulsions (30 wt % n-hexadecane, 0.35 wt % BSA, pH 7.0) were homogenized to differing degrees with a high-speed blender and a high-pressure valve homogenizer. The wavelength of the maximum in the tryptophan emission spectrum (lambda(max)) of serum phases collected from the emulsions by centrifugation was measured and compared to lambda(max) values of BSA solutions subjected to the same homogenization conditions. There was no significant (p < 0.05) change in lambda(max) with homogenization conditions for BSA solutions. In contrast, lambda(max) of serum phases from emulsions blended for 2 min in a high-speed blender was significantly smaller (p < 0.05) than nontreated BSA solutions (Deltalambda(max) = 2 nm). In addition, there was a further significant decrease in lambda(max) of the serum phases with an increasing number of passes of the emulsion through the high-pressure valve homogenizer (e.g., Deltalambda(max) = 4 nm for 12 passes). This study shows that globular proteins present in the aqueous phase of a hexadecane-in-water emulsion after homogenization could be altered, which is probably caused by surface modification of the protein structure during temporary adsorption to emulsion droplet surfaces during homogenization.  相似文献   

17.
Chickpea and lentil protein-stabilized emulsions were optimized with regard to pH (3.0-8.0), protein concentration (1.1-4.1% w/w), and oil content (20-40%) for their ability to form and stabilize oil-in-water emulsions using response surface methodology. Specifically, creaming stability, droplet size, and droplet charge were assessed. Optimum conditions for minimal creaming (no serum separation after 24 h), small droplet size (<2 μm), and high net droplet charge (absolute value of ZP > 40 mV) were identified as 4.1% protein, 40% oil, and pH 3.0 or 8.0, regardless of the plant protein used for emulsion preparation.  相似文献   

18.
Catastrophic phase inversion (CPI) was used as a low-energy emulsification method to prepare oil-in-water (O/W) nanoemulsions in a lipid (Acetem)/water/nonionic surfactant (Tween 60) system. CPIs in which water-in-oil emulsions (W/O) are transformed into oil-in-water emulsions (O/W) were induced by changes in the phase ratio. Dynamic phase inversion emulsification was achieved by slowly increasing the water volume fraction (fw) to obtain O/W emulsions from water in oil emulsions. Composition and processing variables were optimized to minimize droplet size and polydispersity index (PdI). It was found that addition of the continuous phase to the dispersed phase following the standard CPI procedure resulted in the formation of oil droplets with diameters of 100-200 nm. Droplet size distribution during CPI and emulsification time depended on stirring speed and surfactant concentration. Droplet sizes in the inverted emulsions were compared to those obtained by direct emulsification: The process time to reach droplet sizes of around 100 nm was reduced by 12 times by using CPI emulsification. The Acetem/water nanoemulsion was also used as a carrier to incorporate oregano and cinnamon essential oils into soy protein edible films. The resulting composite films containing oregano oil showed better moisture barrier and mechanical properties compared to soy protein films.  相似文献   

19.
Proteins often stabilize food emulsions and are also able to promote or delay lipid oxidation in complex systems. The purpose of this work was to investigate the relationship between metal ion availability and oxidative stability of oil-in-water emulsions stabilized by bovine serum albumin (BSA) or sodium caseinate (NaCas). Emulsions with similar and stable droplet size distributions were prepared with stripped sunflower oil (30 vol %) and protein solutions (20 g L(-)(1); pH = 6.5). In the absence of the water-soluble metal chelator EDTA, oxygen uptake, conjugated dienes, and volatile compounds developed faster in NaCas-stabilized emulsions than in those prepared with BSA. This effect is attributed to the chelating properties of NaCas and to electrostatic interactions that attract some metal ions at the interface where they could initiate lipid oxidation. When EDTA (100 muM) was present, oxidation was delayed to a greater extent in emulsions made with NaCas than in BSA stabilized emulsions. These conditions probably enabled NaCas to exert free-radical-scavenging activity.  相似文献   

20.
A series of dextrans and beta-lactoglobulin were covalently conjugated and screened for their ability to stabilize oil-in-water emulsions. Dextrans with the molecular mass of 19.6 kDa, 87 kDa, 150 kDa, 500 kDa, and 2000 kDa were attached to beta-lactoglobulin via the Maillard reaction. The conjugates were then purified and evaluated as emulsifiers under neutral conditions. The ability to stabilize emulsions was determined by monitoring oil droplet size over time. Adsorption of the conjugates to the droplet surface was characterized by determining the protein surface load. The results show that increasing polysaccharide size increases emulsion stability up to 150 kDa before leveling off. Conversely, surface protein density remains constant until 150 kDa before decreasing with polysaccharide size. A model is presented to interpret the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号