首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了监测长牡蛎(Crassostrea gigas)在选育过程中的遗传变异、分析选育对其遗传结构的影响,本研究以选育目标为壳宽快速生长的长牡蛎为实验材料,利用微卫星(Simple Sequence Repeats)标记技术,对长牡蛎基础群体(P0)和连续两代选育群体(F1和F2)进行遗传多样性评估。结果发现,所有微卫星位点在3个群体中都表现出了较高的多态性,P0、F1和F2代群体的平均等位基因数分别为16.5、12.2和12.8;P0、F1和F2代群体多态性信息含量(Pic)的平均数值分别为0.9068、0.8982和0.8836。所有群体10个位点的观测杂合度值(Ho)均小于期望杂合度值(He),观测杂合度平均值的大小范围为0.5775–0.6484,期望杂合度范围为0.8594–0.9279。哈迪-温伯格平衡(HWE)结果显示,3个群体在10个位点上有24个群体的位点组合显著偏离HWE(P<0.05),说明人工选育对选育群体的遗传结构有一定的影响。3个群体在10个位点上的Fis值均为正值,平均范围为0.1541–0.2341,表明群体内各位点上的杂合子比例有所下降;各群体间Fst值范围为0.0093–0.0245,遗传分化程度较弱。此研究表明,以壳宽快速生长为选育目的,长牡蛎连续选育群体仍具有很高遗传多样性,人工选育过程中保持一定选择压力,仍然会使长牡蛎的优良生长性状得到不断提高。  相似文献   

2.
长牡蛎3代人工选育群体的微卫星分析   总被引:3,自引:1,他引:2  
王庆志  李琪  孔令锋 《水产学报》2012,36(10):1529-1536
进行群体选育时,因近交机率增加和有效亲本数的减少,可能导致选育群体的遗传多样性下降,进而引起选育群体的性状衰退。为监测长牡蛎人工选育群体在选育过程中的遗传差异,实验应用微卫星DNA标记对长牡蛎野生和人工3代选育群体及其基础群体的遗传多样性进行了研究。微卫星10个位点在所有群体中均表现出较高的多态性,6个群体的平均等位基因数范围为24.0~29.7个,期望和观测杂合度分别为0.925~0.956和0.724~0.809。与野生群体和基础群体相比,长牡蛎选育3代群体的平均等位基因数和等位基因丰富度略有下降,但杂合度水平未发生明显变化。哈迪—温伯格平衡(HWE)检验结果显示,60个群体—位点组合中47个群体—位点组合显著偏离HWE平衡(P<0.05)。Fis指数均为正值,平均范围0.152~0.233,表明各群体在10个位点上表现为一定程度的杂合子缺失。各群体间Fst值的范围为0.008~0.025,遗传分化程度较弱。结果表明,连续3代的人工选育尚未明显降低长牡蛎群体的遗传多样性,仍可以一定的选择压力对选育群体进行人工选育,从而保证长牡蛎的优良生长性状得到持续提高。  相似文献   

3.
利用8个微卫星标记对福建牡蛎(Crassostrea angulata)基础群体、‘金蛎1号’选育系F6和野生群体进行遗传多样性分析。结果表明,每个位点在各群体的等位基因数为7~24个,各群体在所有位点的平均等位基因数为10.3~17.6个,平均等位基因丰度为9.8~16.8。平均观测杂合度和平均期望杂合度分别为0.655~0.662和0.788~0.872。经邦弗朗尼校正,哈迪–温伯格平衡检验结果显示,在24个群体–位点组合中18个群体–位点组合显著偏离平衡(P0.01)。群体内近交系数F_(is)值介于0.0095~0.2874,平均值为0.1992,遗传分化系数F_(st)介于0.0224~0.1627,平均值为0.0767,暗示选育群体中存在较低水平的非随机交配现象,属于中度偏低分化。研究表明,连续的选育对群体的遗传分化产生了一定的影响,但是,选育群体仍然具有较高水平的遗传多样性。  相似文献   

4.
采用微卫星标记技术分析不同世代三疣梭子蟹选育家系的遗传结构。利用16个多态性微卫星位点分析了三疣梭子蟹家系F1到F4 4个选育家系的遗传结构与遗传多样性变化情况。结果显示,随着选育的进行,4个世代家系遗传多样性指标值逐渐下降,F1到F4 16个微卫星位点的平均多态信息含量从0.6753 下降到0.4061,平均等位基因数从3.5下降到2.1333,平均观测杂合度从0.6435 下降到0.4774,平均等位基因纯合率从0.5669到0.4024。对各个位点进行H-W检验,每个世代出现不同程度的平衡偏离。对各家系进行F-检验,各家系存在不同程度的遗传分化,结果表明,19.07% 的遗传分化来自群体间,80.93%的遗传分化来自群体内。另外,对Fis值的计算显示,4个家系在整体上均表现为一定程度的杂合子缺失,其中F4有12个位点、F3有6个位点、F2有3个位点、F1有8个位点处于杂合子缺失状态。遗传距离逐渐增加,相邻世代间的遗传相似性逐步升高。随着选育的进行,结果表明,经过连续4代的选育,选育群体的遗传基础逐步得到纯化,基因型逐渐趋向纯合、稳定,经进一步的选育可望获得较稳定的品系。  相似文献   

5.
采用微卫星标记技术分析不同世代三疣梭子蟹选育家系的遗传结构。利用16个多态性微卫星位点分析了三疣梭子蟹家系F1到F4 4个选育家系的遗传结构与遗传多样性变化情况。结果显示,随着选育的进行,4个世代家系遗传多样性指标值逐渐下降,F1到F4 16个微卫星位点的平均多态信息含量从0.675 3下降到0.406 1,平均等位基因数从3.500 0下降到2.133 3,平均观测杂合度从0.643 5下降到0.4774,平均等位基因纯合率从0.566 9下降到0.402 4。对各个位点进行H-W检验,每个世代出现不同程度的平衡偏离。对各家系进行F-检验,结果表明,各家系存在不同程度的遗传分化,19.07%的遗传分化来自群体间,80.93%的遗传分化来自群体内。另外,对FIS值的计算显示,4个家系在整体上均表现为一定程度的杂合子缺失,其中F4有12个位点、F3有6个位点、F2有3个位点、F1有8个位点处于杂合子缺失状态。遗传距离逐渐增加,相邻世代间的遗传相似性逐步升高。经过连续4代的选育,选育群体的遗传基础逐步得到纯化,基因型逐渐趋向纯合、稳定,经进一步的选育可望获得较稳定的品系。  相似文献   

6.
用磁珠富集法构建了长鳍吻(魚句)(AAAC)n寓集文库.从中分离并鉴定得到13个微卫星位点.对三峡库区重庆江段的40尾长鳍吻(魚句)群体进行了遗传多样性的初步研究,其中6个位点呈现多态性(1个位点为中度多态,5个位点为高度多态),等位基因数目为1~11个,观测杂合度在0.20~0.85.这些多态性位点将为长鳍吻(魚句)及其近缘种的种群遗传研究提供有力的遗传学资料.  相似文献   

7.
利用13个多态性微卫星位点分析了大黄鱼官井洋优快01品系F1到F44个选育世代的遗传结构与遗传多样性变化情况。结果显示,随着选育的进行,4个世代群体遗传多样性指标值渐次下降,F1到F413个微卫星位点的平均多态信息含量从0.638下降到0.524,平均等位基因数从5.462下降到4.308,平均观测杂合度从0.779下降到0.532,平均Shannon多样性指数从1.356下降为1.092。F1与其后各代遗传相似系数逐渐减小(从0.7194到0.5813),遗传距离逐渐增加,而相邻世代间的遗传相似性逐步升高,遗传分化指数(FST)渐次变小(F1~F2为0.0619,F2~F3为0.0511,F3~F4则为0.0475)。随着选育的进行,微卫星位点LYC0002和LYC0054等位基因频率有规律地发生变化,推测其可能与选育性状存在遗传上的相关。结果表明,经过连续4代的选育,部分不利基因遭到淘汰,选育群体的遗传基础逐步得到纯化,基因型逐渐趋向纯合、稳定,经进一步的选育可望获得较稳定的品系。  相似文献   

8.
利用在生长激素(GH)、生长激素释放激素(GHRH)和垂体腺苷酸环化酶激活多肽(PACAP)基因中发现的7个微卫星位点,分析了半滑舌鳎两个野生群体(渤海群体和黄海群体)和1个养殖群体间以及各群体内雌雄个体间的遗传多态性差异。结果表明,7个位点中有4个位点表现出多态性,在3个群体中的等位基因数的分布范围为2~37,平均为9.5;有效等位基因数分布范围为2~28.9,平均为8.4。各位点的平均观测杂合度、平均期望杂合度和平均多态信息含量分布范围分别为0.5145~0.7738、0.5690~0.8671和0.4829~0.8314。群体间的成对FST值及个体分配分析的结果表明,半滑舌鳎野生群体和养殖群体之间存在显著性遗传差异,而在两个野生群体之间差异不显著。此外,等位基因分布和双倍体基因型分布的差异性检测结果表明,这4个多态性位点在3个群体的雌、雄性别间均不存在显著性差异。  相似文献   

9.
邢德  李琪  张景晓 《水产学报》2017,41(12):1838-1846
为了探讨壳白长牡蛎人工选育对群体遗传变异的影响,实验利用4个多重PCR组合共10个微卫星标记分析了连续3代壳白长牡蛎人工选育群体和野生群体及基础群体的遗传多样性。结果发现,6个群体的平均等位基因数量为7.2~12.6,等位基因丰度为6.8~11.0,期望和观测杂合度分别为0.672~0.769和0.486~0.542;与野生群体相比,3代选育群体的平均等位基因数显著降低,但平均期望杂合度并无显著差异。哈迪—温伯格平衡检验结果显示,在60个群体—位点组合中有39个群体—位点组合显著偏离哈迪—温伯格平衡,近交系数F_(is)范围为0.215~0.342。群体间遗传分化指数F_(st)范围为0.005~0.076,处于中—低等的遗传分化水平。研究表明,虽然连续选育对群体的遗传多样性和遗传分化造成了一定程度的影响,但人工选育群体依然表现为较高的遗传多样性,仍可以一定的选择压力对选育群体进行人工选育。  相似文献   

10.
本研究利用10个微卫星分子标记分析了中华绒螯蟹(Eriocheir sinensis) 3个不同水系人工选育群体(“长江1号”、“光合1号”和七里海河蟹)和1个海河流域自然群体的遗传多样性和遗传分化水平。结果显示,10个位点在4个群体中的等位基因数(N)为3~17,平均等位基因数为8.5~9.7,平均期望杂合度为0.720~0.745,平均观测杂合度为0.566~0.661,平均多态信息含量为0.687~0.716,近交系数(Fis)范围为–0.080~0.827。在40个群体–位点组合中,有13个群体–位点组合显著偏离哈迪–温伯格平衡(P<0.05)。遗传多样性分析结果显示,与海河自然群体相比,3个人工选育群体遗传多样性水平略有降低,但仍保持在较高水平,具有较大的选育潜力。遗传分化分析结果显示,群体间遗传分化指数(Fst)范围为0.015~0.075,遗传相似度为0.7702~0.9401,遗传距离为0.0617~0.2611。基于Nei’s遗传距离构建了群体UPGMA系统进化树,自然群体和“光合1号”聚为一支,而七里海河蟹群体单独聚为一支。综上所述,4个中华绒螯蟹群体间的遗传分化水平较低,群体遗传多样性较高。本研究将为中华绒螯蟹选育繁育和种质资源利用与管理等提供理论基础。  相似文献   

11.
利用微卫星标记技术分析了中国明对虾(Fenneropenaeus chinensis)野生群体(Wild Population,WP)和"黄海2号"第10代选育群体(Breeding Population,BP)的遗传多样性,以检测累代人工选育对中国明对虾群体遗传结构的影响。结果显示,15个微卫星位点共检测到462个等位基因,微卫星位点等位基因数(N_a)和有效等位基因数(N_e)分别为3~44个和2~29个,多态信息含量(PIC)为0.518~0.964。野生群体和选育群体的平均观测杂合度分别为0.852和0.810,15个微卫星位点的等位基因频率在2个群体发生了显著的变化。通过计算P值确定位点Hardy-Weinberg平衡偏离情况,Fis结果显示,共有11个群体位点表现为杂合子过剩,Shannon指数(H)分别为2.786和2.399。2个群体的N_ei′s无偏遗传距离(u D)和无偏遗传相似度(u I)分别为0.177和0.838,遗传分化指数为0.017(P=0.001),表明群体发生了弱遗传分化。遗传变异来源分析显示,只有7.50%的变异来自于群体间,其余遗传变异均来自于个体间。结果表明,人工选育的中国明对虾"黄海2号"第10代群体具有较高的遗传多样性,仍具有很大的选育潜力,可以继续作为选育材料。  相似文献   

12.
翘嘴鳜连续4代选育群体遗传多样性及遗传结构分析   总被引:3,自引:0,他引:3  
利用微卫鳜星分子标记技术对翘嘴鳜(Siniperca chuatsi)选育群体世代F1至F4的遗传结构进行分析,并以长江中游野生翘嘴作为对照群体。结果显示:筛选出的7个微卫星位点在5个实验群体中共检测到了149个等位基因;随着选育的进行,4个世代群体遗传多样性参数逐代下降,平均等位基因数从5.14下降到2.57,平均观测杂合度从0.405下降到0.229,平均多态信息含量从0.702下降到0.424。野生群体与选育群体间的遗传距离逐代增加(从0.345 4到0.751 7),遗传相似度逐代减小(从0.707 9到0.471 6),遗传分化指数逐代增大(从0.093 8到0.239 7)。结果表明,经过连续4代选育,部分位点的基因型逐渐趋向纯合,在多数位点上4代群体仍表现出较高遗传多样性。  相似文献   

13.
为了解中华绒螯蟹不同群体的遗传结构,利用微卫星分子标记,分析中华绒螯蟹单年系F5代选育群体、“长江2号”和长江野生群体的遗传多样性。结果表明,6个微卫星位点的等位基因数为7~11,有效等位基因数为4.539 4~9.529 4,观测杂合度为0.638 9~0.861 1,期望杂合度为0.790 7~0.907 7,多态信息含量为0.779 7~0.895 1,6个微卫星位点均具有高度多态性。3个河蟹群体的期望杂合度为0.817 6~0.847 8,多态信息含量为0.784 1~0.812 5,表明所有群体均具有高度遗传多样性。遗传分化指数值为0.052 69~0.084 82,表明所有群体间均有不同程度的遗传分化。AMOVA分析显示,群体间变异占总变异的5.34%,群体内个体间的变异占总变异的94.66%。基于Nei氏遗传距离构建的UPGMA系统进化树显示,单年系F5代选育群体先与“长江2号”群体聚为一类,再与长江野生群体聚为一类。  相似文献   

14.
选用实验室克隆的23个圆口铜鱼(Coreius guichenoti Sauvageet Dabry)微卫星标记分析了长江宜宾江段的圆口铜鱼群体遗传多样性,统计分析了有效等位基因数、观测杂合度Ho、期望杂合度He、多态信息含量(PIC)等遗传学指标。结果表明:23个位点有14个微卫星位点呈单态,9个位点出现多态,在这9个位点中共检测到48个等位基因,其平均有效等位基因数为5.3,多态信息含量在0.440~0.839之间变动,平均为0.670,除YT17和YT22位点属于中度多态外,其余7个位点均属于高度多态。平均观测杂合度为0.753,平均期望杂合度为0.728,表明该群体的遗传多样性较为丰富。  相似文献   

15.
抗逆选育引起的遗传变化不仅源于DNA序列的变化,也有来自于表观层面的修饰改变。为探究刺参(Apostichopus japonicus)耐高温新品系育种过程中的选育基础群体与选育群体的遗传多样性,运用MSAP技术分析了选育基础群体F、选育F1代和选育F4代的基因组遗传多样性。结果显示,10对引物获得的806个位点中,多态性位点为698个,多态性百分比达到86.60%;基于非甲基化位点的遗传分析,选育F4代香农多态性指数为0.3981,Nei基因多样度为0.2264;基于甲基化敏感位点分析,选育F4代香农多态性指数为0.5873,Nei基因多样度为0.2598,均高于基础群体;表观遗传多样性均大于非甲基化位点变异产生的序列遗传多样性,表明表观变异出现频率高于序列遗传变异。MSAP甲基化模式分析显示,选育F1和F4代经过选育后获得了一些甲基化水平和模式的改变,说明经温度胁迫选育,改变了刺参群体的基因组的甲基化状态。选育F4代获得的类型Ⅱ的条带数最多,为161条,明显高于未选育刺参,为选育获得表观遗传特征。研究结果从遗传物质基础角度揭示了选育群体的遗传改变与进展,可为抗逆新品种选育中的表观遗传研究提供参考。  相似文献   

16.
利用 2b-RAD 技术对中国对虾(Fenneropenaeus chinensis) 2015 年、2016 年、2017 年、2019 年 4 代选育群体和野生群体合计 821 尾个体进行简化基因组测序, 分析中国对虾人工选育群体和野生群体遗传多样性特征, 挖掘在持续人工选育过程中受选择的 SNP 位点。测序共得到 83767 个 SNP 位点, F-统计结果显示, 野生群体与选育群体间遗传分化系数(FST)均值为 0.022, 野生群体与 2019 年选育群体之间遗传分化程度最高为 0.0260, 与 2015 年选育群体之间遗传分化程度最低为 0.0190; 野生群体与选育群体之间遗传分化系数(FST)均小于 0.05, 为弱遗传分化。 群体主成分分析(PCA)结果显示野生群体与选育群体之间遗传结构未发生明显改变。遗传多样性统计结果表明,野生群体与选育群体期望杂合度(He)均值分别为 0.1716 和 0.1806, 观测杂合度(Ho)均值分别为 0.1861 和 0.1943, 多态性信息含量(PIC)均值分别为 0.1428 和 0.1515, 核苷酸多态性(Pi)均值分别为 0.1732 和 0.1813, 其中 2017 年、2019 年选育群体各遗传多样性指数与野生群体相比均存在显著差异(P<0.05)。对不同世代选育群体与野生群体进行选择消除分析, 分别得到 92 个、103 个、166 个、117 个受选择 SNP 位点, 共有位点数目为 4 个。相邻世代选育群体之间等位基因频率逐代上升的共有位点数目为 7107 个, 其中 3674 个位点显著偏离哈迪–温伯格平衡(P<0.05); 等位基因频率逐代下降的共有位点数目为 8501 个, 其中 4101 个位点显著偏离哈迪–温伯格平衡(P<0.05)。研究结果表明, 中国对虾经过累代人工选育, 依然具有较高的遗传选育潜力, 可以继续作为人工选育材料。  相似文献   

17.
利用高通量测序的方法,从熊本牡蛎基因组中开发了20对具有多态性的微卫星标记,通过微卫星标记位点比较了野生群体和养殖群体的遗传多样性。野生群体中,所有位点共扩增出330个等位基因,等位基因数(N_a)范围为6~39,平均等位基因数为16.500 0;有效等位基因数(N_e)范围为1.352 9~33.361 7,平均值9.517 2;观测杂合度(H_o)范围为0.200 0~1.000 0,平均值0.671 5;期望杂合度(H_e)范围为0.265 6~0.987 7,平均值0.832 1;ShannonWeiner指数(Ⅰ)范围为0.648 3~3.585 8,平均值2.276 9;多态信息含量(PIC)范围为0.254 5~0.969 2,平均值0.803 5,共有16个位点符合Hardy-Weinberg平衡。养殖群体中,N_a平均值为10.250 0,N_e平均值为5.843 4,H_o平均值为0.639 1,H_e平均值为0.763 6,I平均值为1.791 4,PIC平均值为0.720 7。结果显示,熊本牡蛎养殖群体的遗传多样性低于野生群体,但仍然维持在高度多态水平。研究表明,在熊本牡蛎人工繁育过程中,使用大数量的亲本进行繁育,可有效防止选育群体的遗传多样性降低,但人工选育对选育群体的遗传多样性也产生了一定的影响。另外,分析了这些引物在近缘种葡萄牙牡蛎、长牡蛎、香港牡蛎、有明牡蛎、僧帽牡蛎、咬齿牡蛎以及舌骨牡蛎中的通用性情况,发现XB1-6、XB1-39和XB1-45 3个位点在8个物种中均能扩增出目的条带,XB1-41仅能在熊本牡蛎中扩增出目的条带。  相似文献   

18.
用微卫星DNA技术对中国对虾人工选育群体遗传多样性的研究   总被引:17,自引:4,他引:13  
张天时 《水产学报》2005,29(1):6-12
利用微卫星技术对中国对虾人工选育群体第1代和第6代群体的遗传多样性进行了分析。对10个微卫星位点进行了扩增,共产生74个等位基因,每个位点产生的等位基因数从3到13不等。在两个群体中,所观察到的等位基因数都比有效等位基因数多。多态信息含量PIC值0.5567~0.8877,说明这10个微卫星位点在中国对虾中具有较高的信息含量。两个群体的平均杂合度分别为0.6400(CP1)、0.6300(CP6),并通过计算基因型的P值,确定了对Hardy-Weinberg平衡的偏离情况。对Fis值的计算表明两个群体内共有5个微卫星位点存在杂合度观察值过剩的现象。两个群体的Shannon多样性指数分别为1.6830、1.7382,整个选育群体(两个群体作为一个群体)的遗传多样性指数为1.7742。从遗传多样性所占的比例来看,96.415%的遗传变异是来自群体内,只有3.585%的遗传变异是来自群体间。两个群体间的相似性系数高达0.9187,彼此间的遗传距离仅为0.0848,体现出人工选育群体的遗传分化程度较低。结果均说明第6代群体还有较大的选育潜力,可以继续保持遗传效应,最终保证选种育种工作的成功。  相似文献   

19.
利用10对EST-SSR分子标记研究红、白、黑、黄4种壳色马氏珠母贝F8代人工选育群体的遗传多样性。结果显示,10个位点共扩增出46个等位基因,各位点的等位基因数为2~7。红、黑、白、黄4种壳色群体的平均等位基因数分别为4.0、3.7、3.6、3.5;平均观测杂合度和平均期望杂合度分别为0.445~0.627和0.479~0.580;Shannon多样性指数为0.850~1.042;平均多态信息含量为0.423~0.509。黄壳色群体中各遗传参数值最小,而红壳色群体中除有效等位基因数外,其余参数(等位基因数、观测杂合度、期望杂合度、多态信息含量、Shannon多样性指数)值均最大。40个群体—位点组合中有31个组合显著偏离平衡(P0.05),占总位点的77.5%。群体间的遗传分化指数为0.0101~0.3025,平均值为0.1206(0.05遗传分化指数0.15),处于中等程度分化,这与课题组8年定向选育有关。群体间的基因流值为0.5764~24.5841,平均值为1.8225。红壳色群体和黑壳色群体的遗传相似系数最大(0.8418),遗传距离最小(0.1722),最先聚为一类;白壳色群体和黄壳色群体的遗传相似系数最小(0.7107),遗传距离最大(0.3415)。经8代群体继代选育,4种壳色马氏珠母贝群体仍保持着较高的遗传多样性,其中红壳色群体的遗传多样性最高,黄壳色群体的遗传多样性最低。  相似文献   

20.
利用14对微卫星引物,对采捕于辽宁葫芦岛、山东青岛、江苏连云港以及浙江舟山附近海域的梭鱼(Liza haematocheila)4个野生地理群体进行群体遗传多样性分析。结果显示,14对微卫星引物均能扩增出清晰的条带且具有一定的多态性,4个野生群体的多态性百分率分别为92.86%、92.87%、100.00%和85.71%。4个群体共扩增出61个等位基因,4个群体的等位基因数为3.786-4.000,有效等位基因数为2.673-2.899,观测杂合度为0.359-0.389,期望杂合度为0.503-0.561,多态信息含量为0.465-0.513,说明4个群体遗传多样性处于中等多态水平。运用SPSS软件对杂合度期望值进行Kruskal-Wallis检验,其结果(H=0.187,df=3,P=0.980)表明,4个群体间的遗传多样性差异无统计学意义(P0.05),各群体大部分微卫星位点偏离Hardy-Weinberg平衡(P0.05)。另外,研究发现,葫芦岛和舟山均出现两个位点呈现杂合子过剩,其他两群体均出现3个位点呈现杂合子过剩(Fis0),表明近期可能出现过瓶颈效应。所有群体间遗传分化系数为0.148,基因流值为1.444,群体间出现中度遗传分化,群体间出现一定程度基因流。两群体间的遗传相似性系数为0.623-0.818,遗传距离为0.202-0.473,青岛和葫芦岛的遗传距离最近(0.202),而连云港和舟山的最远(0.473),这可能与梭鱼幼体的扩散能力及近海沿岸生态环境及群落结构有关。采用UPGMA法对4个群体进行聚类分析,结果显示,4个地理群体按其地理位置由北向南依次聚为一类。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号