首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The volatile compounds emanating from four fermented sugar baits, palm sugar, golden cane syrup, port wine, and molasses, were isolated by headspace sampling and analyzed by gas chromatography-mass spectrometry. Three classes of compounds including esters, alcohols, and aromatic compounds were identified in the headspace of the four fermented sugar baits. There was a high degree of qualitative similarity between the headspace contents of the four fermented sugar baits, although quantitatively they varied considerably. Ethyl acetate, 3-methylbutanol, ethyl hexanoate, 2-phenylethanol, ethyl octanoate, ethyl (E)-4-decenoate, ethyl decanoate, and ethyl dodecanoate were the major compounds identified in the headspace of the four fermented sugar baits. The efficacy of the four fermented sugar baits was investigated in field trapping experiments. Fermented palm sugar and golden cane syrup were superior in attracting significant numbers of moths as compared to port wine and molasses. Fermented molasses was the least attractive among the four baits. Over 90% of the insects caught were noctuids with Graphania mutans and Tmetolophota spp. being the main noctuids captured (over 55%) in the four fermented sugar baits. Male and female G. mutans were equally attracted to the four sugar baits. A number of tortricid species were also trapped.  相似文献   

2.
To identify aromatic compounds in Jiashi melon juice, gas chromatography-mass spectrometry-olfactometry (GC-MS-O) analysis was used. Odor activity values (OAVs) were also calculated on the basis of the qualitative and quantitative analysis of volatile compounds. Results showed that 42 volatiles were identified, among which 4 compounds, namely, diethyl carbonate, isophorone, 2-butoxyethyl acetate, and menthol, were identified or tentatively identified for the first time as volatiles in melon fruit. Twelve compounds, namely, (2E,6Z)-nona-2,6-dienal, (3Z,6Z)-nona-3,6-dien-1-ol, ethyl butanoate, ethyl 2-methylbutyrate, ethyl 2-methylpropanoate, (Z)-non-6-enal, (E)-2-nonenal, heptanal, methyl 2-methylbutyrate, nonanal, hexanal, and 2-methylpropyl acetate, were identified as the potent odorants of Jiashi melon juice by both OAV and detection frequency analysis (DFA). In addition, seven odorants were detected by all of the panelists and showed higher OAVs, indicating that DFA and OAV resulted in relatively similar "Jiashi" melon aroma patterns.  相似文献   

3.
The effects of malolactic fermentation (MLF) on the concentration of volatile compounds released by yeasts during the production of red wine were investigated by inoculation with four commercial starters of Oenococcus oeni. Volatile compounds in wine at the end of MLF were extracted, analyzed by GC-MS and GC, and compared with those extracted form a noninoculated reference sample. Several esters known to play a role in the aroma profile of red wine, such as C4-C8 ethyl fatty acid esters and 3-methylbutyl acetate, were found to increase with MLF, and their final concentration was dependent on the bacterial starter employed for the induction of MLF. The overall increase of ethyl fatty acid esters was generally larger than the one observed for acetate esters. Ethyl lactate, 3-hydroxybutanoate, 2-phenylethanol, methionol, and gamma-butyrolactone were also increased by bacterial metabolism. The impact of MLF on other volatiles or red wine, including several higher alcohols, fatty acids, and nitrogen compounds, was generally negligible.  相似文献   

4.
为研究适合蜂蜜酒发酵的优良工艺条件,以2批荆条蜜(白色和浅琥珀色)为原料,在酒精发酵前对发酵醪液进行加热处理,以不加热处理的样品为对照,采用酿酒酵母FX10进行发酵,发酵结束后测定蜂蜜酒的各项理化指标及挥发性化合物的含量。结果表明,供试酒样中共检测出77种挥发性物质,其中酯类39种、醇类20种、酸类8种、萜烯类4种、羰基化合物6种。加热处理可以显著增加蜂蜜酒中香气物质的种类和含量,含量较高的香气物质有乙酸乙酯、乙酸苯乙酯、乙酸异戊酯、己酸乙酯、辛酸乙酯、癸酸乙酯、月桂酸乙酯、9-十六碳烯酸乙酯、异戊醇、β-苯乙醇、辛酸和癸酸。对蜂蜜酒中香气物质进行主成分分析,发现加热处理的酒样中酯类物质对酒香贡献较大;对照酒样中酯类物质对酒香贡献较小,而醇类物质是其主要挥发性成分。本研究结果为蜂蜜酒的生产提供了一定的理论依据。  相似文献   

5.
Characterization of the aromatic profile in commercial guava essence and fresh fruit puree by GC-MS yielded a total of 51 components quantified. Commercial essence was characterized to present a volatile profile rich in components with low molecular weight, especially alcohols, esters, and aldehydes, whereas in the fresh fruit puree terpenic hydrocarbons and 3-hydroxy-2-butanone were the most abundant components. In the olfactometric analyses totals of 43 and 48 aroma active components were detected by the panelists in commercial essence and fruit puree, respectively. New components were described for the first time as active aromatic constituents in pink guava fruit (3-penten-2-ol and 2-butenyl acetate). Principal differences between the aroma of the commercial guava essence and the fresh fruit puree could be related to acetic acid, 3-hydroxy-2-butanone, 3-methyl-1-butanol, 2,3-butanediol, 3-methylbutanoic acid, (Z)-3-hexen-1-ol, 6-methyl-5-hepten-2-one, limonene, octanol, ethyl octanoate, 3-phenylpropanol, cinnamyl alcohol, alpha-copaene, and an unknown component. (E)-2-Hexenal seems to be more significant to the aroma of the commercial essence than of the fresh fruit puree.  相似文献   

6.
Six volatile compounds, ethylmethylbenzene (1), 1-isopentyl-2,4, 5-trimethylbenzene (2), 2-(hex-3-ene-2-one)phenylmethyl ketone (3), E and Z isomers of 3-butylidene-3H-isobenzofuran-1-one (4 and 5), and 2-penten-1-ylbenzoic acid (6), were isolated from the mosquitocidal hexane extract of Delphinium x cultorum cv. Magic Fountains flowers. In addition, the ethyl acetate extract, which displayed corn earworm antifeedant activity, yielded 4-hydroxybenzoic acid (7) and bis(4-hydroxyphenyl)methanol (8). However, compounds 7 and 8 were not biologically active.  相似文献   

7.
GC/O analysis of canned lychees indicated that cis-rose oxide, linalool, ethyl isohexanoate, geraniol, furaneol, vanillin, (E)-2-nonenal, beta-damascenone, isovaleric acid, and (E)-furan linalool oxide were the most odor potent compounds detected in the fruit extracts. However, on the basis of calculated odor activity values (OAVs), cis-rose oxide, beta-damascenone, linalool, furaneol, ethyl isobutyrate, (E)-2-nonenal, ethyl isohexanoate, geraniol, and delta-decalactone were determined to be the main contributors of canned lychee aroma. When these results were compared with GC/O results of fresh lychees and Gewürztraminer wine, 12 common odor-active volatile compounds were found in all three products. These included cis-rose oxide, ethyl hexanoate/ethyl isohexanoate, beta-damascenone, linalool, ethyl isobutyrate, geraniol, ethyl 2-methylbutyrate, 2-phenylethanol, furaneol, vanillin, citronellol, and phenethyl acetate. On the basis of OAVs, cis-rose oxide had the highest values among the common odorants in the three products, indicating its importance to the aroma of both lychee fruit and Gewürztraminer wines. Other compounds that had significant OAVs included beta-damascenone, linalool, furaneol, ethyl hexanoate, and geraniol. This indicated that while differences exist in the aroma profile of lychee and Gewürztraminer, the common odorants detected in both fruit and wine, particularly cis-rose oxide, were responsible for the lychee aroma in Gewürztraminer wine. When headspace SPME was used as a rapid analytical tool to detect the levels of selected aroma compounds deemed important to lychee aroma in Gewürztraminer-type wines, cis-rose oxide, linalool, and geraniol were found to be at relatively higher levels in Gewürztraminers. No cis-rose oxide was detected in the control wines (Chardonnay and Riesling), while lower levels were detected in the Gewürztraminer-hybrid wine Traminette. Gewürztraminers produced in the Alsace region showed differences in the levels of the 3 monoterpenes when compared to those from New York State, which could be attributed to differences in viticultural and enological practices between regions.  相似文献   

8.
不同酶和酵母对干红葡萄酒香气影响的差异分析   总被引:2,自引:2,他引:0  
为提高甘肃河西产区蛇龙珠干红葡萄酒的香气品质,优化酿酒工艺,该文采用顶空固相微萃取和气相色谱-质谱联用技术,分析比较了添加不同浸渍酶和酵母发酵的蛇龙珠干红葡萄酒的香气构成。结果显示:蛇龙珠干红葡萄酒中初步定性香气化合物75种,主要为酯、醇、酸、萜烯和酚类物质。比较酯类、萜烯类等香气成分质量浓度和香气物质释放总量,EX-V酒样明显高于EX和HC酒样,D254酒样明显高于BDX酒样。各组酒样主要香气成分构成相似,但微量香气成分差异显著。果香是香气强度最高的香气系列,植物香、脂肪香、花香次之,其香气强度EX-V酒样高于EX和HC酒样,D254酒样高于BDX酒样。浸渍酶和酵母对甘肃河西产区蛇龙珠干红葡萄酒香气品质的影响评价显示,浸渍酶EX-V优于EX和HC,酵母D254优于BDX。研究结果可为甘肃河西产区蛇龙珠干红葡萄酒香气品质的提高及酿造工艺研究提供科学数据参考。  相似文献   

9.
A German Riesling wine has been fractionated with the aid of countercurrent chromatography. After purification by HPLC, the structures of 101 compounds were established by mass spectrometry and NMR spectroscopy. Seventy-three of the isolated compounds exhibited a phenolic or benzylic structure. Fifty-four compounds were reported for the first time as Riesling wine constituents. New compounds identified in this work included twelve benzoic and cinnamic acid derivatives. In addition to two isomeric (E)-caffeoyl ethyl tartrates, the glucose esters of (E)-cinnamic, (E)-p-coumaric, and (E)-ferulic acid, as well as the 4-O-glucosides of (E)- and (Z)-ferulic acid, have been identified for the first time in Riesling wine. The structures of two additional phenylpropanoids were elucidated as 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-propan-1-one and 2,3-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-propan-1-one. Moreover, two ethyl esters, i.e., ethyl protocatechuate and ethyl gallate, as well as the glucose ester of vanillic acid, were newly detected in Riesling wine. Novel representatives in the flavonoid group were dihydrokaempferol, dihydroquercetin, and four dihydroflavonol glycoconjugates, i.e., the 3-O-glucosides of dihydrokaempferol and dihydroquercetin, as well as the 3-O-xyloside and the 3'-O-glucoside of dihydroquercetin. Additionally, six novel lignans, i.e., lariciresinol 4-O-glucoside, three isolariciresinol derivatives, and two secoisolariciresinols, as well as three neolignans were isolated. Structural elucidation of the newly isolated wine constituents is reported together with the determination of their antioxidant activity.  相似文献   

10.
This study aimed to elucidate the odor potency of aroma compounds in Riesling and Vidal blanc (syn. Vidal) table wines and icewines from the Niagara Peninsula using stir bar sorptive extraction-gas chromatography-olfactometry-mass spectrometry. Dilution analysis determined the most odor-potent compounds in Vidal and Riesling icewines (n = 2) and table wines (n = 2) from a commercial producer. The top 15 odor-potent compounds in each wine were identified and quantified, resulting in 23 and 24 compounds for Riesling and Vidal, respectively. The most odor-potent compounds were β-damascenone, decanal, 1-hexanol, 1-octen-3-ol, 4-vinylguaiacol, ethyl hexanoate, and ethyl 3-methylbutyrate. In general, icewines had higher concentrations of most aroma compounds compared to table wines. Through computation of odor activity values, the compounds with the highest odor activity for the icewines were β-damascenone, 1-octen-3-ol, ethyl octanoate, cis-rose oxide, and ethyl hexanoate. In table wines the highest odor activity values were found for ethyl octanoate, β-damascenone, ethyl hexanoate, cis-rose oxide, ethyl 3-methylbutyrate, and 4-vinylguaiacol. These findings provide a foundation to determine impact odorants in icewines and the effects of viticultural and enological practices on wine aroma volatile composition.  相似文献   

11.
Pear juice obtained from pear concentrate was fermented at room temperature using Saccharomyces cerevisiae (BDX, ENOFERM, France) as the fermentation microorganism. During the fermentation process, total sugars were measured. High performance liquid chromatography analyses were used to monitor the fermentation process and to characterize the pear wine. The pear wine obtained was distilled with its lees using three different equipments: a glass alembic (a glass pot still coupled to a glass column), a copper alembic, and a glass alembic with the addition of 5 g/L of copper shavings to the pot still. The same distillations were repeated with the wine without its lees (separated by decanting). Several distillation fractions were collected, up to a total of 500 mL of distillate. Gas chromatography was used to identify and quantify the volatile compounds in each fraction, and the methanol and ethanol contents. Based on these results, the heart fraction was defined. ANOVA tests were performed on the heart fractions to determine quantitative differences between some volatile compounds depending on the equipment used and the presence or absence of the wine lees. From this series of ANOVA tests, it can be concluded that the concentrations of the compounds that are considered to have a negative effect on the quality of the distillates (methanol, ethyl acetate, furfural) decrease or do not change when they are distilled in the presence of lees and in the copper alembic. In addition, the concentrations of the positive compounds (ethyl decanoate and ethyl-2-trans-4-cis-decadienoate) increase in the presence of lees for all of the equipment tested. So, it can be assumed that the distillation of pear wine with its lees in copper alembic leads to a better quality product.  相似文献   

12.
The aroma-active compounds of cv. Turkish Kozan orange wine were analyzed by sensory and instrumental analyses. Liquid-liquid extraction with dichloromethane was used for extraction of volatile components. According to sensory analysis, the aromatic extract obtained by liquid-liquid extraction was representative of orange wine odor. A total of 63 compounds were identified and quantified in orange wine. The results of the gas chromatography-olfactometry analysis showed that 35 odorous compounds were detected by the panelists. Of these, 28 aroma-active compounds were identified. Alcohols followed by terpenes and esters were the most abundant aroma-active compounds of the orange wine. Among these compounds, ethyl butanoate (fruity sweet), 3-methyl-1-pentanol (roasty), linalool (floral citrusy), gamma-butyrolactone (cheesy burnt sugar), 3-(methylthio)-propanol (boiled potato, rubber), geraniol (floral citrusy), and 2-phenylethanol (floral rose) were the most important contributors to the aroma of the orange wine because they were perceived by all eight panelists.  相似文献   

13.
Application of the aroma extract dilution analysis (AEDA) on the volatile fraction carefully isolated from an American Bourbon whisky revealed 45 odor-active areas in the flavor dilution (FD) factor range of 32-4096 among which (E)-beta-damascenone and delta-nonalactone showed the highest FD factors of 4096 and 2048, respectively. With FD factors of 1024, (3S,4S)-cis-whiskylactone, gamma-decalactone, 4-allyl-2-methoxyphenol (eugenol), and 4-hydroxy-3-methoxy-benzaldehyde (vanillin) additionally contributed to the overall vanilla-like, fruity, and smoky aroma note of the spirit. Application of GC-Olfactometry on the headspace above the whisky revealed 23 aroma-active odorants among which 3-methylbutanal, ethanol, and 2-methylbutanal were identified as additional important aroma compounds. Compared to published data on volatile constituents in whisky, besides ranking the whisky odorants on the basis of their odor potency, 13 aroma compounds were newly identified in this study: ethyl (S)-2-methylbutanoate, (E)-2-heptenal, (E,E)-2,4-nonadienal, (E)-2-decenal, (E,E)-2,4-decadienal, 2-isopropyl-3-methoxypyrazine, ethyl phenylacetate, 4-methyl acetophenone, alpha-damascone, 2-phenylethyl propanoate, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, trans-ethyl cinnamate, and (Z)-6-dodeceno-gamma-lactone.  相似文献   

14.
15.
Volatiles from stored Kuerle fragrant pears (Pyrus serotina Reld) were studied using high-resolution gas chromatography and the solid-phase microextraction (SPME) method of gas chromatography/mass spectrometry (GC/MS). The dominant components were hexanal, ethyl hexanoate, ethyl butanoate, ethyl acetate, hexyl acetate, ethanol, alpha-farnesene, butyl acetate, and ethyl (E,Z)-2,4-decadienoate. By using GC-olfactometry, it demonstrated that the volatile compounds from SPME were responsible for the aroma of the Kuerle fragrant pear. The levels of sugars, organic acids, and phenolic acids in Kuerle fragrant pears were investigated using high-performance liquid chromatography (HPLC). Fructose was the dominant sugar, followed by glucose and sucrose. With increasing storage time, sucrose levels decreased; however, changes in fructose and glucose levels were not remarkable. There was a slight decrease in flesh firmness during storage. The general soluble solids concentration (SSC) declined slightly after 5 months storage. Some aroma-related volatile components increased during storage, while others decreased, especially the esters. The organic acids and phenolic acids also changed. The flavor of the Kuerle fragrant pears was affected by the change of volatile compounds and changes in chemical and physical properties.  相似文献   

16.
Impact odorants of different young white wines from the Canary Islands   总被引:5,自引:0,他引:5  
Five young monovarietal white wines from the Canary Islands made from Gual, Verdello, Marmajuelo, white Listán, and Malvasia grape cultivars were studied to determine the characteristics of their most important aromas and the differences among them. The study was carried out using gas chromatography-olfactometry (GC-O) to detect the potentially most important aroma compounds, which were then analyzed quantitatively by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. The strongest odorants in the GC-O experiments were similar in all cases, although significant differences in intensity between samples were noted. Calculation of the odor activity values (OAVs) showed that 3-mercaptohexyl acetate was the most active odorant in the Marmajuelo and Verdello wines, as were 3-methylbutyl acetate in the Gual wine, beta-damascenone in the Malvasia wine, and ethyl octanoate in the white Listán wine. However, the most important differences between varieties were caused by the three mercaptans (3-mercaptohexyl acetate, 3-mercaptohexanol, and 4-methyl-4-mercapto-2-pentanone) and the vinylphenols (4-vinylphenol and 2-methoxy-4-vinylphenol). The correlation between the olfactometric values and the OAVs was satisfactory in the cases when the compound eluted in the GC-O system was well isolated from other odorants and had aromatic importance and the OAVs for the different wines were sufficiently different.  相似文献   

17.
Changes in the aroma profile of five Sherry wine vinegars submitted to an experimental static aging in wood were followed along 24 months. Eighteen volatile compounds were determined by GC-FID. The results were subjected to multivariate analyses: principal component analysis and linear discriminant analysis. The aroma profile of vinegar can be useful to discriminate vinegars produced from different substrates or with different aging times. During the experimental aging, volatile compounds such as methyl acetate, methanol, diacetyl, and gamma-butyrolactone underwent significant concentration increases. Moreover, the initial ethanol content of vinegars is a factor in the final aromatic richness. The formation of ethyl acetate stood out in samples with an initial ethanol content of approximately 2 alcoholic degrees.  相似文献   

18.
The aroma-active compounds in two apple ciders were identified using gas chromatography-olfactometry (GC-O) and GC-mass spectrometry (MS) techniques. The volatile compounds were extracted using solvent-assisted flavor evaporation (SAFE) and headspace solid-phase microextraction (HS-SPME). On the basis of odor intensity, the most important aroma compounds in the two apple cider samples were 2-phenylethanol, butanoic acid, octanoic acid, 2-methylbutanoic acid, 2-phenylethyl acetate, ethyl 2-methylbutanoate, ethyl butanoate, ethyl hexanoate, 4-ethylguaiacol, eugenol, and 4-vinylphenol. Sulfur-containing compounds, terpene derivatives, and lactones were also detected in ciders. Although most of the aroma compounds were common in both ciders, the aroma intensities were different. Comparison of extraction techniques showed that the SAFE technique had a higher recovery for acids and hydroxy-containing compounds, whereas the HS-SPME technique had a higher recovery for esters and highly volatile compounds.  相似文献   

19.
The influence of fermentation temperatures (8, 16, and 32°C) and yeast levels (2, 4, and 6%) on the formation of volatile compounds in the crumb of whole‐meal wheat bread was investigated. Volatile compounds were extracted by dynamic headspace extraction and analyzed by gas chromatography–mass spectrometry. Results were evaluated with multivariate data analysis and ANOVA. Bread fermented at a high temperature (32°C) had higher peak areas of the Maillard reaction products 2‐furancarboxaldehyde, 2‐acetylfuran, 2‐methylpyrazine, and phenylacetaldehyde compared with bread fermented at lower fermentation temperatures. Bread fermented at low temperatures (8 and 16°C) was characterized by having higher peak areas of the fermentation products 3‐methylbutanal, 2‐methylbutanal, ethyl acetate, ethyl hexanoate, ethyl propanoate, and 3‐methylbutanol. Fermentation of bread with 6% yeast resulted in a higher peak area of the important fermentation product 2‐phenylethanol. It also reduced the peak areas of important lipid oxidation products. The peak area of 2,3‐butanedione was also relatively higher in bread fermented with 6% yeast compared with lower yeast levels; however, an interaction was seen between the high yeast level and all three fermentation temperatures. In contrast, fermentation with a low yeast level (2%) resulted in bread with relatively higher peak areas of 2‐ and 3‐methylbutanal, as well as (E)‐2‐nonenal and (E,E)‐2,4‐decadienal, which are important lipid oxidation compounds in bread.  相似文献   

20.
Yeast influence on volatile composition of wines.   总被引:8,自引:0,他引:8  
Nine Saccharomyces cerevisiae and four Saccharomyces bayanus strains used in the production of Trebbiano wine were examined. The aim of this study is to evaluate the different abilities of various yeast strains in wine-making. The possibility of yeast discrimination on the basis of their volatile production is another possibility. Wine chemical analyses showed statistically significant differences depending on the yeast strain used. Some compounds such as 2-phenylethanol, 2-phenethyl acetate, ethyl lactate, 3-ethoxypropanol, and, to a lesser extent, diethyl succinate and propionic acid characterized examined Saccharomyces bayanus yeasts. Moreover, these strains did not produce any undesirable compounds, such as acetic acid and sulfur anhydride. For these reasons and because they synthesized malic acid, they could be more suitable for white wine production. The other yeasts showed great differences, which are difficult to correlate with the strain. However, some strains had peculiar characteristics, such as an uncommonly high concentration of n-propanol and 3-ethoxypropanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号