首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of continuous application of cattle manure on the quantity and quality of soil organic matter (OM) were investigated in an Ando soil (Melanudand). Surface soil samples were periodically taken from NPK and NPK+ manure (80, 160, and 320 Mg ha-1 y-1) plots over a period of 20 y. Particulate (>53 µm) and mineral-associated <53 µm) OM fractions were separated from the soil samples by sieving after:mechanical dispersion. For the NPK treatment, both the organic C and total N concentrations of the whole soil continued to decrease, the reduction reaching about 10% after 20 y. Manure application at the rate of 80 Mg ha-1 y-1 did not lead to an increase in the amounts of organic C and total N in the whole soil. In contrast, both the organic C and total N concentrations increased by the application of 160 and 320 Mg ha-1 y-1 manure. Manure application at the rate of 320 Mg ha-1 y-1 increased the organic C concentration by 30% and total N concentration by 48% after 20 y. The decrease in the organic C and total N concentrations in soil with NPK fertilization was attributed to a decrease in the amount of mineralassociated OM. Manure application increased significantly the amount of particulate OM, while it did not affect the amount of mineral-associated OM. It also resulted in a decrease in the C/N ratio of soil OM, especially of the particulate OM. The analysis of humic acids showed that manure application induced a decrease in the degree of humification and an accumulation of high molecular weight components. The quantitative'and qualitative changes of OM in the Ando soil upon manure application were mainly due to the accumulation of manure-derived particulate OM.  相似文献   

2.
Sandy soil samples collected from under a woody/grass savanna in the Lamto experimental area (6°13N, 5°20W; Côte dIvoire, West Africa), were fractionated according to particle size with the aim of measuring the natural abundance of 15N and determining the contents and composition of hydrolysable carbohydrates of soil organo-mineral particles for a better understanding of the contribution of each individual fraction to the soil function. The contributions of the fractions <20 m to the total pool of organic matter were 77% for C and 84% for N. Larger amounts of carbohydrates were found in the clay and silt fractions (3,784–6,043 g g–1 soil). The carbohydrate composition indicated that microbe-derived carbohydrates [e.g. galactose (Gal) and mannose (Man)] accumulated preferentially in the fine fractions while plant-derived sugars [e.g. arabinose (Ara) and xylose (Xyl)] were dominant in coarse fractions. A negative relationship was observed between C:N ratio and 15N natural abundance on the one hand, and on the other hand between C:N and (Gal+Man):(Ara+Xyl), Man:(Ara+Xyl) and Man:Xyl ratios, clearly indicating that the chemistry of the organic materials of the particle-size fractions reflects a change from soil chemistry dominated by plant materials to that dominated by microbial biomass and metabolites. The contribution of a given fraction to soil microbial activity is controlled by the quality or quantity of associated soil organic matter, its microbial biomass and also by the accumulation of microbial-derived carbohydrates which can be resynthesized or recycled.  相似文献   

3.
Maintenance and improvement of soil quality across spatially variable soils in continuous cropping systems are critical to sustaining agricultural productivity and environmental quality. The objectives of this project were (i) to study the effects of variable-rate application of animal manure on selected topsoil quality parameters across site-specific management zones (MZs) and (ii) to evaluate the variable-rate applications of manure using risk-assessment tools of nitrogen (N) leaching and phosphorus (P) runoff indices to understand its impact on environmental quality. This study was conducted in northeastern Colorado on continuous and furrow-irrigated maize fields. Experimental strips, 4.5 m wide and 540 m long, spanned across all MZs with treatments nested within MZs in the field. Variable rates of dairy and beef feedlot manure applied on irrigated and dryland fields respectively ranged from 0 to 67 Mg ha?1. Surface soil quality parameters evaluated before and after this study included bulk density, organic matter, water-holding capacity, electrical conductivity, and particle-size analysis. Results indicate that animal manure applications of 44 and 67 Mg ha?1 significantly (P ≤ 0.05) increased soil organic matter and decreased bulk density of low- and medium-productivity-level MZs and had no significant impact on surface soil organic matter and bulk density of the high-productivity-level MZs. Animal manure significantly (P ≤ 0.05) increased surface soil water-holding capacity and soil electrical conductivity across zones; however, the maximum manure-induced soil EC was 1.0 dS m?1, which was below levels regarded as potentially harmful for maize production. Soil texture was not affected by animal manure applications. Colorado N leaching and P index indicated no environmental hazard associated with variable rate application of animal manure across MZs. This study indicates that variable-rate application of animal manure across MZs has potential to improve or maintain soil quality parameters over time without impairing the environment.  相似文献   

4.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

5.
The effects of several dominant tillage and rotation systems on soil organic C content of different particle-size fractions were studied in Chernozemic soils from southwestern and east-central Saskatchewan, Canada. In an Orthic Brown Chernozem in southwestern Saskatchewan, 7 years of no-till cereal–fallow, imposed on a long-term tillage fallow–wheat rotation soil, resulted in 0.1 Mg C ha−1 more organic C mass in the sand + organic matter (OM) fraction of the 0- to 5-cm layer, whereas organic C associated with coarse silt (CS), fine silt (FS), coarse clay, and fine clay of 0- to 5- and 5- to 10-cm layers was less than that of the comparable tilled cereal–fallow system. Conversion of tilled fallow–wheat rotation soil to continuous cropping had a slight effect, whereas the organic C mass in all the size fractions was significantly increased in both 0- to 5- and 5- to 10-cm layers after alfalfa was introduced on tilled fallow–wheat as perennial forage for 10 years. In an Orthic Black Chernozem in east-central Saskatchewan that was cultivated and tilled using a cereal–fallow rotation for 62 years, organic C mass decreased in sand + OM, CS, and FS of 0- to 10-cm depth. Conversion of the tilled cereal–fallow cropland soil back to seeded grassland resulted in significantly more soil organic C in sand + OM fraction after 12 years of grass seed-down. The sand + OM fraction appears to be the size fraction pool initially most sensitive to adoption of management practices that are liable to sequester carbon in the soil.  相似文献   

6.
ABSTRACT

The effect of deficit irrigation (DI) on wheat crop yield, soil physical parameters and on nitrate nitrogen movement in soil profile was evaluated under application of dairy manure and nitrogen fertilizer. Two levels of DI were taken as I0.6 (60% FC) and I0.8 (80% FC) along with two dairy manure levels (20 and 25 Mg ha?1) and three nitrogen levels (80, 100, and 120 kg ha?1). The grain yield was high under I0.8 than I0.6, whereas the irrigation level has no significant effect on soil organic carbon contents. Dairy manure, irrigation, and nitrogen indicated strong interaction with each other for all yield-related parameters during both years of study, however, results for 2nd year were highly positive. Soil nitrate nitrogen movement was significantly affected under I0.8 with high rate of dairy manure (25 Mg ha?1) and nitrogen fertilizer (120 kg ha?1). Results concluded that combined application of dairy manure (25 Mg ha?1) and nitrogen fertilizer (120 kg ha?1) under DI level I0.8 resulted in high grain yield. To overcome water scarce conditions, further experiments can be designed by addition of various organic matters in different combination that enhances the yield and soil health.  相似文献   

7.
A long-term field experiment was initiated in November, 1967 at Research Area of Department of Soil Science to study the response of nitrogen to pearl millet-wheat cropping system at various doses and modes of farmyard manure application. The soil organic carbon increased with farmyard manure application and ranged from 0.68% in control to 1.82% in the plot receiving the highest annual dose (90 Mg ha?1) of farmyard manure. To study the contribution of farmyard manure on the productivity of pearl millet and wheat crops, the constants (intercept and slope) were determined between the grain yield of pearl millet and wheat crops with increasing dose of fertilizer nitrogen. Another linear regression was fitted between the intercept of the linear model and the soil organic carbon content. It has been observed that with each unit increase in the soil organic carbon, the productivity of pearl millet increased by 273 kg ha?1 and that of wheat by 1591 kg ha?1. The regression between the slope and soil organic carbon was linear in case of pearl millet (R2 0.49) but in case of wheat there was no relationship.  相似文献   

8.
The purpose of this research project was to 1) evaluate rate of compost application and 2) to compare compost with uncomposted raw material and inorganic fertilizer N application upon maize and soybean growth and productivity, and upon soil characteristics. During the first three years of the study, the source of uncomposted material and compost was food waste and ground newsprint. During years 4 to 9 of the study, the source of uncomposted material and compost was dairy cow manure and wood chips. Application rates in field site 1 were 0, 11.2, 22.4, 33.6 and 44.8 Mg ha?1 compost, 44.8 Mg ha?1 uncomposted material and 140 kg ha?1 fertilizer N (as urea). Application rates in field site 2 were 0, 22.4, 44.8, 67.2 and 134.4 Mg ha?1 compost, 134.4 Mg ha?1 uncomposted manure and 180 kg ha?1 fertilizer N (dry matter basis). The high rates of compost application significantly raised organic matter levels, and available P and K compared to inorganic fertilizer N. Uncomposted manure and increasing compost application rates significantly increased grain yield, number of kernels per plant and plant weight. Composting significantly reduced pathogen indicator bacteria concentrations. The data of this study suggest that on these high organic matter soils 22.4 Mg ha?1 to 44.8 Mg ha?1 are optimal compost application rates.  相似文献   

9.
Summary The concentrations of organic C and total N in five different particle-size fractions were studied under different mineral and organic fertilizer regimens by examining soil samples from the 34-year-old soil-formation pot experiment Hu 3 in Rostock. The C and N concentrations were generally highest in the clay fraction and decreased in the order medium silt >fine silt >coarse silt and sand. For nearly all years and size fractions the following order was obtained for C and N concentrations under the various fertilizer regimens: Compost >farmyard manure >straw + mineral fertilizer >mineral fertilizer. The various particle-size fractions and fertilizer regimens differed in the development of soil organic matter levels. Consequently, characteristic redistributions were found in the proportions of C and N in the various particle-size fractions, particularly after organic fertilizer was no longer applied (years 20–34). This experimental phase was characterized by decreased organic C and increased total N concentrations, and increased proportions of C and N in the clay-size at the expense of the sand fractions.  相似文献   

10.
Summary The influence of more than 100 years of fertilization with farmyard manure on soil organic matter in comparison to unfertilized soil was studied in particle-size fractions using elemental (C and N) analyses and pyrolysis-field ionization mass spectrometry. Distinct differences in C and N concentrations and distribution and in the quality of organic matter between the size fractions and the fertilization treatments were observed. Clay-associated C and N were relatively higher in the unfertilized treatment, whereas the application of farmyard manure preferentially increased soil organic matter associated with the fine and medium silt fractions. Pyrolysis-field ionization mass spectrometry of soil fractions <20 m showed increasing values for lignin monomers and dimers and fatty acids with larger equivalent diameters, whereas the proportion of N compounds, mono- and polysaccharides and phenolics decreased in the larger size fractions. Sand fractions were particularly rich in lignin fragments, mono- and polysaccharides, and alkanes/alkenes. These relationships seemed to be independent of management practices. In the same size fractions of the different treatments, however, a higher relative abundance of N-compounds, mono- and polysaccharides, phenolics, lignin monomers, and alkanes/alkenes was observed in the unfertilized variant. Lignin dimers and fatty acids were more abundant in the farmyard manure treatment. Both trends together imply that soil enrichment in organic matter due to the application of farmyard manure largely reflects an increase in lignin building blocks and partly reflects an increase in lipids such as fatty acids in the silt fractions. Therefore these constituents are of particular importance in assessing the positive effects of farmyard manure on soil fertility.  相似文献   

11.
A long-term (30 years) soybean–wheat experiment was conducted at Hawalbagh, Almora, India to study the effects of organic and inorganic sources of nutrients on grain yield trends of rainfed soybean (Glycine max)–wheat (Triticum aestivum) system and nutrient status (soil C, N, P and K) in a sandy loam soil (Typic Haplaquept). The unfertilized plot supported 0.56 Mg ha−1 of soybean yield and 0.71 Mg ha−1 of wheat yield (average yield of 30 years). Soybean responded to inorganic NPK application and the yield increased significantly to 0.87 Mg ha−1 with NPK. Maximum yields of soybean (2.84 Mg ha−1) and residual wheat (1.88 Mg ha−1) were obtained in the plots under NPK + farmyard manure (FYM) treatment, which were significantly higher than yields observed under other treatments. Soybean yields in the plots under the unfertilized and the inorganic fertilizer treatments decreased with time, whereas yields increased significantly in the plots under N + FYM and NPK + FYM treatments. At the end of 30 years, total soil organic C (SOC) and total N concentrations increased in all the treatments. Soils under NPK + FYM-treated plots contained higher SOC and total N by 89 and 58% in the 0–45 cm soil layer, respectively, over that of the initial status. Hence, the decline in yields might be due to decline in available P and K status of soil. Combined use of NPK and FYM increased SOC, oxidizable SOC, total N, total P, Olsen P, and ammonium acetate exchangeable K by 37.8, 42.0, 20.8, 30.2, 25.0, and 52.7%, respectively, at 0–45 cm soil layer compared to application of NPK through inorganic fertilizers. However, the soil profiles under all the treatments had a net loss of nonexchangeable K, ranging from 172 kg ha−1 under treatment NK to a maximum of 960 kg ha−1 under NPK + FYM after 30 years of cropping. Depletion of available P and K might have contributed to the soybean yield decline in treatments where manure was not applied. The study also showed that although the combined NPK and FYM application sustained long-term productivity of the soybean–wheat system, increased K input is required to maintain soil nonexchangeable K level.  相似文献   

12.
黑土颗粒有机碳和氮含量对有机肥剂量响应的定量关系   总被引:3,自引:1,他引:2  
黑土是一种非常重要的耕种土壤,但是由于过度地开发利用和水土流失导致土壤有机质含量迅速下降,严重影响了耕地生产力和作物产量。为了能够快速恢复黑土肥力,利用海伦国家野外科学观测研究站内的长期定位试验,定量分析了黑土颗粒有机碳和氮含量对有机肥剂量的响应。田间试验开始于2001年,设置了4个施肥处理,分别为:1单施化肥(OM0);2低剂量有机肥与化肥配施(OM1);3中剂量有机肥与化肥配施(OM2);4高剂量有机肥与化肥配施(OM3)。在2011年播种前,采集各处理0~20 cm耕层土壤样品。应用有机碳物理分组方法,测定分析了土壤有机碳、氮及各组分的含量。研究结果表明长期不同剂量有机肥输入能够显著增加黑土总有机碳和全氮含量(P0.05),每增施1 t有机肥,土壤有机碳含量增加0.186 kg,土壤全氮含量增加0.02 kg,表明增加有机肥投入量是提高黑土有机碳含量的有效措施。有机肥的施用增加了土壤中粗颗粒和细颗粒组分,不同剂量有机肥处理表现为OM3OM2OM1OM0,而减小了土壤中矿质结合态组分的含量;随着有机肥施入量的增加,粗颗粒和细颗粒土壤有机碳和氮的含量呈增加的趋势,而矿质结合态中的有机碳含量则略有下降,表明粗颗粒和细颗粒有机碳和氮是黑土有机碳和氮的主要储存库,有机无机配施对土壤有机碳、氮的提升作用主要集中于对活性组分颗粒有机质的形成和积累。与OM0处理相比,有机肥的施入显著降低了颗粒有机质和矿质结合态有机质的C/N,并且随着有机肥施入量的增加而逐渐降低。与单施化肥相比,化肥有机肥配施能够显著增加土壤的总有机碳,全氮,颗粒有机碳、氮含量,其中以化肥配施高剂量有机肥效果最佳,有利于黑土土壤肥力的快速提升,改善黑土的土壤质量。  相似文献   

13.
土壤的团聚状况是土壤重要的物理性质之一,团聚体数量是衡量和评价土壤肥力的重要指标。施用有机肥是提高土壤有机碳(SOC)含量、促进土壤团聚体形成和改善土壤结构的重要措施。本文以华北地区曲周长期定位试验站的温室土壤和农田土壤为研究对象,运用湿筛法,对比研究施用化肥(NP)、有机肥加少量化肥(NPM)、单施有机肥(OM)3种施肥方式对温室和农田两种利用方式土壤水稳性团聚体含量、分布和稳定性的影响,以提示施肥措施对不同土地利用方式土壤水稳性团聚体特征的影响。结果表明:在温室土壤和农田土壤中,OM处理较NP和NPM处理显著降低了土壤容重,增加了土壤有机质含量(P0.05),且在0~10 cm土层中效果最为明显。其中在温室土壤0~10 cm土层,单施有机肥处理(OM1)的土壤容重为1.17 g·cm~(-3),分别较施用化肥(NP1)和有机肥加少量化肥(NPM1)处理降低12.0%和8.6%,OM1的土壤有机质含量为54.81 g·kg~(-1),较NP1和NPM1增加104.8%和35.7%;在农田土壤0~10 cm土层,单施有机肥处理(OM2)的土壤容重为1.19 g·cm~(-3),较施用化肥(NP2)、有机肥加少量化肥(NPM2)分别降低8.5%和7.0%,OM2的土壤有机质为22.67 g·kg~(-1),较NP2、NPM2分别增加23.1%和15.0%。温室土壤和农田土壤中,0~10 cm、10~20 cm和20~40 cm层土壤团聚体的平均重量直径(MWD)和几何平均直径(GMD)均为OMNPMNP;OM处理下水稳性团聚体的分形维数(D)值最低,NP处理下最大。OM处理显著降低0~20 cm土层内水稳性团聚体的D值,表层0~10 cm土层效果最为明显,土壤结构明显得到改善;相比农田土壤,温室土壤稳定性指标变化最为明显,团聚体结构改善效果最好。土壤有机质含量与0.25 mm水稳性团聚体含量间呈极显著正相关关系(P0.001),说明土壤有机质含量越高,0.25 mm水稳性团聚体的含量就越高,土壤团聚体水稳性越强,土壤结构越稳定。因此有机施肥方式能在补充土壤有机碳库和有效养分含量的同时,显著增加土壤中大团聚体的含量及其水稳性,是提高华北平原农田土壤、尤其是温室土壤结构稳定性和实现土壤可持续发展的有效措施。  相似文献   

14.
【目的】土壤酸化是自然过程。随着农业集约化发展,土壤酸化在部分农田呈加速趋势,而施肥是目前农田土壤酸化加速的重要诱因,研究有机肥和化肥对土壤酸化的作用差异及机理,对合理指导施肥及耕地保育有重要的意义。【方法】通过测定不同施肥处理的不同组分有机质含量及酸碱缓冲容量,探明不同施肥处理的酸化影响,从土壤有机质和盐基累积角度对有机-无机肥料不同比例配施条件下土壤酸化特征进行了研究。【结果】① 连续5年在等氮量(N 270 kg/hm2)且有机-无机肥料不同配施比例的处理中,水稻产量以有机肥比例为25%~50%的处理最高,其平均产量比单施化肥处理提高了5.1%,比对照提高44.9%。但处理间无显著性差异;② 土壤各活性有机质及总有机质等指标中仅总有机质含量随鸡粪施用比例的增加而持续增加,不同比例有机无机肥配合施用后,土壤的高活性有机质及低活性有机质均高于CK和纯化肥氮处理,但随着有机肥投入比例的升高,除中活性有机质和水稻产量之间呈显著的正相关外(P=0.0067**),高活性有机质、活性有机质及总有机质含量与水稻产量之间的相关性不显著(对应的概率值分别为P=0.192,P=0.208,P=0.160);③ 施肥提高了土壤的碳库管理指数(CPMI),且其随有机肥施用比例的上升呈增加趋势。增施鸡粪提高土壤的交换性盐基离子(Ca2+、 Mg2+、 K+、 Na+)含量,导致阳离子代换量(CEC)和pH随鸡粪施用比例的提高而升高。供试土壤酸碱缓冲容量为2.07~2.36 cmol/kg,随鸡粪施用比例的上升而增加,其与土壤阳离子代换量及有机质含量呈显著正相关。表明增施鸡粪可使土壤pH及酸碱缓冲容量上升,与鸡粪使土壤盐基累积量及有机质含量的提高有关。【结论】连续有机-无机肥施用下,土壤pH上升和酸碱缓冲容量的提高可能与该试验点下盐基离子和有机质含量随鸡粪施用比例上升有关,但其最终上升幅度及平衡点尚需进一步研究。鸡粪氮替代化肥氮比例为25%~50%时,土壤性质最优,水稻产量最高。  相似文献   

15.
Abstract. Knowledge of changes in soil organic matter (SOM) fractions resulting from agricultural practice is important for decision‐making at farm level because of the contrasting effects of different SOM fractions on soils. A long‐term trial sited under Sudano‐Sahelian conditions was used to assess the effect of organic and inorganic fertilization on SOM fractions and sorghum performance. Sorghum straw and kraal manure were applied annually at 10 t ha?1, with and without urea at 60 kg N ha?1. The other treatments included fallowing, a control (no fertilization), and inorganic fertilization only (urea, 60 kg N ha?1). Fallowing gave significantly larger soil organic carbon and nitrogen (N) levels than any other treatment. Total soil SOM and N concentrations increased in the following order: urea only < straw < control < straw+urea < manure with or without urea < fallow. Farming had an adverse effect on SOM and N status; however, this mostly affected the fraction of SOM >0.053 mm (particulate organic matter, POM). The POM concentrations in the control, straw and urea‐only treatments were about one‐half of the POM concentrations in the fallow treatment. POM concentrations increased in the following order: urea only < control < straw with or without urea < manure with or without urea < fallow. The fraction of SOM <0.053 mm (fine organic matter, FOM) was greater than POM in all plots except in fallow and manure+urea plots. Total N concentration followed the same trend as SOM, but cultivation led to a decline in both POM‐N and FOM‐N. Crop yield was greatest in the manure plots and lowest in the straw, control and urea‐only plots. Results indicate that under Sudano‐Sahelian conditions, SOM, POM and FOM fractions and crop performance were better maintained using organic materials with a low C/N ratio (manure) than with organic material with a high C/N ratio (straw). Urea improved the effect of straw on crop yield and SOM concentration.  相似文献   

16.
ABSTRACT

Incorporating deep litter cow and deep litter poultry manures with the top 30-cm soil improved orchard soil chemistry, including nutrient availability, soil organic matter, electrical conductivity (EC), pH, cation exchange capacity (CEC) and biological activity in a ‘Golden Delicious’ apple (Malus domestica Bork) orchard in Zanjan, Iran. Application of deep litter cow manure at 30 t ha?1 or deep litter poultry manure at 10 t ha?1 resulted in a higher rate of nitrogen (N) release, and thus increased yield and fruit size, but decreased fruit color. The least leaf minerals were found in the untreated control trees. The control trees showed minor symptoms of N, iron (Fe), and magnesium (Mg) deficiencies during the following season. Positive correlation existed between the rate of manure applied and the content of soil organic matter (OM). The deep litter poultry manure at 10 t ha?1 increased the soil K, Mg, calcium (Ca), ammonium-N, and EC levels.  相似文献   

17.
采用物理分组方法分析了长期不同施肥模式下红壤耕层(0—20cm)不同大小矿物颗粒结合态有机碳储量差异及其固定速率。结果表明,与不施肥相比,长期施肥均显著增加了耕层土壤砂粒、粗粉粒、细粉粒及粗黏粒结合有机碳的储量,且以配施有机肥(M、NPKM和1.5NPKM)效果最显著,固碳速率分别达到0.13-0.24、0.19-0.23、0.05-0.16及0.12~0.36Mg·hm^-2.a^-1;施化肥(NPK、NP、N)和秸秆还田(NPKS)有利于增加细黏粒有机碳储量,且固碳速率高于配施有机肥,分别达到0.08~0.13和0.11Mg·hm^-2·a^-1。17a有机肥配施有利于增加固存于粗粉粒(30.5%)和粗黏粒(30.7%)中的有机碳;而秸秆还田(NPKS)和化肥施用下,有利于增加固存于粗粉粒(32.9%)和细黏粒(42.9%)中的有机碳,说明无论化肥配施还是有机无机配施,红壤粗粉粒是固定新增有机碳的主要组分,而长期配施有机肥是提升红壤各级颗粒有机碳库的较好施肥模式。  相似文献   

18.
Crop response to manure application may extend beyond the year of application due to residual nutrient availability. A field experiment was conducted to evaluate feedlot manure application (at 0 22.5, 45, 90 and 180 Mg ha?1) and subsequent residual effects (24-yr) on wheat and sorghum grain yields. Sorghum grain yields increased significantly with manure and nitrogen (N) fertilizer application. However, winter wheat grain yield showed no consistent response to manure and fertilizer application in the 9-yr when manure was applied. Averaged across the subsequent 24 years, residual feedlot manure and annual N fertilizer application significantly increased sorghum and winter wheat grain production. Application of cattle manure did increase soil organic matter content, pH and plant available soil nutrients. Our finding showed that growers could take advantage of the long-term benefits of nutrients supplied from manure application to bolster crop production, improve soil quality and reduce fertilizer input cost.  相似文献   

19.
Two field experiments in which straw has been removed or incorporated for 17 yr (loamy sand) and 10 yr (sandy clay loam) were sampled to examine the effect of straw on the C and N contents in whole soil samples, macro-aggregate fractions and primary particle-size separates. The particle size composition of the aggregate fractions was determined. Aggregates were isolated by dry sieving. Straw incorporation increased the number of 1–20 mm aggregates in the loamy sand but no effect was noted in the sandy clay loam. Straw had no effect on the particle size composition of the various aggregate fractions. After correction for loose sand that accumulated in the aggregate fractions during dry sieving, macro-aggregates appeared to be enriched in clay and silt compared with whole soil samples. Because of the possible detachment of sand particles from the exterior surface of aggregates during sieving operations, it was inferred that the particle size composition of macro-aggregates is similar to that of the bulk soil. The organic matter contents of the aggregate fractions were closely correlated with their clay + silt contents. Differences in the organic matter content of clay isolated from whole soil samples and aggregate fractions were generally small. This was also true for the silt-size separates. In both soils, straw incorporation increased the organic matter content of nearly all clay and silt separates; for silt this was generally twice that observed for clay. The amounts of soil C, derived from straw, left in the loamy sand and sandy clay loam at the time of sampling were 4.4 and 4.5 t ha?1, corresponding to 12 and 21% of the straw C added. The C/N ratios of the straw-derived soil organic matter were 11 and 12 for the loamy sand and sandy clay loam, respectively.  相似文献   

20.
Most tropical soils have high acidity and low natural fertility. The appropriate application of lime and cattle manure corrects acidity, improves physical and biological properties, increases soil fertility, and reduces the use of chemical and/or synthetic fertilizers by crops, such as soybean, the main agricultural export product of Brazil. This study aimed to assess the effects of the combination of the application of dolomite limestone (0, 5, and 10 Mg ha?1) and cattle manure (0, 40, and 80 Mg ha?1) on grain yield and the chemical properties of an Oxisol (Red Latosol) cultivated with soybean for two consecutive years. The maximum grain yield was obtained with the application of 10 Mg ha?1 of lime and 80 Mg ha?1 of cattle manure. Liming significantly increased pH index, the concentrations of calcium (Ca2+) and exchangeable magnesium (Mg2+), and cation exchange capacity (CEC) of soil and reduced potential acidity (H+ + Al3+), while the application of cattle manure increased pH level; the concentrations of potassium (K+), Ca2+, and exchangeable Mg2+; and CEC of the soil. During the 2 years of assessment, the greatest grain yields were obtained with saturation of K+, Ca2+, and Mg2+ in CEC at the 4.4, 40.4, and 17.5 levels, respectively. The results indicated that the ratios of soil exchangeable Ca/Mg, Ca/K, K/Mg, and K/(Ca+Mg) can be modified to increase the yield of soybean grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号