首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Mineralization of 14C- and 15N-labelled whole bacteria, cytoplasm, and cell walls and their distribution in different soil fractions were studied during 211 days of incubation including two drying and rewetting cycles. With any of these three soil amendments, almost 60% of C derived from cellular constituents was released as CO2, 15% was incorporated into the living microbial biomass and 25% was distributed into protected microbial metabolites or recalcitrant microbial products. The distribution of C and N derived from the amendments in the different soil fractions showed that constituents adsorbed on fine clay (<0.2 m were more rapidly decomposed than those adsorbed on silt (50-2 ) and coarse clay (2–0.2 ), indicating a faster organic matter turnover in fine clay than in silt and coarse clay. Although alternate soil drying and rewetting cycles did not significantly affect the mineralization of bacterial constituents, the cycles did have an important effect on the size and specific activities of newly formed microbial biomass. This suggests the presence of an active and a dormant fraction of soil biomass.  相似文献   

2.
Soils from 38 German forest sites, dominated by beech trees (Fagus sylvatica L.) were sampled to a depth of about 10 cm after careful removal of overlying organic layers. Microbial biomass N and C were measured by fumigation-extraction. The pH of the soils varied between 3.5 and 8.3, covering a wide range of cation exchange capacity, organic C, total N, and soil C:N values. Maximum biomass C and biomass N contents were 2116 g C m-2 and 347 g N m-2, while minimum contents were 317 and 30 g m-2, respectively. Microbial biomass N and C were closely correlated. Large variations in microbial biomass C:N ratios were observed (between 5.4 and 17.3, mean 7.7), indicating that no simple relationship exists between these two parameters. The frequency distribution of the parameters for C and N availability to the microflora divided the soils into two subgroups (with the exception of one soil): (1) microbial: organic C>12 mg g-1, microbial:total N>28 mg g-1 (n=23), a group with high C and N availability, and (2) microbial:organic C12 mg g-1, microbial:total N28 mg g-1 (n=14), a group with low C and N availability. With the exception of a periodically waterlogged soil, the pH of all soils belonging to subgroup 2 was below 5.0 and the soil C:N ratios were comparatively high. Within these two subgroups no significant correlation between the microbial C:N ratio and soil pH or any other parameter measured was found. The data suggest that above a certain threshold (pH 5.0) microbial C:N values vary within a very small range over a wide range of pH values. Below this threshold, in contrast, the range of microbial C:N values becomes very large.  相似文献   

3.
Summary Soil was sampled in autumn 1984 in the 132 field (sandy loam soil) of the Askov long-term experiments (started in 1894) and fractionated according to particle size using ultrasonic dispersion and sedimentation in water. The unmanured plot and plots given equivalent amounts of N (1923–1984 annual average, 121 kg N/ha) in either animal manure or mineral fertilizer were sampled to a depth of 15 cm, fractionated and analysed for C and N. Mineral fertilizer and animal manure increased the C and N content of whole soil, clay (<2 m) and silt (2–20 m) size fractions relative to unmanured samples, while the C content of the sand size fractions (fine sand 1, 20–63 m; fine sand 2, 63–200 m; coarse sand, 200–2000 m) was less affected. Clay contained 58% and 65°70 of the soil C and N, respectively. Corresponding values for silt were 30% and 26%, while sand accounted for 10% of the soil C. Fertilization did not influence this distribution pattern. The C : N ratio of the silt organic matter (14.3) was higher and that of clay (10.6) lower than whole-soil C:N ratios (12.0). Fertilization did not influence clay and silt C : N ratios. Animal manure caused similar relative increases in the organic matter content of clay and silt size fractions (36%). In contrast, mineral fertilizer only increased the organic matter content of silt by 21% and that of clay by 14%.  相似文献   

4.
Summary Topsoils (0–75 mm) from four different soil types were collected from stock camp and non-camp (main grazing area) areas of grazed pastures in New Zealand, which had been fertilised annually with superphosphate for more than 15 years, in order to assess the effects of grazing animals on the status and distribution of soil S fractions and organic matter. These soils were analysed for organic C, total N, total S, C-bonded S, hydriodic acid-reducible S, 0.01 M CaCl2, and 0.04 M Ca(H2PO4)2-extractable S fractions, and soil pH. Soil inorganic and organic S fractions extracted by NaHCO3 and NaOH extractants were also determined. The results obtained showed that camp soils contain higher soil pH, organic C, total N, total S, organic (C-bonded S and hydriodic acid-reducible S) and inorganic S fractions, NaHCO3-and NaOH-extractable soil S fractions but a lower anion retention capacity than non-camp soils, attributed to a higher return of plant litter and animal excreta to camp soils. In both soils, total S, organic S, C-bonded S, and hydriodic acid-reducible S were significantly correlated with organic C (r0.90***, ***P0.001) and total N (r0.95***), suggesting that C, N, and S are integral components of soil organic matter. However, C: N : S ratios tended to be lower in camp (60: 5.6: 1–103: 7.2: 1) than in non-camp soils (60:6.1:1–117:8.3:1). Most (>95%) of the total soil S in camp and non-camp soils is present as organic S, while the remainder is readily soluble and adsorbed S (i.e. Ca(H2PO4)2-extractable S). C-bonded S and hydriodic acid-reducible S constituted 55%–74% and 26%–45% of total S, respectively, reflecting a regular return of plant litter and animal excreta to the grazed pastures. NaHCO3, and especially NaOH, extracted significantly higher amounts of total soil S (13%–22% and 49%–75%, respectively) than Ca(H2PO4)2 or CaCl2 (<5%). In addition, NaHCO3 and NaOH-extractable soil S fractions were significantly rorrelated with soil organic S (r0.94***), C-bonded S (r0.90***) and hydriodic acid-reducible soil S (r0.93***). Differences between soils in either camp or non-camp areas were related to their sulphate retention capacities, as soils with high sulphate retention capacities (>45%) contain higher levels of C-bonded and hydriodic acid-reducible S fractions than those of low sulphate retention soils (<10%). Long-term annual superphosphate applications significantly increased the accumulation of soil organic and inorganic S fractions, and organic C and total N in the topsoil, although this accumulation did not occur when the superphosphate application rates were increased from 188 to 376 kg ha-1 year-1.  相似文献   

5.
This study was undertaken to investigate the long-term influence of lime application and tillage systems (no-till, ridge-till and chisel plow) on soil microbial biomass C (Cmic) and N (Nmic) and the activities of glycosidases (- and -glucosidases, - and -galactosidases and -glucosaminidase) at their optimal pH values in soils at four agroecosystem sites [Southeast Research Center (SERC), Southwest Research Center (SWRC), Northwest Research Center (NWRC), and Northeast Research Center (NERC)] in Iowa, USA. Results showed that, in general, the Cmic and Nmic values were significantly (P <0.001) and positively correlated with soil pH. Each lime application and tillage system significantly (P <0.001) affected activities of the glycosidases. With the exception of -glucosidase activity, there was no lime×tillage interaction effect. Simple correlation coefficients between the enzyme activities and soil pH values ranged from 0.51 (P <0.05) for the activity of -glucosidase at the NWRC site (surface of the no-till) to 0.98 (P <0.001) at the SWRC site. To assess the sensitivity of the enzymes to changes in soil pH, the linear regression lines were expressed in activity/pH values. In general, their order of sensitivity to changes in soil pH was consistent across the study sites as follow: -glucosidase>-glucosaminidase>-galactosidase>-galactosidase>-glucosidase. Lime application did not significantly affect the specific activities (g p -nitrophenol released kg–1 soil organic C h–1) of the enzymes. Among the glycosidases studied, -glucosidase and -glucosaminidase were the most sensitive to soil management practices. Therefore, the activities of these enzymes may provide reliable long-term monitoring tools as early indicators of changes in soil properties induced by liming and tillage systems.  相似文献   

6.
The effects of soil texture (silt loam or sandy loam) and cultivation practice (green manure) on the size and spatial distribution of the microbial biomass and its metabolic quotient were investigated in soils planted with a permanent row crop of hops (Humulus lupulus). The soil both between and in the plant rows was sampled at three different depths (0–10, 10–20, and 20–30 cm). The silt loam had a higher overall microbial biomass C concentration (260 g g-1) than the sandy loam (185 g g-1), whereas the sandy loam had a higher (3.1 g CO2-C mg-1 microbial Ch-1) metabolic quotient than the silt loam (2.6 g CO2-C mg-1 microbial C h-1), on average over depth (0–30 cm) and over all treatments. There was a sharp decrease in the microbial biomass with increasing depth for all plots. However, this was more pronounced in the silt loam than in the sandy loam. There was no distinct influence of sampling depth on the metabolic quotient. The microbial biomass was considerably higher in the rows than between the rows, especially in the silt loam plots. There was no significant difference between plots without green manure and plots with green manure for either the microbial biomass or the metabolic quotient.  相似文献   

7.
Summary Relationships between soil physicochemical characteristics and soil microbial C, N, and P in Indian dry tropical ecosystems are discussed. The major ecosystem studies were on forest, savanna, cropped fields, and mine spoils. The highest microbial C, N, and P levels were recorded from the mixed forest and the lowest levels in 5-year-old mine spoil. Across the sites, microbial C ranged from 226 to 643 g g-1, microbial N from 19 to 71 g g-1, and microbial P from 9 to 28 g g-1 soil. The proportion of soil organic C contained in the microbial biomass ranged from 2.2 to 5.0%. The microbial C: N ratio in these soils ranged from 7.4. to 13.1 and the microbial C: P ratio from 16.6 to 30.6. The concentrations of microbial C, N, and P were correlated with several soil properties and among themselves. The soil properties, in various linear combinations, explained 90–99% of the variability in the microbial nutrients. Grazing of the savanna had some effect on the level of microbial biomass, and as the mine spoil aged, the level of microbial C, N, and P also increased.  相似文献   

8.
We measured microbial biomass C and soil organic C in soils from one grassland and two arable sites at depths of between 0 and 90 cm. The microbial biomass C content decreased from a maximum of 1147 (0–10 cm layer) to 24 g g-1 soil (70–90 cm layer) at the grassland site, from 178 (acidic site) and 264 g g-1 soil (neutral site) at 10–20 cm to values of between 13 and 12 g g-1 soil (70–90 cm layer) at the two arable sites. No significant depth gradient was observed within the plough layer (0–30 cm depth) for biomass C and soil organic C contents. In general, the microbial biomass C to soil organic C ratio decreased with depth from a maximum of between 1.4 and 2.6% to a minimum of between 0.5 and 0.7% at 70–90 cm in the three soils. Over a 24-week incubation period at 25°C, we examined the survival of microbial biomass in our three soils at depths of between 0 and 90 cm without external substrate. At the end of the incubation experiment, the contents of microbial biomass C at 0–30 cm were significantly lower than the initial values. At depths of between 30 and 90 cm, the microbial biomass C content showed no significant decline in any of the four soils and remained constant up to the end of the experiment. On average, 5.8% of soil organic C was mineralized at 0–30 cm in the three soils and 4.8% at 30–90 cm. Generally, the metabolic quotient qCO2 values increased with depth and were especially large at 70–90 cm in depth.  相似文献   

9.
Management practices, such as no tillage (NT) and intensive cropping, have potential to increase C and N sequestration in agricultural soils. The objectives of this study were to investigate the impacts of conventional tillage (CT), NT, and cropping intensity on soil organic C (SOC) and N (SON) sequestration and on distribution within aggregate-size fractions in a central Texas soil after 20 years of treatment imposition. Tillage regime and cropping sequence significantly impacted both SOC and SON sequestration. At 0–5 cm, NT increased SOC storage compared to CT by 33% and 97% and SON storage by 25% and 117% for a sorghum/wheat/soybean (SWS) rotation and a continuous sorghum monoculture, respectively. Total SOC and SON storage at both 0–5 and 5–15 cm was greater for SWS than continuous sorghum regardless of tillage regime. The majority of SOC and SON storage at 0–5 cm was observed in 250-m to 2-mm aggregates, and at 5–15 cm, in the >2-mm and 250-m to 2-mm fractions. Averaged across cropping sequences at 0–5 cm, NT increased SOC storage compared to CT by 212%, 96%, 0%, and 31%, and SON storage by 122%, 92%, 0%, and 37% in >2-mm, 250-m to 2-mm, 53- to 250-m, and <53-m aggregate-size fractions. No tillage and increased cropping intensity improved soil fertility by increasing soil organic matter levels and potential nutrient supply to crops.  相似文献   

10.
Summary The influence of soil moisture on denitrification and aerobic respiration was studied in a mull rendzina soil. N2O formation did not occur below –30 kPa matric water potential (m), above 0.28 air-filled porosity (a) and below 0.55 fractional water saturation (v/PV volumetric water content/total pore volume). Half maximum rates of N2O production and O2 consumption were obtained between m = –1.2 and –12 kPa,a = 0.05 and 0.23, and v/PV = 0.63 and 0.92. No oxygen consumption was measured at v/PC 1.17. O2 uptake and denitrification occurred simultaneously arounda = 0.10 (at m = –10 kPa and v/PV = 0.81) at mean rates of 3.5 µl O2 and 0.3 µl N2 h–1g–1 soil. Undisturbed, field-moist soil saturated with nitrate solution showed constant consumption and production rates, respectively, of 0.6 µl O and 0.22 µl N2O h–1g–1 soil, whereas the rates of air-dried remoistened soil were at least 10 times these values. The highest rates obtained in remoistened soil amended with glucose and nitrate were 130 µl O2 and 27 µl N2O h–1g–1 soil.  相似文献   

11.
We studied the effects of aggregates of different sizes on the soil microbial biomass. The distribution of aggregate size classes (<2, 2–4, 4–10, >10 mm) in the upper mineral soil horizon (Ah layer) was very different in three sites (upper, intermediate, lower) in a beechwood (Fagus sylvatica) on a basalt hill (Germany). Aggregates of different sizes (<2, 2–4, 4–10 mm) contained different amounts of C and N but the C:N ratios were similar. C and N contents were generally higher in smaller aggregates. The maximum initial respiratory response by microorganisms in intact aggregates and in aggregates passed through a 1-mm sieve declined with the aggregate size, but the difference was more pronounced in intact aggregates. Disruption of aggregates generally increased this response, particularly in 4- to 10-mm aggregates in the lower site. Basal respiration differed strongly among sites, but was similar in each of the aggregate size classes. Aggregate size did not significantly affect the specific respiration (g O2 g–1 microbial C h–1) nor the microbial: organic C ratio, but these parameters differed among sites. Microbial growth was increased strongly by passing the soil through a 1-mm sieve in each of the aggregate materials. The growth of microorganisms in disrupted aggregates was similar, and the effect of aggregate disruption depended on the growth of microorganisms in intact aggregates.  相似文献   

12.
The contribution of organic resources to the restoration of soil fertility in smallholder farming systems in East Africa is being tested as an alternative to costly fertilizers. Organic inputs are expected to have advantages over fertilizers by affecting many biochemical properties controlling nutrient cycling. Our study examined changes in soil C and N, C and N mineralization, microbial biomass C (MBC) and N (MBN), and particulate organic matter (POM) in a P-limiting soil in western Kenya after applications of organic residues and fertilizers to overcome P limitation to crops. Leaf biomass from six different tree (shrub) species was incorporated into the soil at 5 Mg ha–1 for five consecutive maize growing seasons, over 2.5 years. Triple superphosphate was applied separately at 0, 10, 25, 50, and 150 kg P ha–1 in combination with 120 kg N ha–1 as urea. Soil inorganic N, soil organic C, mineralizable N, and total C in all POM fractions and total N in the 53- to 250-m POM fraction increased following addition of all organic residues compared to the control. Whether there was an advantage of organic residue incorporation over inorganic fertilizer use depended on the soil parameter studied, the organic residue and the rate of fertilization. Most differences were found in N mineralization where 14.4–21.6 mg N kg–1 was mineralized in fertilizer treatments compared to 25.2–30.5 mg N kg–1 in organic residue treatments. C and N mineralization and the 53- to 250-m POM fractions were the most sensitive parameters, correlating with most of the studied parameters. Organic residues can contribute to improved soil nutrient cycling while the magnitude of their contribution depends on the biochemical properties of the residues.  相似文献   

13.
Summary Fifteen- and forty-year-old cropfields developed from a dry tropical forest were examined for soil organic C and total N and soil microbial C and N. The 15-year-old field had never been manured while the 40-year-old field had been fertilized with farmyard manure every year. The native forest soil was also examined. The results indicated that the native forest soil lost about 57% and 62% organic C and total N, respectively, in the 0–10 cm layer after 15 years of cultivation. The microbial C and N contents of the forest soil were greater than those of the cultivated soils. Application of farmyard manure increased the biomass-C and -N levels in the cultivated soil but the values were still markedly lower than in the forest soil. There was an appreciable seasonal variation in biomass C and N, the values being highest in summer and lowest in the rainy season. During an annual cycle, biomass-C contents varied from 180 to 727 g g–1 and N from 20 to 80 g g–1 dry soil, and both were linearly related. Microbial biomass C represented 1.6%–3.6% of total soil organic C and microbial biomass N represented 1.7% 1–4.4% of soil organic N.  相似文献   

14.
化肥对黑土不同粒级碳水化合物的影响   总被引:2,自引:1,他引:1  
本文采集公主岭市长期定位监测基地不施肥和施用不同化肥的黑土,通过超声波分散-离心分离得到细黏粒(<0.2μm)、粗黏粒(0.2~2μm)、粉粒(2~53μm)、细砂粒(53~250μm)、粗砂粒(250~2000μm)5个颗粒级别,分析全土及不同粒级中土壤碳水化合物并进行含量与分布的比较。结果表明,黑土中不同粒级碳水化合物库的性质差异显著,碳水化合物多集中在粉+黏粒中;长期施用化肥后,黑土全土及各粒级碳水化合物库大小和浓度基本上没有变化;粗砂粒级(Gal+Man)(:Ara+Xyl)下降,表明该粒级中植物来源碳水化合物所占比重有所增加,暗示出粗砂粒级对施肥措施更为敏感。  相似文献   

15.
Seasonal changes in microbial biomass and nutrient flush in forest soils   总被引:14,自引:0,他引:14  
Microbial biomass and N, P, K, and Mg flushes were estimated in spring, summer, autumn, and winter samples of different forest soils. The microbial biomass showed significant seasonal fluctuations with an average distribution of 880±270 g C g-1 soil in spring, 787±356 g C g-1 soil in winter, 589±295 g C g-1 soil in summer, and 560±318 g C g-1 soil in autumn. The average annual concentrations of C, N, P, K, and Ca in the microbial biomass were 704, 106, 82, 69 and 10 g g-1 soil, respectively. Microbial C represented between 0.5 and 2% of the organic soil C whereas the percentage of microbial N with respect to the total soil N was two-to threefold higher than that of C; the annual fluctuations in these percentages followed a similar trend to that of the microbial biomass. Microbial biomass was positively correlated with soil pH, moisture, organic C, and total N. The mean nutrient flush was 31, 15, 7, and 4 g g-1 soil for N, K, P, and Mg, respectively, and except for K, the seasonal distribution was autumn spring winter summer. The average increase in available nutrient due to the mineralization of dead microbial cells was 240% for N, and 30, 26, and 14% for P, K, and Mg, respectively. There was a positive relationship between microbial biomass and the N, P, K, and Mg flushes. All the variables studied were significantly affected by the season, the type of soil, and the interaction between type of soil and season, but soil type often explained most of the variance.  相似文献   

16.
Bacterial and fungal contributions to microbial respiration in three beechwood soils rich in C (two basalt soils and one limestone soil) were investigated by using streptomycin and cycloheximide to inhibit substrate-induced respiration after glucose (8000 g g-1), N, and P addition to soil samples. The inhibitors were added as solutions (2000, 8000, and 16000 g g-1) and the reduction in substrate-induced respiration after separate and combined inhibitor addition was measured in an automated electrolytic microrespirometer. Bacterial and fungal contributions to microbial respiration were calculated using the interval 6–10 h after inhibitor application. The microbial biomas was smaller in the two basalt soils (Oberhang and Mittelhang) than in the limestone soil (Unterhang). In the presence of both inhibitors, microbial respiration was inhibited by a maximum of 45, 45, and 25% in the two basalt soils and the limestone soil, respectively. Inhibition of microbial respiration was at a maximum at streptomycin and cycloheximide concentrations of 16000 g g-1. The inhibitor additivity ratio approached 1.0 even at high inhibitor concentrations, indicating high inhibitor selectivity. Calculated prokaryote: eukaryote ratios indicated lower bacterial contributions to the microbial biomass in the Mettelhang (0.74) and Unterhang (0.73) than in the Oberhang (0.88) soil.  相似文献   

17.
Accurate prediction of soil N availability requires a sound understanding of the effects of environmental conditions and management practices on the microbial activities involved in N mineralization. We determined the effects of soil temperature and moisture content and substrate type and quality (resulting from long-term pasture management) on soluble organic C content, microbial biomass C and N contents, and the gross and net rates of soil N mineralization and nitrification. Soil samples were collected at 0–10 cm from two radiata pine (Pinus radiata D. Don) silvopastoral treatments (with an understorey pasture of lucerne, Medicago sativa L., or ryegrass, Lolium perenne L.) and bare ground (control) in an agroforestry field experiment and were incubated under three moisture contents (100, 75, 50% field capacity) and three temperatures (5, 25, 40 °C) in the laboratory. The amount of soluble organic C released at 40 °C was 2.6- and 2.7-fold higher than the amounts released at 25 °C and 5 °C, respectively, indicating an enhanced substrate decomposition rate at elevated temperature. Microbial biomass C:N ratios varied from 4.6 to 13.0 and generally increased with decreasing water content. Gross N mineralization rates were significantly higher at 40 °C (12.9 g) than at 25 °C (3.9 g) and 5 °C (1.5 g g–1 soil day–1); and net N mineralization rates were also higher at 40 °C than at 25 °C and 5 °C. The former was 7.5-, 34-, and 29-fold higher than the latter at the corresponding temperature treatments. Gross nitrification rates among the temperature treatments were in the order 25 °C >40 °C >5 °C, whilst net nitrification rates were little affected by temperature. Temperature and substrate type appeared to be the most critical factors affecting the gross rates of N mineralization and nitrification, soluble organic C, and microbial biomass C and N contents. Soils from the lucerne and ryegrass plots mostly had significantly higher gross and net mineralization and nitrification rates, soluble organic C, and microbial biomass C and N contents than those from the bare ground, because of the higher soil C and N status in the pasture soils. Strong positive correlations were obtained between gross and net rates of N mineralization, between soluble organic C content and the net and gross N mineralization rates, and between microbial biomass N and C contents.  相似文献   

18.
 The effect of short-term bark compost (Ba) and leaf litter (Li) applications on the labile soil organic matter (SOM) status was investigated. The SOM status studied in this paper includes soil microbial biomass, soil available N, hot water extractable C (HwC) and N (HwN) and soil neutral sugar-C composition. The soil microbial biomass C (MBC) and N (MBN), soil available N, HwC and HwN increased upon application of Ba and Li. No quantitative relationship was observed between application of organic material and MBC, MBN or soil available N. A positive linear correlation was observed between MBN and HwC but not between MBN and soil available N. Among the various soil neutral sugar C, xylose C (Xyl) content in Ba plots showed a remarkable increase but mannose C (Man) did not differ among Fer (fertilizer), Ba or Li plots. Soil neutral sugar C had a positive linear correlation with soil available N, MBN and HwC. The proportion of MBN : TN is positively correlated with the Xyl/Man ratio. The increase in the proportion of MBN in SOM seems to occur with the increase of SOM derived from plant debris. Received: 20 October 1997  相似文献   

19.
The use of microbial parameters in monitoring soil pollution by heavy metals   总被引:82,自引:4,他引:82  
Microbial parameters appear very useful in monitoring soil pollution by heavy metals, but no single microbial parameter can be used universally. Microbial activities such as respiration, C and N mineralization, biological N2 fixation, and some soil enzymes can be measured, as can the total soil microbial biomass. Combining microbial activity and population measurements (e.g., biomass specific respiration) appears to provide more sensitive indications of soil pollution by heavy metals than either activity or population measurements alone. Parameters that have some form of internal control, e.g., biomass as a percentage of soil organic matter, are also advantageous. By using such approaches it might be possible to determine whether the natural ecosystem is being altered by pollutants without recource to expensive and long-running field experiments. However, more data are needed before this will be possible. Finally, new applications of molecular biology to soil pollution studies (e.g., genetic fingerprinting) which may also have value in the future are considered.  相似文献   

20.
The flow of new and native plant-derived C in the rhizosphere of an agricultural field during one growing season was tracked, the ratios in different soil C pools were quantified, and the residence times (s) were estimated. For this the natural differences in 13C abundances of: (1) C4 soil (with a history of C4 plant, Miscanthus sinensis, cultivation), (2) C3 soil (history of C3 plant cultivation), and (3) C4/3 soil (C4 soil, planted with a C3 plant, Triticum aestivum) were used. Total amounts and 13C values of total soil C, non-hydrolysable C, light fraction C, water-soluble C, microbial biomass C, and phospholipid fatty acids (PLFA) were determined. Using the 13C values of soil C in a mixing and a 1-box model enabled the quantification of relative contributions of C3 plant and C4 plant C to the total amount of the respective C pools in the C4/3 soil and their s. Compared to early spring (March), the percentage of C3 plant C increased in all pools in June and August, showing the addition of new C to the different soil C fractions. In August the contribution of new C to microbial biomass C and water-soluble C reached 64 and 89%, respectively. The s of these pools were 115 and 147 days. The 13C values of the dominant soil PLFA, 18:17c, cy19:0, 18:19c, 16:0, and 10Me16:0, showed wide ranges (–35.1 to –13.0) suggesting that the microbial community utilized different pools as C sources during the season. The 13C values of PLFA, therefore, enabled the analysis of the metabolically active populations. The majority of 13C values of PLFA from the C4/3 soil were closely related to those of PLFA from the C3 soil when T. aestivum biomass contributions to the soil were high in June and August. Specific populations reacted differently to changes in environmental conditions and supplies of C sources, which reflect the high functional diversity of soil microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号