首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
长期施肥土壤不同粒径颗粒的固碳效率   总被引:1,自引:1,他引:0  
【目的】探讨不同施肥措施土壤有机碳在不同粒级颗粒中的分配及变化情况,可揭示各级颗粒中有机碳与外源有机碳输入之间的定量关系。【方法】依托南方红壤连续20年长期定位施肥试验,依据外源有机碳累积输入梯度选择不施肥(CK)、氮磷钾化肥配施(NPK)、氮磷钾化肥与秸秆配施(NPKS)、轮作条件下氮磷钾化肥与有机肥配施(NPKMR)、氮磷钾化肥与有机肥配施(NPKM)、单施有机肥(M)、增量氮磷钾化肥与增量有机肥配施(1.5NPKM)7个处理,并采用物理分组方法将土壤颗粒分为砂粒(53~2000μm)、粗粉粒(5~53μm)、细粉粒(2~5μm)和粘粒(2μm)4个组分。【结果】与不施肥相比,长期施肥均能显著增加土壤总有机碳及各级颗粒中的有机碳的储量,其中以施用有机肥的效果最明显。不同施肥处理各级颗粒中以粘粒的有机碳储量最高,平均为16.26 t/hm~2。施用有机肥和秸秆还田均能显著增加砂粒中有机碳的分配比例,降低粘粒有机碳的分配比例而对粗粉粒和细粉粒无显著影响。土壤砂粒所占的质量百分比及其与粗粉粒、细粉粒和粘粒的比值均与粗粉粒、细粉粒和粘粒组分中有机碳的浓度呈显著正相关关系表明小颗粒(粗粉粒、细粉粒和粘粒)中有机碳的固持和富集促进了大颗粒(砂粒)的形成与稳定。各级颗粒之间,施用有机肥处理的土壤粘粒组分的固碳速率最快,为0.29~0.52 t/(hm~2·a),其次为砂粒[0.30~0.40 t/(hm~2·a)]而粗粉粒和细粉粒的固碳速率基本相当为0.09~0.16t/(hm~2·a)。分析结果还表明土壤总有机碳及各级颗粒有机碳与外源有机碳的输入呈显著正线性相关关系,其中土壤总固碳效率为10.57%而各级颗粒之间,粘粒和砂粒组分的固碳效率(4.25%和3.60%)相当于粗粉粒和细粉粒(1.73%和1.00%)的2倍以上。【结论】南方红壤各级颗粒中有机碳均没有出现饱和现象,有机碳主要在土壤粘粒和砂粒组分中富集,细颗粒中有机碳的富集会促进大粒径土壤颗粒的形成而粘粒是土壤固碳效率最重要的矿物颗粒组成部分。表明长期配施有机肥不仅是红壤有机质提升的重要措施,也是改善红壤结构的重要途径。  相似文献   

2.
The composition of organic matter was studied in clay (< 2 μm), fine silt (2-6.3 μm), medium silt (6.3-20 μm), coarse silt (20-63 μm) and sand (63-2000 μm) fractions of the Ap-horizon of a clay loam (Orthic Humic Gleysol) from Bainsville (Ottawa, Canada) by organic C and total N analyses and pyrolysis-field ionization mass spectrometry (Py-FIMS). The C and N contents were largest in fine silt and medium silt and smaller in coarse silt and sand. Differences in the contents of organic matter and absorbed water were significantly (r= 0.945***) reflected by the amounts of volatilized matter during Py-FIMS. The Py-FI therniograms and mass spectra showed clear differences in thermal stability and molecular composition of organic matter between the organo-mineral size-fractions. Abundances of carbohydrates, phenols and lignin monomers, alkylaromatics and N-containing compounds decreased, whereas abundances of lignin dimers and lipids increased with increasing equivalent diameters. An exception was the sand fraction which was dominated by the characteristic features of plant residues. The six compound classes, calculated using signals of biomarkers, accounted for 35% to 60% of the recorded total ion intensity. The thermal evolution of the selected compound classes, which are important constituents of soil organic matter (SOM), indicated the stability of humic and organo-mineral bonds in particle-size fractions, Moreover, the influence of mineral matrix on organic matter composition was shown by significant correlations between relative abundances of carbohydrates, N-containing compounds, lipids, lignin dimers, and proportions of phyllosilicates.  相似文献   

3.
The present study combined a physical fractionation procedure with the determination of the natural abundance of 15N to investigate the impact of organic manure and mineral fertilizer application, and fallow on changes of N associated with different soil particle size fractions. The long‐term field experiment was conducted since 1956 in Ultuna, Sweden, on an Eutric Cambisol. Nitrogen in bulk soil and in particle size fractions changed significantly since 1956. The Nt concentrations in bulk soil decreased in all treatments not receiving organic materials. Comparing the N contribution of particle‐size fractions to the total N amount revealed the following ranking: silt > clay > fine clay > fine sand > coarse sand. The relative contribution of N in silt sized particles significantly increased from low to high bulk soil N contents, whereas N in clay and fine clay fractions decreased. The C : N ratios of particle size fractions differed considerably more between treatments than C : N ratios in bulk soils. Generally, the C : N ratios decreased from coarse to fine fractions emphasizing the tendency of smaller fractions being more significant as N sink than as Corg sink. 15N abundances varied more between particle size fractions of single treatments than between bulk soil from differently treated plots. Within treatments we observed differences of up to 7.1 ‰ between particle size fractions. In most cases δ 15N values increased with decreasing particle sizes. This pattern on average was similar to changes in δ 13 C. Our results suggest that silt sized particles acted as medium‐term sink of introduced N and that 15N abundances in particle size fractions sensitively reflect changes in N status in response to soil management.  相似文献   

4.
The influence of fertilization on organic‐carbon fractions separated by density and particle size in Heilu soil (Calcic Kastanozems, FAO) was investigated in a 20‐year (1979–1999) long‐term experiment on the Loess Plateau of China. Compared to an unfertilized treatment, N application alone did not increase total organic carbon (TOC) and its fractions of density and particle size. However, the treatment of N + P fertilization significantly increased salty‐solution–soluble organic carbon (SSOC), microbial biomass C (MB‐C), and organic C associated with fine silt. When manure was applied alone and in combination with N and P fertilizer, the light fraction of organic C (LFOC), SSOC, and MB‐C were increased significantly, and the TOC was as high as that of a native Heilu soil. Organic C associated with different particle‐size fractions was also increased significantly, and the allocation of C among the fractions was altered: the proportions of C in sand (>50 μm), coarse‐silt (20–50 μm), and fine‐clay (<0.2 μm) fractions were increased whereas fine‐silt (2–20 μm) and coarse‐clay (0.2–2 μm) fractions were decreased. It is concluded that N fertilizer alone is not capable of restoring organic‐matter content in the Heilu soils of the Loess Plateau and that C‐containing material like manure and straw is necessary to produce significant increase in soil organic carbon in these soils.  相似文献   

5.
Soils with and without organic manuring from 10 long-term manurial experiments in East Germany were fractionated into organo-mineral particle-size separates by ultrasonic disaggregation and sedimentation/decantation. The cation exchange capacities (CECs) buffered at pH 8.1 were determined for the size fractions fine+medium clay, coarse clay, fine, medium and coarse silt, sand, and for the total soil samples. In the samples from nine field experiments the CECs decreased with increased equivalent diameters (fine+medium clay: 489–8 13 mmolc kg?1, coarse clay: 367–749 mmolc kg?1, fine silt: 202–587 mmolc kg?1. medium silt: 63–345 mmolc kg?1, coarse silt: 12–128 mmolc kg?1 and sand: 10–156 mmolc kg?1. The CECs varied with genetic soil type, mineralogical composition of the <6.3-μm particles, and the C and N contents of the size fractions. In a pot experiment examining the role of various organic materials in the early stages of soil formation, the clay-size fractions had the largest CECs (85–392 mmolc kg?1), followed by the medium-silt (1 9-222 mmolc kg?1) and fine-silt fractions (23–192 mmolc kg?1). The effect of organic amendments on CEC was in general: compost>fresh farmyard manure = straw + mineral fertilizer = mineral fertilizer.  相似文献   

6.
长期施肥下红壤有机碳及其颗粒组分对不同施肥模式的响应   总被引:15,自引:3,他引:12  
采集不同施肥24年的红壤,采用物理分组的方法,观测了长期不同施肥下红壤有机碳及其组分变化,并结合历史资料分析了不同施肥模式对红壤有机碳及其颗粒组分的影响。结果表明,化肥配施有机肥(NPKM)处理下红壤总有机碳含量(10.33 g/kg),砂粒(2000~53 m)、细粉粒(5~2 m)和粘粒(2 m)组分中的有机碳含量显著高于其他处理。与不施肥(CK)相比,施用化肥(NPK、2NPK)和有机肥(NPKM、M)显著地提高了红壤有机碳在砂粒和粘粒中的分配比例,而降低了其在粗粉粒和细粉粒的分配比例。施化肥(NPK、2NPK)、单施有机肥(M)、化肥配施有机肥(NPKM)处理,土壤有机碳的平均固定速率分别为0.05 t/(hm2?a)、0.18 t/(hm2?a)、0.26 t/(hm2?a)。相关分析表明,不同施肥模式下红壤有机碳的固定量与碳投入量之间存在着极显著的线性相关关系(R2=0.909, P0.01),土壤的固碳效率为8.1%;随着碳投入的增加,粗粉粒和细粉粒有机碳储量逐渐下降,而砂粒和粘粒中碳储量逐渐增加,并且粘粒增加速率要远远高于砂粒。以上结果说明,红壤中有机碳还没有达到饱和,还具有一定的固碳潜力,增加的有机碳主要固持在粘粒中,粘粒是红壤有机碳的主要固持组分。  相似文献   

7.
Four soils with a range of clay and silt contents were incubated for 5 a with 15N-labelled (NH4)SO4 and 14C-labelled hemicellulose and then fractionated according to particle size by ultrasonic dispersion and sedimentation. The distribution of labelled and native N between clay, silt and sand fractions was determined and elated to previous results on the C distributions. Between 29% and 48% of the added N was found in organic form. The 15N atom percentage excess decreased in the order: clay > whole soil > silt > sand. For both clay and silt, the enrichment factor for labelled and native N decreased with increasing fraction weight. Clay enrichment was higher for labelled than for native N, the converse being true for silt. The distribution of whole soil labelled organic N was: clay 77–91%, silt 4–11%, and sand <0.5%. Corresponding values for native N were 69–74%, 16–22%, and 1–2%, respectively. All soils had higher proportions of labelled than of native N in the clay, the converse was true for the silt. The C/N ratio of the native silt organic matter was higher and that of clay organic matter lower than whole soil C/N ratios. Differences between the C/N ratio distributions of native and labelled organic matter were small. The relative distribution of labelled N and C was very similar confirming that the turnover of C and N in soil organic matter is closely interrelated.  相似文献   

8.
The present study tests whether soil management (tillage and fertilizer) modified the small-scale abundance and function of soil microorganisms in response to changes in organic matter quantity and quality. The experimental field, located in the coastal hills of Marche (central Italy), was planted in rotation with Triticum durum in winter and Zea mais in summer. Soil samples were collected in the maize-field soil, in conventional and no-tillage (NT) systems, and in fertilized and unfertilized soil. We analysed total organic C (TOC), total nitrogen (TN) microbial biomass C (MBC), enzymes involved in C- (β-glucosidase, α-glucosidase, β-cellobiohydrolase, β-xylosidase), N- (leucine-aminopeptidase and N-acetyl-β-glucosaminidase), P- (acid phosphatase) and S-cycling (arylsulphatase), as well as functional diversity in the bulk soil, coarse sand, fine sand, silt and clay fractions. Micro-scale investigations revealed great microbial abundance in smaller fractions because of protection offered by microaggregates, whereas the distribution of enzymes reflected the availability of their corresponding substrates. No-tillage treatment significantly increased organic input, mainly in the coarser fractions, enhancing enzyme activities and the functional diversity of the microbial community. This effect was even larger in the absence of fertilizer. At the particle-size level of resolution, adding fertilizer stimulated nutrient cycling. Our results confirmed the hypothesis that no-tillage enlarges the content of particulate organic matter in the coarse sand fraction and stimulates microbial decomposition. In the smaller fractions the enlarged microbial pool and increased soil organic matter with small C/N ratio under NT confirm that this management practice is effective in increasing soil C sequestration capacity.  相似文献   

9.
Summary Soil was sampled in autumn 1984 in the 132 field (sandy loam soil) of the Askov long-term experiments (started in 1894) and fractionated according to particle size using ultrasonic dispersion and sedimentation in water. The unmanured plot and plots given equivalent amounts of N (1923–1984 annual average, 121 kg N/ha) in either animal manure or mineral fertilizer were sampled to a depth of 15 cm, fractionated and analysed for C and N. Mineral fertilizer and animal manure increased the C and N content of whole soil, clay (<2 m) and silt (2–20 m) size fractions relative to unmanured samples, while the C content of the sand size fractions (fine sand 1, 20–63 m; fine sand 2, 63–200 m; coarse sand, 200–2000 m) was less affected. Clay contained 58% and 65°70 of the soil C and N, respectively. Corresponding values for silt were 30% and 26%, while sand accounted for 10% of the soil C. Fertilization did not influence this distribution pattern. The C : N ratio of the silt organic matter (14.3) was higher and that of clay (10.6) lower than whole-soil C:N ratios (12.0). Fertilization did not influence clay and silt C : N ratios. Animal manure caused similar relative increases in the organic matter content of clay and silt size fractions (36%). In contrast, mineral fertilizer only increased the organic matter content of silt by 21% and that of clay by 14%.  相似文献   

10.
有机肥对棕壤不同粒级有机碳和氮的影响   总被引:4,自引:1,他引:3  
采集棕壤长期肥料定位试验站不施肥和施用不同用量有机肥的土壤,通过超声波分散—离心分离得到细黏粒(<0.2μm)、粗黏粒(0.2~2μm)、粉粒(2~53μm)、细砂粒(53~250μm)和粗砂粒(250~2000μm)5个颗粒级别后,分析全土及不同粒级中土壤有机碳和氮并进行含量与分布的比较。结果表明,有机质主要分布于黏粒级中,其含量占全土有机碳的42.8%、全氮的58.3%,碳氮比随着粒级的增加而逐渐增大,表明氮易于在小粒级中富集。长期施用有机肥后,全土及各粒级有机碳和氮含量均有显著增加;砂粒级中有机碳和氮的富集系数升高,黏粒级中富集系数降低,粉粒级和砂粒级中的碳氮比降低。增加有机肥的用量加强了全土和各粒级对有机碳和氮的积累,同时加强了粉粒级和砂粒级碳氮比降低的程度。  相似文献   

11.
Particle-size soils were fractionated for evaluating changes in the composition of bacterial community and enzyme activity in response to 13 years of fertilization. This study focused on Mollisol and its particle-size fractions of 200–2,000 μm (coarse sand sized), 63 to 200 μm (fine sand sized), 2 to 63 μm (silt sized), and 0.1 to 2 to μm (clay-sized). Long-term chemical fertilization lowered the pH of all particle fractions, whereas organic fertilizer application mitigated soil acidification. Nutrient concentrations depended on both fertilizer treatment and particle fractions and enzymes were unevenly active throughout the soil. Generally, the highest enzyme activities were observed in the silt and clay fractions of control soil and the soil treated with chemical fertilizer (N, P, and K (NPK)) and in the sand-sized fraction of soil treated with manure and chemical fertilizer (MNPK). Except for acid phosphomonoesterase, the other tested enzyme activities in coarse-sized fractions of MNPK soil were significantly higher than those of the control and NPK soils. Fertilization and soil fraction interactively (p?<?0.05) affected the enzyme activity. Denaturing gradient gel electrophoresis analysis showed that the bacterial community structure significantly differed in different particle sizes with a higher bacterial diversity in small-sized than in coarse-sized fractions. Dominant bands were excised and sequenced. We have found the following bacterial groups: Actinobacteria, γ-proteobacteria, and Acidobacteria. In addition, enrichment of organic matter in coarser fractions was related to greater bacterial diversity than any other treatment. Principal component analysis showed a smaller variability among fractions of the organic amended treatment. Redundancy analysis showed that the tested properties significantly affected the composition of bacterial community with the exception of C/N and available P. No significant correlation between enzyme activity and bacterial community composition was detected, whereas positive correlations between other soil properties and enzyme activities were observed to various extents. Probably, enzyme activities might be affected by specific functional bacterial communities rather than by the overall bacterial community. We concluded that the long-term application of organic manures contributed to the increase of soil organic matter content of particles higher than 200 mm, with higher bacterial diversity and increases in most of the enzyme activities.  相似文献   

12.
Two field experiments in which straw has been removed or incorporated for 17 yr (loamy sand) and 10 yr (sandy clay loam) were sampled to examine the effect of straw on the C and N contents in whole soil samples, macro-aggregate fractions and primary particle-size separates. The particle size composition of the aggregate fractions was determined. Aggregates were isolated by dry sieving. Straw incorporation increased the number of 1–20 mm aggregates in the loamy sand but no effect was noted in the sandy clay loam. Straw had no effect on the particle size composition of the various aggregate fractions. After correction for loose sand that accumulated in the aggregate fractions during dry sieving, macro-aggregates appeared to be enriched in clay and silt compared with whole soil samples. Because of the possible detachment of sand particles from the exterior surface of aggregates during sieving operations, it was inferred that the particle size composition of macro-aggregates is similar to that of the bulk soil. The organic matter contents of the aggregate fractions were closely correlated with their clay + silt contents. Differences in the organic matter content of clay isolated from whole soil samples and aggregate fractions were generally small. This was also true for the silt-size separates. In both soils, straw incorporation increased the organic matter content of nearly all clay and silt separates; for silt this was generally twice that observed for clay. The amounts of soil C, derived from straw, left in the loamy sand and sandy clay loam at the time of sampling were 4.4 and 4.5 t ha?1, corresponding to 12 and 21% of the straw C added. The C/N ratios of the straw-derived soil organic matter were 11 and 12 for the loamy sand and sandy clay loam, respectively.  相似文献   

13.
Relationships between climatic factors and C, N pools in particle-size fractions of steppe soils, Russia Many soils of the Russian steppe are characterized by high soil organic matter contents and similar parent material. Thus, they are suitable for investigations of a climatic impact on C and N pools. We sampled 10 topsoils of the zonal Russian steppe at 0–10 and about 50–60 cm depth intervals. After particle-size fractionation into clay (<2 μm), silt (2–20 μm), fine sand (20–250 μm) organic C and N concentrations were determined in bulk soils and fractions. The results suggest that especially the older organic matter of the subsoil (in the silt fraction) is correlated with climatic factors. Topsoils show less evidence for climatic influences on C and N pools. As the ratio of mean annual precipitation to potential evaporation (=N/V) increases, C/N ratios decrease in all fractions and, thus, in the bulk subsoil. Obviously the degree of soil organic matter alteration was more pronounced in the order Greyzem (N/V = 1.0) > Chernozem, Phaeozem (N/V = 0.89) > Haplic Kastanozem (N/V = 0.6) > Calcic (N/V = 0.34), and Gypsic Kastanozem (N/V = 0.32). The organic carbon contents of the bulk subsoil are highest in the subsoil of the Chernozem and Phaeozem, and decrease with increasing N/V ratio (i.e., increasing heat input and dryness) to the Calcic Kastanozem. This is accompanied by an increasing enrichment of organic carbon in the silt fractions (r = ?0.99 for the correlation of the C enrichment in silt with N/V).  相似文献   

14.
Recent concerns about climate change and atmospheric greenhousegas concentrations have demonstrated the importance ofunderstanding ecosystem C source/sink relationships. Soilorganic matter fractionation was carried out in three paired,forested watershed sites where one of each watershed pairrepresented a different ecosystem perturbation. Theperturbations were 8 years of experimental N amendments at theBear Brook Watershed in Maine (BBWM), a 50 year old intensewildfire and subsequent regeneration at Acadia National Park(ANP), and a 17 year old whole-tree harvest at the Weymouth PointWatershed (WPW). At each site, mineral soils were sampled byuniform depth increments. Mineral soil (< 2 mm) was separatedinto light, occluded light, and heavy density fractions byfloatation in NaI solution (1.7 g cm-3). Mineral soil (< 2mm) was also separated into particle-size fractions of sand (2.0to 0.05 mm), silt (0.05 to 0.002 mm), and clay (< 0.002 mm) bywet sieving and centrifugation. Whole soils, and density andparticle-size fractions were analyzed for total C and N. Bothfractionation schemes showed that all soil organic matterfractions had lower C/N ratios as a result of N enrichment atBBWM. At ANP, soil organic matter fractions generally had lowerC/N associated with the wildfire and subsequent shift fromsoftwood to hardwood regeneration. Few significant whole soiland soil organic matter fraction differences were associated withthe whole-tree harvest. Within watershed pairs, both density andparticle-size fractionation techniques usually indicated similarresponses. Soil organic matter fractionation results indicatedthat there were no consistent shifts in fraction distributions inresponse to perturbation that were consistent across all pairedwatershed study sites.  相似文献   

15.
《Applied soil ecology》2007,35(2):412-422
Earthworms are key agents in organic matter decomposition, as they remove surface plant litter material and mix it with mineral soil. Plant litter material is comminuted in the gizzard of anecic earthworms and this is enhanced if sand particles are available. We hypothesize that this comminution of soil and litter will result in changes in the distribution of soil organic matter and soil microorganisms in the different particle-size fractions. We investigated soil organic matter content, xylanase- and microbial activity and community structure in bulk soil and particle size fractions of Lumbricus terrestris L. casts and in soil with and without the addition of beech litter.Earthworm gut passage did not affect the particle-size distribution but the content of soil organic matter was decreased in the fine sand fraction in treatments without litter (−6.80%) and increased in treatments with litter (+33.23%). The soil organic matter content of the clay fraction tended to be higher in earthworm casts. Xylanase activity was at a maximum in the fine sand fraction, lower in the coarse sand fraction and at a similar minimum in the silt- and clay-sized fraction. In the coarse sand fraction of the cast and litter treatments xylanase activity was increased by 39.1% and 124.8%, respectively. In the silt-sized fraction of casts the addition of litter increased xylanase activity (+58.6%) whereas, in casts without litter it was decreased (−36.25%). In the particle size fractions of casts, the content of bacterial PLFAs was decreased in the fine sand fraction and tended to be decreased in the clay fraction compared to the respective fractions in soil. In the silt fraction the fungal-to-bacterial PLFA ratio was higher in casts than in soil.We conclude that earthworms stabilize soil organic matter in cast aggregates predominantly by increasing the soil organic matter content in the clay fraction where it becomes protected against microbial attack. Organic matter in the coarse and fine sand fractions is decomposed primarily by fungi; xylanase is very active in these sand fractions and incorporation of litter into these fractions by the earthworms increased fungal biomass. Comminution of litter during passage through the earthworm gut increased the biomass and activity of fungi also in the silt fraction. The use of PLFA profiles in combination with other quantitative microbial methods improves the understanding of stabilizing and mobilizing processes in earthworm casts.  相似文献   

16.
Sand-, silt-, and clay-size organo-mineral fractions were isolated in bulk from surface horizons of five soils following ultrasonic dispersion in water. Good clay separation was achieved for all except one highly organic, calcareous clay soil. Organic-N and -C were concentrated in the clay and silt fractions but for each soil the organic C : N ratio decreased in the order sand > silt > whole soil > clay. Acid hydrolysis of the silt and clay fractions revealed a slight concentration of amino acid-N and NH4-N in the clays but only small differences in the distribution of individual amino acids were observed. The results suggest that both silt and clay fractions may be important in the stabilization of soil organic matter.  相似文献   

17.
Summary The influence of more than 100 years of fertilization with farmyard manure on soil organic matter in comparison to unfertilized soil was studied in particle-size fractions using elemental (C and N) analyses and pyrolysis-field ionization mass spectrometry. Distinct differences in C and N concentrations and distribution and in the quality of organic matter between the size fractions and the fertilization treatments were observed. Clay-associated C and N were relatively higher in the unfertilized treatment, whereas the application of farmyard manure preferentially increased soil organic matter associated with the fine and medium silt fractions. Pyrolysis-field ionization mass spectrometry of soil fractions <20 m showed increasing values for lignin monomers and dimers and fatty acids with larger equivalent diameters, whereas the proportion of N compounds, mono- and polysaccharides and phenolics decreased in the larger size fractions. Sand fractions were particularly rich in lignin fragments, mono- and polysaccharides, and alkanes/alkenes. These relationships seemed to be independent of management practices. In the same size fractions of the different treatments, however, a higher relative abundance of N-compounds, mono- and polysaccharides, phenolics, lignin monomers, and alkanes/alkenes was observed in the unfertilized variant. Lignin dimers and fatty acids were more abundant in the farmyard manure treatment. Both trends together imply that soil enrichment in organic matter due to the application of farmyard manure largely reflects an increase in lignin building blocks and partly reflects an increase in lipids such as fatty acids in the silt fractions. Therefore these constituents are of particular importance in assessing the positive effects of farmyard manure on soil fertility.  相似文献   

18.
The effects of several dominant tillage and rotation systems on soil organic C content of different particle-size fractions were studied in Chernozemic soils from southwestern and east-central Saskatchewan, Canada. In an Orthic Brown Chernozem in southwestern Saskatchewan, 7 years of no-till cereal–fallow, imposed on a long-term tillage fallow–wheat rotation soil, resulted in 0.1 Mg C ha−1 more organic C mass in the sand + organic matter (OM) fraction of the 0- to 5-cm layer, whereas organic C associated with coarse silt (CS), fine silt (FS), coarse clay, and fine clay of 0- to 5- and 5- to 10-cm layers was less than that of the comparable tilled cereal–fallow system. Conversion of tilled fallow–wheat rotation soil to continuous cropping had a slight effect, whereas the organic C mass in all the size fractions was significantly increased in both 0- to 5- and 5- to 10-cm layers after alfalfa was introduced on tilled fallow–wheat as perennial forage for 10 years. In an Orthic Black Chernozem in east-central Saskatchewan that was cultivated and tilled using a cereal–fallow rotation for 62 years, organic C mass decreased in sand + OM, CS, and FS of 0- to 10-cm depth. Conversion of the tilled cereal–fallow cropland soil back to seeded grassland resulted in significantly more soil organic C in sand + OM fraction after 12 years of grass seed-down. The sand + OM fraction appears to be the size fraction pool initially most sensitive to adoption of management practices that are liable to sequester carbon in the soil.  相似文献   

19.
The study examined the influence of compost and mineral fertilizer application on the content and stability of soil organic carbon (SOC). Soil samples collected from a long-term field experiment were separated into macroaggregate, microaggregate, and silt + clay fractions by wet-sieving. The experiment involved seven treatments: compost, half-compost N plus half-fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and control. The 18-year application of compost increased SOC by 70.7–121.7%, and mineral fertilizer increased by 5.4–25.5%, with no significant difference between control soil and initial soil. The C mineralization rate (rate per unit dry mass) in microaggregates was 1.52–2.87 mg C kg−1 day−1, significantly lower than in macroaggregate and silt + clay fractions (P < 0.05). Specific C mineralization rate (rate per unit SOC) in silt + clay fraction amounted to 0.48–0.87 mg C g−1 SOC day−1 and was higher than in macroaggregates and microaggregates. Our data indicate that SOC in microaggregates is more stable than in macroaggregate and silt + clay fractions. Compost and mineral fertilizer application increased C mineralization rate in all aggregates compared with control. However, compost application significantly decreased specific C mineralization rate in microaggregate and silt + clay fractions by 2.6–28.2% and 21.9–25.0%, respectively (P < 0.05). By contrast, fertilizer NPK application did not affect specific C mineralization rate in microaggregates but significantly increased that in silt + clay fractions. Carbon sequestration in compost-amended soil was therefore due to improving SOC stability in microaggregate and silt + clay fractions. In contrast, fertilizer NPK application enhanced SOC with low stability in macroaggregate and silt + clay fractions.  相似文献   

20.
The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt‐ and clay‐sized soil fractions. Microaggegrate‐derived and easily dispersed silt‐ and clay‐sized fractions were isolated from surface soil samples collected from six long‐term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non‐hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no‐till > conventional‐till at all sites. Concentrations of non‐hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt‐sized fractions compared with the clay‐sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号