首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
用茎流计研究冬小麦蒸腾规律   总被引:6,自引:0,他引:6  
通过田间试验及理论计算 ,验证了对茎流计在测量作物蒸腾方面的实用价值。试验观测表明 ,白天的作物蒸腾变化与太阳辐射值有很强的相关关系 ,太阳辐射是白天作物蒸腾的主要影响因素 ;作物夜晚的蒸腾变化主要受气温、风速、空气饱和差等因素的影响。通常 ,作物夜晚没有蒸腾 ,但在气温较高 ,风速较大的夜晚 ,作物就会产生很小的蒸腾 ,在天气晴朗的夜晚 ,作物夜晚蒸腾速率的变化遵循着一定的规律  相似文献   

2.
参考作物蒸发蒸腾量的气象因子响应模型   总被引:6,自引:1,他引:6  
基于江苏省南通市2000~2004年的旬气象资料,用FAO推荐的Penman-Monteith公式计算了参考作物蒸发蒸腾量,研究了参考作物蒸发蒸腾量与最高气温、最低气温、平均气温、相对湿度、日照时数、风速和气压等气象因素间的关系,建立了参考作物蒸发蒸腾量的响应模型.结果表明,参考作物蒸发蒸腾量与"温度因子"的关系最强,其次为"湿度和日照因子","风速因子"也有一定的影响,"气压因子"影响作用则稍弱;建立的气象因子响应模型模拟精度较高,可以简化参考作物蒸发蒸腾量计算.  相似文献   

3.
温室内黄瓜叶温变化特性的试验研究   总被引:1,自引:0,他引:1  
考察了充分供水和水分亏缺条件下温室内黄瓜叶温变化的差异及其与相关作物生理信息的关系。结果表明.叶温与叶面蒸腾的Pearson相关系数R^2达到了0.7以上.叶面蒸腾是影响叶温变化的内在因素.供水条件的不同影响了作物蒸腾的变化。从而导致作物叶温变化的差异。采用通径分析的方法。分析了气温、饱和水汽压差(VPD)和光量子通量(PAR)等主要气象因子对叶温的影响。结果表明,叶温与各环境因子的相关系数R^2≥0.86.气温的变化直接作用于叶温.饱和水汽压差(VPD)和光量子通量(PAR)都通过气温的间接作用影响着叶温的变化.3个环境因子对叶温影响程度依次为气温〉VPD〉PAR。  相似文献   

4.
通过CROPWAT模型分析泾惠渠灌区冬小麦和玉米蒸发蒸腾量及灌溉需水量的变化,同时运用SPSS软件,计算灌区作物需水量与气象因子的相关系数,分析结果表明:冬小麦整个生育期蒸发蒸腾量平均值为634.04 mm,蒸发蒸腾量最高峰出现在4月中旬—5月中旬,灌区各分区蒸发蒸腾量趋势基本一致;玉米蒸发蒸腾量平均值为525.22 mm,蒸发蒸腾量高峰期出现在7月中旬—8月下旬,其中三原最大为535.97 mm,富平最小为514.68 mm;灌区冬小麦在播种—越冬期灌溉需水量最低,返青—拔节期需水量增加;灌区玉米在拔节—抽雄期需水量增加,灌溉平均需水量为133.04 mm;7月—8月为籽粒形成乳熟期,需水量为359.15 mm,至9月下旬,玉米灌溉需水量下降;灌区作物需水量与气温呈正相关,与降水呈负相关,与风速和相对湿度相关性较小,气温、日照时数和相对湿度是影响作物需水量的主要因素.  相似文献   

5.
通过CROPWAT模型分析泾惠渠灌区冬小麦和玉米蒸发蒸腾量及灌溉需水量的变化,同时运用SPSS软件,计算灌区作物需水量与气象因子的相关系数,分析结果表明:冬小麦整个生育期蒸发蒸腾量平均值为634.04 mm,蒸发蒸腾量最高峰出现在4月中旬—5月中旬,灌区各分区蒸发蒸腾量趋势基本一致;玉米蒸发蒸腾量平均值为525.22 mm,蒸发蒸腾量高峰期出现在7月中旬—8月下旬,其中三原最大为535.97 mm,富平最小为514.68 mm;灌区冬小麦在播种—越冬期灌溉需水量最低,返青—拔节期需水量增加;灌区玉米在拔节—抽雄期需水量增加,灌溉平均需水量为133.04 mm;7月—8月为籽粒形成乳熟期,需水量为359.15 mm,至9月下旬,玉米灌溉需水量下降;灌区作物需水量与气温呈正相关,与降水呈负相关,与风速和相对湿度相关性较小,气温、日照时数和相对湿度是影响作物需水量的主要因素.  相似文献   

6.
河南省主粮作物需水量变化趋势与成因分析   总被引:5,自引:0,他引:5  
河南省是我国粮食主产区,研究河南省主粮作物的灌溉需水变化规律可为水分高效管理和节水增粮提供实践参考。基于河南省18个气象站点1958—2013年逐日气象观测资料,根据FAO推荐的Penman-Monteith公式计算参考作物蒸发蒸腾量及冬小麦和夏玉米各生育期需水量,利用时间序列分析法和Arc GIS普通克里金插值法研究需水量时空变化特征,采用通径分析法研究作物需水量的变化成因。结果表明:河南省近56 a来年均参考作物蒸发蒸腾量为807.0 mm/a,日均蒸发蒸腾量为2.2 mm/d,呈波动减少趋势,其中西北和东南地区参考作物蒸发蒸腾量最大,豫西地区的参考作物蒸发蒸腾量跨度较大。冬小麦和夏玉米的净灌溉需水量分别为350~525 mm和243~368 mm,灌溉需求指数随经度和纬度的增加而增大,冬小麦生长对灌溉的依赖程度高于夏玉米。影响河南省主粮作物需水量的气象因子主要为气温、水汽压、日照、最高气温和风速。  相似文献   

7.
东北地区参考作物蒸发蒸腾量随时间变化的研究   总被引:4,自引:1,他引:3  
根据选取的东北地区9个代表站1973-2003年的气象资料,应用Penman-Monteith公式计算了31年间逐月参考作物蒸发蒸腾量(ET0),对参考作物蒸发蒸腾量及气象要素的年际变化特征、月际变化特征及趋势进行了分析,应用统计检验方法分析了影响东北地区参考作物蒸发蒸腾量变化的主要气象因素。结果表明:近31年间东北地区ET0值呈现缓慢下降趋势,年内ET0值分布以5-8月份最高,1月份最低。影响ET0的主要气候要素为日照、风速和温度。  相似文献   

8.
一、太阳能贮热系统的原理 塑料大棚内由于温室效应,在早春和晚秋季节,白天棚内的气温往往高于作物所需温度,即有多余的太阳能;而在夜晚,棚内气温往往低于作物所需温度,需要补充热量。太阳能贮热系统,就是利用风机把白天棚内的热空气经管道送入地下,通过地下管  相似文献   

9.
黑河流域近53年气候变化对参考作物腾发量影响研究   总被引:1,自引:0,他引:1  
全球气候变化已成既定事实,其直接影响着陆地蒸散发及水平衡。基于Mann-Kendall非参数检验法、Pettitt突变点检验法以及GIS的空间分析功能,分析了黑河流域16个站点1960-2012年风速、气温、湿度、净辐射和参考作物腾发量(ET_0)的时空变化特征,并采用去气象因子趋势法评估了气候变化对ET_0的影响。结果表明:黑河流域平均风速、平均相对湿度、净辐射呈减少趋势,平均气温呈显著增加趋势;在气候变化背景下,流域参考作物腾发量年均减少0.37mm。各站年ET_0与气温、风速、净辐射呈正相关,与相对湿度呈负相关,且影响ET_0的主要气象要素是气温和风速。额济纳旗和高台参考作物腾发量的变化很大程度上决定着流域参考作物腾发量的变化。ET_0和各气候因子均存在明显的突变点和时空差异;流域ET_0的变化也存在时空差异,风速变化是导致其空间差异的主要原因。  相似文献   

10.
以滇中嵩明和大理两地水稻为例,于2015年开展了嵩明水稻间歇灌溉与淹水灌溉、大理水稻淹水灌溉下的需水规律及水分生产率试验研究。结果表明,滇中有比较突出的春旱现象,水稻日均蒸发蒸腾量在分蘖期最大,分蘖期以后持续减少,这与内地蒸发蒸腾峰值出现在拔节孕穗或抽穗开花期存在差异。大理水稻作物系数比嵩明要大,主要是品种原因,两地气象因素影响也较大。温度、风速和相对湿度3种气象要素都对作物系数变化产生较大影响,温度是主导气象因素。与淹灌相比,嵩明水稻间歇灌溉节水23.4%。间歇灌溉的节水能力主要来自于提高降雨利用率,减少渗漏量,并在一定程度上降低蒸发蒸腾量。大理水稻亩产比嵩明高出较多,相应的水分生产率也比嵩明高。  相似文献   

11.
采用M-K检验法对三峡库区参考作物蒸发蒸腾量ET_0进行年际变化分析,借助通径分析法研究三峡工程首次135 m蓄水前、后不同气象因子对库区参考作物蒸发蒸腾量的影响。结果表明:在1961-2014年间,三峡库区年平均ET_0总体呈现下降趋势,其中1961-2002年间表现为下降趋势,2003-2014年间表现为上升趋势。三峡工程首次135 m蓄水前,库区内影响年平均ET_0的主要气象因子不完全相同,但2003年后,库区年平均ET_0主要受年平均气温影响。  相似文献   

12.
根据湖北省20个测站1977—2007年的气象资料,应用Penman-Monteith公式计算了31年的逐日ET0。应用GIS技术和统计检验方法分析了参考作物蒸腾量的时空变异特征和气象因子对ET0的影响。结果表明,湖北省参考作物蒸腾量的空间分布呈西低东高的特征;随多年时间变化空间分布趋于均匀;年内ET0值分布以7、8月最高,12、1月最低;影响ET0的主要气象因子为风速,平均温度次之。  相似文献   

13.
青海东部农业区ET_0变化特征及气候影响因子分析   总被引:2,自引:1,他引:1  
利用FAO-56推荐的Penman-Monteith公式计算了青海省东部农业区12个气象站47年(1960—2006)逐月参考作物蒸发蒸腾量(ET0),对参考作物蒸发蒸腾量、气象因子随时间变化特征进行了分析。结果显示,ET0年内呈单峰型分布,月际变化较大,最大值出现在7月份,最小值出现在12月份;近47年ET0随时间呈极显著下降趋势变化;风速是影响ET0的最主要影响因子,最高温度对该地区ET0的影响也较为显著;海拔与ET0具有明显的相关性,R2为0.68,且ET0随海拔的增高具有明显下降的趋势。研究表明,在高寒高海拔区,风速是影响ET0的最主要气候影响因子,海拔与ET0呈负相关关系。  相似文献   

14.
宋扬  周维博  李慧 《节水灌溉》2016,(9):124-128
基于泾惠渠灌区30a的气象资料,采用CROPWAT模型分析了泾惠渠灌区作物蒸发蒸腾量及灌溉需水量的变化,并运用SPSS软件,计算了灌区作物需水量与气象因子的相关系数。分析表明:玉米蒸发蒸腾量平均值为524.33mm,蒸发蒸腾量高峰期出现在7月中旬到8月下旬;棉花蒸发蒸腾量平均值为869.13mm,峰值出现时间与玉米一致;灌区玉米在抽雄-开花期灌溉需水量为130.12mm,籽粒形成-乳熟期灌溉需水量为359.32mm,9月下旬以后,灌溉需水量下降;棉花生育期需水量空间分布比较均匀,平均值为869 mm,整个灌区灌溉需水量平均值为453.6mm,棉花苗床期灌溉需水量开始增加,花铃期达到最大值,吐絮期灌溉需水量减小;灌区作物需水量与气温呈正相关,与降水呈负相关,与风速和相对湿度相关性较小,与日照时数相关性较大。  相似文献   

15.
农田水管理研究中有关辐射项的测定   总被引:1,自引:0,他引:1  
农田水管理研究中有关辐射项的测定段爱旺,肖俊夫(河南新乡中国农科院农田灌溉研究所河南新乡453003)太阳辐射能是作物生长发育的能量基础,也是农田水循环过程的主要驱动力。无论是通过作物叶气孔的水分蒸腾,还是从土壤表面或水面的水分蒸发,其过程及数量都主...  相似文献   

16.
苹果树液流变化规律研究   总被引:11,自引:0,他引:11  
利用液流传感器(sapflowsensor)监测苹果树液流,并用自动气象站和土壤水分测定仪(TRIME-FM)对气象因素和土壤水分进行同步监测。分析了苹果树液流日变化和日际变化与太阳辐射强度的关系、苹果树液流Tr与参考作物蒸发蒸腾量ET0的相关性,以及Tr/ET0和100cm深的平均土壤相对含水率AW的关系。运用回归分析方法建立了液流通量与气象因子间的经验公式,并比较了预测值与实测值。其结果表明:液流变化曲线与太阳辐射的变化曲线较一致,太阳辐射是果树液流的首要影响因子;Tr和ET0变化曲线相似;相对含水率越大,Tr/ET0的值越大;反之越小;用经验公式预测的液流值与实测值相比较,二者最大相差10.13%,最小相差3.45%。  相似文献   

17.
为了在改变温室通风口开度的条件下模拟室内气温,根据热量平衡原理,考虑太阳辐射、长波辐射、对流、通风及作物蒸腾等5个主要模块,对温室系统的热量交换进行描述,构建了温室气温动态变化的数学模型,然后通过Simulink仿真平台搭建了以通风为输入以室温为输出的模型仿真框图,并利用典型天气条件下的实测数据对仿真结果进行检验。仿真结果证明了该模型的有效性:在晴天和阴雨天,标准误差分别为0.755 8℃和0.096 3℃,仿真有效性指数分别为92.29%和92.76%。  相似文献   

18.
以西北旱区苹果树为试验材料,利用植物生理环境监控系统对果树茎干直径变化及太阳辐射,大气温度,相对湿度,风速等环境因素进行了连续同步监测,对果树茎干直径昼夜变化、不同天气条件下的直径日变化及不同生长阶段茎干直径与环境因素的关系进行了研究.结果表明:苹果树茎干直径变化日过程呈现出明显的昼夜变化规律,茎干直径白天收缩,傍晚、夜间复原或膨胀;不同天气条件下,茎干直径收缩幅度有明显差异,晴天茎干直径日最大收缩量最大,阴雨天最小;果树生长过程中,茎干直径变化主要受太阳辐射与空气水汽压差的影响.  相似文献   

19.
为了测量作物蒸发蒸腾量实现精确灌溉,必须对影响作物生长的气象因子,如温度、湿度、光照度、风速和气压等参数进行采集。大量研究表明,温度对蒸腾量的影响最为显著,湿度与光照度次之,风速与气压的影响最小[1]。针对上述情况,基于AVR单片机Atmega128、温湿度传感器SHT11、环境光传感器BH1750和SD卡设计一款气象数据采集装置,能够实时地对环境的温度、湿度和光照度进行采集、显示和存储。经试验测试,该装置具有良好的稳定性。  相似文献   

20.
温室小气候测量试验设计及其夏季蒸腾研究   总被引:3,自引:0,他引:3  
温室内小气候环境参数的有效观测关系到温室小气候模拟模型的精度,而温室内作物的蒸腾既影响到潜热和显热交换,又是确定温室作物肥水灌溉的主要依据。本研究设计了一套用于温室小气候和作物蒸腾测量的试验装置,并在夏季南方现代化温室内进行了观测。结果分析表明,试验装置可以用于温室小气候的测量,且波恩比法适于对夏季高温、高湿条件下南方现代化温室中作物蒸腾的模拟,夏季温室内蒸腾速率随净辐射和空气饱和冠层水汽压差的增加而线性增大,蒸腾速率对冠层以上不同高度水汽压差的变化不敏感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号