首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Plant Production Science》2013,16(2):136-144
Summary

Unlike the parent line, the hybrid calli between C3 and C4 species of Amaranthaceae have poor division capability. Therefore, in this study the fine structures of hybrid callus derived from protoplasts of Celosia cristata L. cv. Pink Charm (C3 species) cell suspension and Amaranthus tricolor L. cv. Perfecta (C4 species) cotyledon callus were investigated by light and electron microscopy, and compared with the parental. All callus lines were composed of parenchymatous cells possessing a voluminous vacuole. Parental callus lines contained organelles with a relatively normal structure. The peculiar feature characterizing the C3/C4 hybrid callus was the presence of highly lobed nucleus with multinucleoli and numerous small vacuoles having autophagic activity scattered in the cytoplasm. The autophagic activity is apparently related to the existence of several inclusions such as cytoplasmic organelles in the central vacuole. It might also be related to the pronounced expansion of central vacuole and the reduced cytoplasm. The failure to sustain proliferation related to some atypical features of the organelles is discussed.  相似文献   

2.
Summary

This paper describes the ultrastructure of the electric field-induced fusion products of C3 and C4 species of Amaranthaceae at the early developmental stage. Protoplasts of C3 species were isolated from a Ceiosia cristata L. cell suspension and, those of C4 species were isolated from an Amaranthus tricolor L. cotyledon. Incompatibility occurred in the C3/C4 hybrid. The incompatibility reactions were detected in the newly formed hybrid cells accompanied with significant changes in the nucleolus (segregation of nucleolar components) and plastids (cup-like shape or amoeboid plastid enclosing cytoplasmic materials) of C3 species parent. The structural changes in the organelles of the C4 partner were less marked. After 5 days of culture, most organelles showed high cellular activity, and a normal dedifferentiation process of mesophyll chloroplasts was observed. At this stage nucleolar segregation was not detected and the C3 species plastids were difficult to distinguish from the proplastids formed from mesophyll chloroplasts. In addition, some mitochondria showed bursting-like structure. However, under the culture condition used these somatic incompatibility did not seem to impair further growth of fusion products since they were still proliferating well resulting in callus formation.  相似文献   

3.
Summary Recurrent backcrosses (BC) were used to introduce nuclear factors ofS. tuberosum L. ssp.tuberosum into the cytoplasm of Andean potatoesS. tuberosum ssp.andigena (Juz. and Buk.) Hawkes andS. phureja Juz. and Buk. Each generation BC was produced in reciprocal directions to test the effect of cytoplasmic substitution on yield. This report analyses tuber number, tuber weight, and tuber length of BC2 and BC3 substitution into ssp.andigena cytoplasm and BC2 and BC2 substitutions intoS. phureja cytoplasm. Direction of cross had no consistent significant effect on yield components of ssp.andigena substitution lines. InS. phureja reciprocal progenies direction of cross was responsible for significant differences of some reciprocal sets. When there were significant differences the higher yield usually occurred when ssp.tuberosum was the pistillate parent, but in some progenies when ssp.tuberosum was the pistillate parent the yield was significantly lower than in the reciprocals. It is suggested that differences between reciprocals resulted from chromosomally encoded gene action, resulting from maternal and/or paternal effects, rather than cytoplasmic factors. Authorized for publication as paper No. 7494 in the Journal Series of The Pennsylvania Agriculture Experiment Station.  相似文献   

4.
Hybrid sterility between Oryza glaberrima and O. sativa seriously hampers the introgression of favorable genes from each other. In order to further understand this issue, identification and isolation of hybrid sterility QTLs as single Mendelian factors are an effective strategy. A genetic map was constructed using a BC1F1 population derived from a cross between an O. sativa japonica cultivar and an O. glaberrima accession. Four main-effect QTLs for pollen sterility were detected in the BC1F1. Five BC8F1 advanced backcross populations were developed via successive backcrosses based on phenotype and molecular selections. The BC8F1 populations showed bimodal distribution for pollen fertility and could be classified into semi-sterile and fertile types, fitting single Mendilian factor inheritance ratios. Three QTLs detected in the BC1F1 corresponding to qSS-3, qSS-6a and qSS-7 were mapped on chromosomes 6, 3 and 7, respectively, as single Mendilian factors.  相似文献   

5.
《Plant Production Science》2013,16(3):307-315
Abstract

The effects of elevated carbon dioxide concentration ([CO2]) on silica deposition on husk epidermis of rice (Oryza sativa L. cv. Akitakomachi) during the flowering stage were investigated in this study. The study was motivated by the concept that the rice yield maybe affected by global warming as a result of elevated [CO2] environment since sterility of rice is related to the panicle silica content that influences transpiration, and elevated [CO2] could affect plant transpiration. Silica deposition analysis was focused on the flowering stage of the rice crop grown hydroponically under two [CO2] conditions: 350 μmol mol-1 (ambient) and 700 μmol mol-1 (elevated). Silica deposition on the husk epidermis from three parts of the panicle at four flowering stages were examined using a scanning electron microscope (SEM) combined with an energy dispersive X-ray microanalyzer (EDX). The results demonstrated that elevated [CO2] significantly suppressed silica deposition on the husk epidermis at the lower part of the panicle, and at the early flowering stage when 1/3 of the panicle emerged from the leaf sheath. In the transverse section analysis of the husk, silica deposition on the husk epidermis under elevated [CO2] was less than that under ambient [CO2] at the late flowering stage. The less silica deposition observed on the husks at the late flowering stage under elevated [CO2] might be related to the suppressed transpiration from the panicle by elevated [CO2] found in a previous study.  相似文献   

6.
《Plant Production Science》2013,16(2):169-176
Abstract

The effect of NaCl stress on the structure of leaf chloroplasts was investigated in several NAD-Malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PCK) type C4 plant species. Seedlings of the monocot species, except Zoysia japonica, grown in 300 mL pots were subjected to salt stress by adding 50 mL of 3% NaCl solution per day to the soil for 5 d after the fourth leaf blades were fully developed. Z. japonica and the dicot species, Amaranthus tricolor, were also treated with 3% NaCl in a similar manner from 5 wk after germination. Salt stress negatively affected the growth, chlorophyll content and chloroplast structure in all the species. At the ultrastructure level, swelling of thylakoids and disruption of envelopes were more or less observed in mesophyll cell (MC) chloroplasts after salt treatment. The structure of bundle sheath cell (BSC) chloroplasts, on the other hand, was hardly damaged under salt condition although stromal and starch areas were considerably decreased. Furthermore, salinity induced granal development in BSC chloroplasts in most species; the number of thylakoids per granum, granal indices and appressed thylakoid density in salt-treated plants were generally higher than those in control. Since the similar responses have also been reported in all NADP-ME type C4 species investigated in our previous study, the high sensitivity to salt stress in MC chloroplasts and the granal development in BSC chloroplasts by salinity were considered to be common phenomena in all three C4 subtypes.  相似文献   

7.
Summary Genes ofSolanum tuberosum L. ssp.tuberosum were introduced into cytoplasm ofS. tuberosum ssp.andigena (Juz. & Buk.) Hawkes andS. phureja Juz. & Buk. to reduce cytoplasmic sterilities. Alleles that influenced berry set and seed content produced differences between reciprocal progenies. Their expressions were interpreted in terms of genes of the maternal and/or paternal parents. When the ssp.andigena genotype was introduced from the maternal parent if favoured high berry set and low seed number. Maternal ssp.tuberosum favoured lower berry set and higher seed number. The source ofS. phureja cytoplasm, aS. phureja×S. chacoense F1, used as maternal parent favoured lower berry and seed set. During successive backcrosses progeny expressions approached those of the recurrent ssp.tuberosum pollen parents. A low level of pollen sterility occurred in BC2 plants, unrelated to direction of cross or cytoplasmic factors. By BC4, seed set and fertility were as good as ssp.tuberosum, and recurrent backcrossing could be terminated without loss of seed production or fertility. Pennsylvania Agricultural Experiment Station Journal Series No. 7493.  相似文献   

8.
《Plant Production Science》2013,16(2):156-167
Abstract

We tested the hypothesis that elevated CO2 concentration [CO2]-induced enhancement of biomass production of soybean is greater in a genotype that has a higher nitrogen (N) fixation capacity. Furthermore, we analyzed theinteractive effects of N fertilization, temperature and [CO2] on biomass production. Three genetically related genotypes: Enrei (normally-nodulating genotype), Kanto 100 (supernodulating genotype), and En1282 (non-nodulating genotype) were grown in pots, with or without N fertilizer for two years (2004, 2005). They were then subjected to two different [CO2] (ambient and elevated (ambient + 200 ?mol mol-1)) × two temperature regimes (low,high (low + 4~5ºC)). Top dry weight at maturity was the greatest in the elevated [CO2] × high temperature regime, irrespective of genotype and N fertilization. The [CO2] elevation generally enhanced N acquisition and dry matter production during the vegetative growth stage, and the enhancement was more pronounced in the nodulating genotypes (Enrei and Kanto 100) than in the non-nodulating genotype (En1282), indicating that N supply through N fixation contributes to elevated [CO2]-induced biomass production in soybean. However, the relative responsiveness ofbiomass production to elevated [CO2] was not necessarily higher in the supernodulating genotype than the normally-nodulating genotype. The N utilization efficiency to produce biomass was inferior in the supernodulating genotype than in the normally-nodulating and non-nodulating genotypes. These results did not fully verify the hypothesis that elevated [CO2]-induced enhancement of biomass production of soybean is greater in a genotype with a higher N fixation capacity.  相似文献   

9.
In C3 plants, photosynthetic efficiency is reduced by photorespiration. A part of CO2 fixed during photosynthesis in chloroplasts is lost from mitochondria during photorespiration by decarboxylation of glycine by glycine decarboxylase (GDC). Thus, the intracellular position of mitochondria in photosynthetic cells is critical to the rate of photorespiratory CO2 loss. We investigated the intracellular position of mitochondria in parenchyma sheath (PS) and mesophyll cells of 10 C3 grasses from 3 subfamilies (Ehrhartoideae, Panicoideae, and Pooideae) by immunostaining for GDC and light and electron microscopic observation. Immunostaining suggested that many mitochondria were located in the inner half of PS cells and on the vacuole side of chloroplasts in mesophyll cells. Organelle quantification showed that 62–75% of PS mitochondria were located in the inner half of cells, and 62–78% of PS chloroplasts were in the outer half. In mesophyll cells, 61–92% of mitochondria were positioned on the vacuole side of chloroplasts and stromules. In PS cells, such location would reduce the loss of photorespiratory CO2 by lengthening the path of CO2 diffusion and allow more efficient fixation of CO2 from intercellular spaces. In mesophyll cells, it would facilitate scavenging by chloroplasts of photorespiratory CO2 released from mitochondria. Our data suggest that the PS cells of C3 grasses have already acquired an initial structure leading to proto-Kranz and further C3–C4 intermediate anatomy. We also found that in the Pooideae, organelle positioning in PS cells on the phloem side resembles that in mesophyll cells.  相似文献   

10.
滨麦(Leymus mollis)是小麦的三级基因源,具有改良小麦所需的许多优良性状。为了将滨麦中的优异基因导入到普通小麦中,通过远缘杂交获得小麦-滨麦异附加系、异代换系、易位系,以选自普通小麦7182与滨麦衍生后代M42(2n=54)F_6代的株系M11005-1-2-7-10-1-1(M11005A)为供试材料,对其进行了形态学、细胞学、原位杂交、分子标记、抗病性等综合鉴定。细胞学观察结果显示,M11005A有44条染色体且配对良好,可以稳定遗传。原位杂交及分子标记结果表明,M11005A含有42条普通小麦染色体和1对来自滨麦Lm#3Ns的染色体,并且用Oligo-pTa535探针得到了Lm#3Ns的FISH核型;筛选出6个EST及8个PLUG特异分子标记可以用来鉴定Lm#3Ns染色体,其中只有1个EST和4个PLUG标记可以同时在M11005A中扩增出滨麦和华山新麦草的条带,说明滨麦的Lm#3Ns染色体与华山新麦草的3Ns基因组之间存在差异。M11005A的穗长、穗型、小穗数、千粒重与亲本7182无显著差异,但分蘖数较7182显著增加,株高显著降低。抗条锈病鉴定结果显示,苗期M11005A对条锈菌生理小种CYR29和CYR34表现高抗,对CYR32表现高感,成株期对CYR32和CYR33混合小种表现高抗,推测滨麦的Lm#3Ns染色体携带对CYR29和CYR34小种的抗性基因,又携带了成株期对CYR32和CYR33的抗性基因。因此,M11005A可以作为抗源应用于小麦的条锈病抗性改良中。  相似文献   

11.
《Plant Production Science》2013,16(5):567-577
Abstract

The changes in chloroplast ultrastructure and the contents of chlorophyll, Na and K in response to salinity stress were investigated in leaves of maize, an NADP-malic enzyme-type C4 plant species possessing dimorphic chloroplasts. The seedlings were treated with 0, 1, 2 or 3% NaCl for three or five days under a light or dark condition. In both light and dark conditions, the dry weight of salt-treated plants decreased as NaCl concentration increased. Chlorophyll and K contents of the second leaf blade decreased as NaCl concentration increased under the light condition but not under the dark condition. Na content of the second leaf blade was significantly higher at high NaCl concentrations under both light and dark conditions. However, Na content was much lower under the dark condition than light condition. Higher concentrations (2 and 3%) of NaCl significantly increased the size of plastoglobules, decreased the number and size of starch granules and altered the chloroplast ultrastructure. Under the light condition, mesophyll cell (MC) chloroplasts appeared more sensitive to the damaging effect of salinity than the bundle sheath cell (BSC) chloroplasts. MC chloroplasts became more globular in shape and showed swollen and disorganized thylakoids and reduced thickness of grana by salinity. BSC chloroplasts were less affected by salinity than MC chloroplasts. Although chloroplast size and number and size of starch granules were reduced, there was no structural distortion in the thylakoids of BSC chloroplasts. However, the thickness of grana was increased by salinity. Under the dark condition, the chloroplast structure was less affected by salinity. Though the envelope of BSC chloroplasts was occasionally damaged, the thylakoids in both MC and BSC chloroplasts were preserved under salinity stress. The present study suggests that the chloroplast damage caused by salinity is light-dependent and MC chloroplasts are more sensitive to salinity than BSC chloroplasts.  相似文献   

12.
ABSTRACT

The successful introduction of the C4 pathway into C3 crops would increase photosynthetic rates and crop productivity. However, our poor understanding of how Kranz leaf anatomy develops poses a great obstacle. In particular, the origin, development, and genetics of bundle sheath (BS) cells in C4 plants are key points to elucidate. Here we report that Elymus tsukushiensis, a common C3 grass of the subfamily Pooideae, contains chloroplasts in the mestome sheath (MS) cells of the leaf, unlike most MS cells of C3 grasses. The chloroplasts are smaller than those of mesophyll cells. Immunogold localization showed that the chloroplasts and mitochondria of MS cells, respectively, accumulate ribulose 1,5-bisphosphate carboxylase/oxygenase and a photorespiratory enzyme, glycine decarboxylase, as in mesophyll cells. Thus, we suggest that the MS cells have weak photosynthetic and photorespiratory functions. This finding provides an insight into the development and evolution of C4-type BS cells in leaves of C3 grasses.  相似文献   

13.
《Plant Production Science》2013,16(4):338-346
Abstract

We analyzed the effects of a partial solar eclipse (22 July 2009) on microclimate including vertical gradients of CO2 concentrations ([CO2]), so called [CO2] profile, in a mature sorghum canopy. Together with CO2 measurement, major photosynthetic drivers of microclimate, light intensity, temperature and atmospheric H2O concentration ([H2O]) were also measured simultaneously at the same place and height. [CO2] at 6.0, 3.2, 2.1, 1.4, 0.7, 0 m above the ground (canopy height was 3.2 m) increased by 5.8, 4.8, 9.0, 7.8, 6.4, 7.6μmol mol-1, respectively, from 1 hour before the eclipse maximum to the eclipse maximum, during which theincident solar radiation above the canopy dropped by 1473 μmol photons m-2 s-1. However, it declined by 3.4, 10.6, 10.8, 6.0, 5.4, and 5.8μmol mol-1, respectively, from the eclipse to 1 hour later,during which the incident radiation increased by 1350μmol photons m-2 s-1. The [CO2] profile during the eclipse was uniform except for higher [CO2] near the ground. Comparative analysis of theeffect of light intensity on the microclimate during the eclipse-induced light decreasing phase (ELDP) and eclipse-induced light increasing phase (ELIP) revealed that [CO2], [H2O], temperature and relative humidity (RH) are significantly correlated with the light intensity above the canopy in a nearly linear fashion. Furthermore it indicated that detected less light-reacted canopy photosynthesis at a higher layer within the canopy during ELIP might be due to slower response of stomatal opening (than closing) to the light intensity above the canopy.  相似文献   

14.
为了给有效利用华山新麦草基因提供新的种质材料,利用细胞遗传学、分子标记等技术,结合田间农艺性状考察,对从小麦-华山新麦草七倍体材料H8911-99与硬粒小麦D4286杂交F4代分离群体中选育的杂交后代12DH25进行了鉴定。华山新麦草基因组特异SCAR标记鉴定表明,12DH25含有华山新麦草遗传物质;有丝分裂和花粉母细胞减数分裂中期I染色体数为2n=44=22Ⅱ,基因组原位杂交(GISH)出现两条杂交信号,且能配对,表明两条外源染色体是华山新麦草的一对同源染色体。选取定位于小麦7个部分同源群上的28对STS标记对12DH25及其亲本基因组DNA进行扩增,定位于小麦第7同源群上的STS标记BE591127和BG274576能在12DH25中扩增出华山新麦草特征条带,将12DH25附加的华山新麦草染色体归属于小麦第7部分同源群。由此确定矮秆材料12DH25是一个稳定的小麦-华山新麦草7Ns二体异附加系。  相似文献   

15.
ABSTRACT

Overexpression of Rubisco small subunit (RbcS) of C4 plant, sorghum (sorghum bicolor) was shown to enhance the catalytic turnover rate (k cat) of Rubisco in rice (Oryza sativa). In this study, the effects of other Rubisco small subunits of C4 plants, Napier grass (Pennisetum purpureum) and guinea grass (Megathyrsus maximus) on kinetic properties of Rubisco in rice were studied. The expression levels of Napier grass RbcS (NgRbcS) and guinea grass RbcS (GgRbcS) proteins accounted for 41% and 45% of total RbcS, respectively in homozygous overexpression lines. The k cat and K m for CO2 (Kc) of Rubisco were increased in all transgenic lines. Interestingly, the k cat was markedly higher in NgRbcS homozygous line, whereas K c was notably higher in GgRbcS homozygous line. Although its effects depend on species, these results suggest that the introduction of C4 RbcS are effective approaches to alter the catalytic properties of Rubisco in rice.  相似文献   

16.
耐盐碱转基因玉米的获得及其抗性分析   总被引:1,自引:0,他引:1  
依据Gen Bank数据库中发表的拟南芥DREB基因序列进行优化,人工合成DREB基因序列,构建植物表达载体,通过农杆菌介导法将DREB基因转入玉米自交系Hi II中,获得转DREB基因玉米材料,经过分子检测获得4个阳性转化事件。在不同浓度水平的Na Cl溶液(40、80、120 mmol/L)和Na_2CO_3溶液(10、20、30 mmol/L)胁迫下,研究其耐盐碱性。结果表明,DREB基因已经整合到玉米基因组中,转DREB基因玉米的耐盐碱性获得显著提高,80 mmol/L的Na Cl溶液和20 mmol/L Na_2CO_3溶液可以作为转DREB基因玉米的耐盐碱分析条件。  相似文献   

17.
Organic-inorganic hybrid composites consisting of poly(vinylidene fluoride) (PVDF) and SiO2 were prepared through a sol-gel process and the crystallization behavior of PVDF in the presence of SiO2 networks was investigated by spectroscopic, thermal and x-ray diffraction measurements. The hybrid composites obtained were relatively transparent, and brittleness increased with increasing content of tetraethoxysilane (TEOS). It was regarded from FT-IR and DSC thermal analyses that at least a certain interaction existed between PVDF molecules and the SiO2 networks. X-ray diffraction measurements showed that all of the hybrid samples had a crystal structure of PVDFγ-phase. Fresh gel prepared from the sol-gel reaction showed a very weak x-ray diffraction peak near 2θ=21° due to PVDF crystallization, and intensity increased gradually with time after gelation. The crystallization behavior of PVDF was strongly affected by the amount of SiO2 networks. That is, SiO2 content directly influenced preference and disturbance for crystallization. In polymer-rich hybrids, SiO2 networks had a favorable effect on the extent of PVDF crystallization. In particular, the maximum percent crystallinity of PVDF occurred at the content of 3.7 wt% SiO2 and was higher than that of pure PVDF. However, beyond about 10 wt% SiO2, the crystallization of PVDF was strongly confined.  相似文献   

18.
以玉米进行C4光合的全展第5位叶片为材料,分析从叶基部到顶部的解剖结构和叶绿素含量变化,研究玉米C4光合叶片"花环"结构随叶片发育的变化规律。结果表明,玉米第5位叶从基部到顶部都具有完整的典型"花环"结构,维管束鞘细胞(BSC)和叶肉细胞(MC)的体积在叶片发育过程中具有渐变性,从叶基部到顶部BSC和MC均呈先增大后变小的趋势,而且叶绿素a、b和a+b含量呈相同的变化趋势,说明BSC和MC细胞体积与叶绿素含量的变化具有相关性。叶绿素a/b总体呈上升趋势,说明玉米第5叶基部到顶部的光合途径存在C3向C4转变的过程。玉米第5叶不同部位C4光合途径发育的渐变性比前3叶更为明显。  相似文献   

19.
Abstract

To Elucidate The Genetic Mechanisms Underlying C3―C4 intermediate Photosynthesis, We investigated The Structural and Photosynthetic Characteristics of Leaves of Reciprocal Hybrids Between The C3―C4 intermediate Species Moricandia Arvensis (L.) Dc. (Mama) and The C3 Species Brassica Oleracea L. (Cabbage; Cc), Which Differ in Genome Constitution. Moricandia Arvensis Bundle Sheath (Bs) Cells included Many Centripetally Located Chloroplasts and Mitochondria, Whereas Those of Cabbage Had Few Organelles. Hybrid Leaves Were Structurally intermediate Between Those of The Parents and Showed Stronger intermediate C3―C4 Features As The Proportion of The Ma Genome increased. The P-Protein of Glycine Decarboxylase (Gdc) Was Confined Mainly To Bs Mitochondria in M. Arvensis, But Accumulated More in The Mesophyll (M) of Cabbage. in The Hybrids, The Accumulation of Gdc in Bs Cells increased With An increasing Ma:C Ratio. Hybrids Exhibited Gradients in Structural and Biochemical Features, Even in Reciprocal Crosses. The Co2 Compensation Point of Reciprocal Hybrids With High Ma:C Ratios Was Lower Than That of Cabbage But Higher Than That of M. Arvensis. Thus, The Structural and Biochemical Features in Hybrid Leaves Reduced Photorespiration. Moricandia Arvensis Had A Higher Photosynthetic Rate Than Cabbage, But The Photosynthetic Rates of Hybrids Were intermediate Between Those of The Parents Or Comparable To That of M. Arvensis. Our Results Demonstrate That The C3―C4 intermediate Characteristics Are inherited Based On The Ratio of The Parent Genomes, and That There Is No Evidence of Cytoplasmic inheritance in These Characteristics.  相似文献   

20.
Raphanus sativus, a common cruciferous vegetable has been attributed to possess a number of pharmacological and therapeutic properties. It has been used in indigenous system of medicine for the treatment of various human ailments in India. This present study evaluated the chemopreventive efficacy of different parts of R. sativus such as root, stem and leaves, extracted with solvents of varying polarity and investigated the molecular mechanism leading to growth arrest and apoptotic cell death in human cancer cell lines. Of the different parts, significant growth inhibitory effect was observed with hexane extract of R. sativus root. Analysis of hexane extract by GC-MS revealed the presence of several isothiocyanates (ITCs) such as 4-(methylthio)-3-butenyl isothiocyanate (MTBITC), 4-(methylthio)-3-butyl isothiocyanate (erucin), 4-methylpentyl isothiocyanate, 4-pentenyl isothiocyanate and sulforaphene. R. sativus root extract induced cell death both in p53 proficient and p53 deficient cell lines through induction of apoptotic signaling pathway regardless of the p53 status of cells. The molecular mechanisms underlying R. sativus-induced apoptosis may involve interactions among Bcl2 family genes, as evidenced by up-regulation of pro-apoptotic genes and down-regulation of anti-apoptotic genes along with activation of Caspase-3. Our findings present the first evidence that hexane extract of R. sativus root exerts potential chemopreventive efficacy and induces apoptosis in cancer cell lines through modulation of genes involved in apoptotic signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号