首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
通过对水稻抗稻瘟病基因Pi2/9位点上已克隆的功能基因及非功能位点序列的相互对比,鉴定到Pi2特异的核苷酸差异,开发了基于PCR技术的Pi2基因的插入/缺失(insert-deletion,InDel)标记,能有效地将Pi2与其它抗性等位基因及感病等位基因区分开。利用Pi2基因的分离群体进行标记选择与接种鉴定,结果表明Pi2-InDel标记能精确地选择Pi2基因。用Pi2-InDel标记对20份水稻品种和育种亲本进行分子检测,该标记能准确地将抗性基因分离开来。这为筛选水稻稻瘟病抗性种质资源,以及抗性标记辅助抗病育种提供了便利。  相似文献   

2.
为了使稻瘟病抗性基因Pi25在水稻分子育种中得到高效和快速利用,本研究通过将Pi25不同等位基因测序及序列比对鉴定到一个Pi25基因内特异SNP位点。使用PCR-CTPP(PCR with confrontingtwo-pair primers)的方法加以改进开发了一套鉴定该SNP的功能性分子标记,利用该标记及待检测水稻品种基因组DNA进行PCR扩增,通过不同PCR产物条带大小将Pi25与其它等位基因区分开,可快速判断待测水稻Pi25的基因型。本方法快速简单、成本低廉,可广泛应用于水稻种质资源Pi25基因型鉴定和分子标记辅助选择育种。  相似文献   

3.
沾叶独枝来源于广东陆丰籼型地方稻种,它对华南稻区稻瘟病菌具有广谱抗性。为了挖掘和鉴定沾叶独枝含有的稻瘟病抗性基因,利用对五丰B(WB)致病、对沾叶独枝非致病的稻瘟病菌代表菌株GD08-T19接种以沾叶独枝为抗性供体、WB为感病亲本获得的F2群体。菌株GD08-T19在F2后代群体的抗感比率为15R:1S,其抗性由两个显性基因控制。利用已开发的Pi1,Pi2,Pi9,Pii,Pish,Pita等抗稻瘟病基因功能标记分别检测了沾叶独枝,研究表明沾叶独枝含有Pita基因。为了鉴定沾叶独枝另一抗性基因,选用300个平均分布于水稻12条染色体上的SSR标记对由GD08-T19接种的F2代群体构建的抗病池和感病池进行筛选和连锁分析。发现位于第6染色体上的2个SSR标记RM19769和RM19959与抗性基因连锁。进一步的定位区域扩充标记连锁分析表明,有6个标记RM19792、RM19804、GDAP41、RM19818、ESR6、RM19844与目的抗性基因连锁。目的基因被初步定位于Pi2/Pi9/Pi50区域。目标区域的Pi50等位基因测序表明沾叶独枝的另一目的抗稻瘟病基因为Pi50本身。  相似文献   

4.
稻瘟病是我国水稻主产区的重要病害之一, 其主效抗性基因Pi-ta和Pi-b在我国很多稻区表现广谱持久的稻瘟病抗性, 被广泛应用于我国的水稻育种和生产。本研究选用稻瘟病抗性基因Pi-ta和Pi-b及其等位基因的功能标记, 在对22份分别已知抗病基因Pi-ta和Pi-b以及感病基因pi-ta与pi-b组成的水稻品种检测验证基础上, 建立了2套稻瘟病基因多重PCR体系: 体系I同时检测抗病基因Pi-ta与Pi-b, 体系II 同时检测感病基因pi-ta与pi-b, 并利用2套体系对336份高世代育种材料进行检测, 与单标记检测结果比较, 表现稳定可靠, 重复性好。本研究构建的抗稻瘟病基因分子标记多重PCR体系可用于水稻种质资源的快速评价和抗稻瘟病分子标记辅助育种。  相似文献   

5.
水稻抗稻瘟病基因Pi35功能性分子标记的开发及其应用   总被引:1,自引:0,他引:1  
稻瘟病是水稻生产上的严重病害,利用抗病基因培育抗病品种是控制稻瘟病最经济而有效的措施。在日本,稻瘟病部分抗性基因Pi35作为广谱持久抗性基因已广泛应用于水稻育种和稻瘟病防治实践。但是,Pi35基因在我国的资源和品种中的分布情况不清,制约了这一重要基因在我国育种实践中的应用,急需开发实用的分子标记,并系统研究该基因在我国的品种及其亲本中的分布情况,为稻瘟病抗性育种服务。本研究通过比对抗、感品种中Pi35等位基因序列,发现一个能检测抗、感病性差异的特异SNP(3780 T),并据此开发了Pi35基因的功能性分子标记Pi35-d CAPS。利用该标记检测了抗源藤系138的衍生品种10份、微核心种质204份和主栽品种67份,结合测序鉴定,确认5份藤系138衍生品种(垦鉴稻3号、垦鉴稻6号、垦稻8号、绥粳3号和龙粳34)及2份微核心种质(粳稻品种抚宁紫皮粳子和籼稻品种细麻线)携带Pi35基因。本研究结果为通过分子育种手段高效利用Pi35基因改良我国水稻(特别是籼稻)品种的稻瘟病抗性提供了手段。  相似文献   

6.
为不断发掘和鉴定新的抗性基因,从而克隆和利用广谱持久抗性基因,选育水稻广谱抗稻瘟病新品种,解决稻瘟病危害。根据已克隆的水稻稻瘟病广谱抗病隐性等位基因pi21的序列设计分子标记Pi21-1,对育种上高频率使用的广亲和品种02428进行PCR扩增,测序比较分析发现了新的等位基因类型,同时对广亲和品种02428进行田间稻瘟病接种鉴定,苗期鉴定结果为免疫,从而鉴定了一个广谱抗稻瘟病的新等位基因pi21t,为水稻广谱抗稻瘟病育种提供了新的有利资源。通过分子标记辅助选择,能够快速明确目标品种中所携带目标基因的等位基因型,从而加快水稻广谱抗稻瘟病育种的进程,提高抗病效率。  相似文献   

7.
利用MAS技术改良水稻两用核不育系C815S的稻瘟病抗性   总被引:1,自引:0,他引:1  
为了改良水稻两用核不育系C815S的稻瘟病抗性,本研究以75-1-127(Pi9)、谷梅2号(Pi25)、谷梅4号(Pigm)、天津野生稻(Pi2-1和Pi51(t))、湘资3150(Pi47和Pi48)和魔王谷(Pi49)共6个广谱抗稻瘟病水稻品种为供体亲本,通过分子标记辅助选择育种技术,将稻瘟病抗性基因回交导入C815S。结果表明:改良的6个BC3F1群体除每穗粒数较轮回亲本极显著增加外,其他性状均与轮回亲本保持一致。利用稻瘟病菌株110-2和CHL506对BC3F2改良株系接种鉴定,发现导入了抗病基因的单株抗性增强,表明抗病基因已成功导入到受体亲本中并稳定表达,证实本研究中分子标记辅助选择抗稻瘟病基因是有效的。改良的系列两用核不育系,一方面可用于配制稻瘟病抗性增强的两系法杂交稻新组合,另一方面为进一步培育聚合多个抗稻瘟病基因的不育系提供了材料基础。  相似文献   

8.
《分子植物育种》2021,19(8):2638-2643
稻瘟病是水稻最严重的病害之一,利用抗病基因选育抗病品种可以安全有效地防治稻瘟病。分子标记辅助选择(marker-assisted selection, MAS)技术可实现快速精准地定向培育含抗稻瘟病基因的抗性品种,但针对不同遗传背景育种材料开发设计特异性的分子标记是MAS育种的重要基础。广谱抗稻瘟病基因Pi2已被证明高抗多个国家和地区的稻瘟菌生理小种。本研究开发设计了1个新的广谱抗稻瘟病基因Pi2的共显性特异分子标记Pi2CM1,可有效区分Pi2与其等位基因Pi9、Pigm,对22份核心育种材料表现出100%的多态性,为利用MAS技术定向培育含Pi2抗病新品种提供了重要的依据。  相似文献   

9.
SKC1基因是已经成功克隆的水稻耐盐主效基因,位于水稻1号染色体。为在水稻育种中快速与高效利用SKC1耐盐基因,本研究利用经过TILLING技术检测得到的SKC1基因的SNP突变体为材料,分析突变位点的限制性酶切位点,筛选到特异性的内切酶Msc I,通过酶切PCR产物、琼脂糖电泳、酶切片段分析,开发建立了SKC1突变位点的CAPS标记,命名为CAPS/Msc I。并利用该标记对40份突变群体进行了纯合、杂合和野生型酶切分型,筛选出纯合突变体5份,并对选择结果进行了测序验证。结果表明该CAPS标记准确可靠,可用于耐盐分子标记辅助选择育种。  相似文献   

10.
河南主要水稻种质资源中抗稻瘟病基因的分子检测   总被引:3,自引:0,他引:3  
明确6个主效抗稻瘟病基因Piz-t、Pikm、Pit、Pi25、Pid2及Pid3在河南省主要水稻种质资源中的分布情况,为通过分子标记辅助选择培育适应河南省抗稻瘟病新品种提供依据。本研究采用基于抗稻瘟病基因与其感病等位基因间的序列差异设计的特异性分子标记,对140份河南稻种资源进行了抗稻瘟病基因的分子检测,显示这些材料中的抗稻瘟病基因总体较少,大部分材料均携带1~2个抗瘟基因。检测的6个抗瘟基因中,Piz-t基因的分布最为广泛,其次为Pikm和Pid3,Pid2分布较少,Pit和Pi25分布极少。河南本地材料(87份)中的抗瘟基因数量较外地材料(53份)少,前者携带3个以上抗瘟基因的材料所占比例为10.3%,而后者携带3个以上抗瘟基因的材料所占比例则为32.1%。除Piz-t和Pikm外,其余4个抗稻瘟病基因在不同的检测群体中的基因频率差异较大。该研究可为河南培育广谱持久抗稻瘟病水稻新品种提供理论指导。  相似文献   

11.
水稻抗稻瘟病基因Pi-ta的分子标记辅助选择   总被引:30,自引:3,他引:27  
王忠华  贾育林  吴殿星  夏英武 《作物学报》2004,30(12):1259-1265
利用已建立的水稻抗稻瘟病基因Pi-ta显性分子标记对30个品系和157个来自不同国家的一些水稻品种进行分子鉴定,并采用稻瘟病菌菌株ZN57(IC-17)和ZN61(IB-49)人工接种试验进行致病性测试。结果表明,大部分品系和少数水稻品种含抗病基因Pi-ta,且对稻瘟病菌菌株ZN57和ZN61表现抗病反应。除此之外,利用两对显性分子标记YL1  相似文献   

12.
An F8 recombinant inbred population was constructed using a commercial indica rice variety Zhong 156 as the female parent and a semidwarf indica variety Gumei 2 with durable resistance to rice blast as the male parent. Zhong 156 is resistant to the fungus race ZC15 at the seedling stage but susceptible to the same race at the flowering stage. Gumei 2 is resistant to ZC15 at both stages. The blast resistance of 148 recombinant inbred lines was evaluated using the blast race ZC15. Genetic analysis indicated that the resistance to leaf blast was controlled by three genes and the presence of resistant alleles at any loci would result in resistance. One of the three genes did not have effects at the flowering stage. Two genes, tentatively assigned as Pi24(t) and Pi25(t), were mapped onto chromosome 12 and 6,respectively, based on RGA (resistance gene analog), RFLP and RAPD markers. Pi24(t) conferred resistance to leaf blast only, and its resistance allele was from Zhong 156. Pi25(t) conferred resistance to both leaf and neck blast, and its resistance allele was from Gumei 2. In a natural infection test in a blast hot-spot, Pi25(t) exhibited high resistance to neck blast, while Pi24(t) showed little effect. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
不断挖掘和克隆抗稻瘟病新基因, 是解析水稻抗病分子遗传机制和培育抗稻瘟病新品种的重要基础。Pi47是笔者从广谱、持久抗稻瘟病湖南地方品种湘资3150中鉴定的稻瘟病抗性基因, 前期研究将其初步定位于第11染色体标记RM224和RM5926间。本研究利用3个Pi47单基因系与感病亲本CO39杂交F2群体1687个感病单株对Pi47精细定位, 利用6个STS标记对3个单基因系进行背景分析, 采用生物信息学方法进行了候选基因分析。结果表明, Pi47被精细定位于CAPS标记S32与K33间0.24 cM区域的171.2 kb物理区间内, 背景分析将Pi47进一步缩小至SC12和K33间67.8 kb的区间内; 该区间含有8个结构基因, 其中2个编码NBS-LRR抗病类似蛋白, 为Pi47的候选功能基因。稻瘟菌抗谱比较分析发现, Pi47单基因系与其定位区间内4个Pik位点的等位基因PikPikmPikhPikp的近等基因系抗谱不同。这些结果为进一步克隆Pi47和利用其进行分子标记辅助选择培育抗稻瘟病水稻新品种奠定了基础。  相似文献   

14.
A series of DNA markers for various agronomic traits may accelerate the success of marker-assisted selection in practical plant breeding programmes. Here, we developed DNA markers for the blast resistance gene Pi-cd. In this study, we examined the effects of the Pi-cd locus on not only blast resistance but also agronomic traits in agriculture. We developed three pyramiding lines (PLs) coupling Pi-cd with three blast resistance genes, pi21, Pi35 and Pi39. The effect of Pi-cd on blast resistance was dependent on the coupled resistance genes. Then, we evaluated the effects of Pi-cd on 13 agronomic traits. Amylose content and 1,000-grain weight showed significant differences between the PLs and current commercial varieties, which had no negative effects on agronomic trait values. Furthermore, we investigated the distribution of genotype for the Pi-cd locus among varieties of upland rice. The KT genotype specific to rice blast resistance may be predominant in the varieties. The results suggested that Pi-cd has the potential to be useful for improving blast resistance in rice breeding programmes.  相似文献   

15.
Rice blast, caused by the fungus Magnaporthe oryzae, is the most devastating fungal disease of rice. Mowanggu, a local japonica cultivar in Yunnan Province, China, confers broad-spectrum resistance to this pathogen. To identify the resistance gene(s) in Mowanggu, we obtained an F2 population and 280 F8 recombinant inbred lines (RILs) from a cross between Mowanggu and CO39, a highly susceptible indica cultivar. A linkage map with 145 simple sequence repeat (SSR) and single feature polymorphism markers over 12 chromosomes was constructed using the 280 RILs. The resistance evaluation of the F2 and F8 populations in both the growth chamber and in a natural rice blast nursery showed that a single dominant gene controls blast resistance in Mowanggu. Moreover, nine quantitative trait loci, which were responsible for different partial resistance components, were mapped on chromosomes 2, 3, 6, 8, 9, and 12, making contributions to the phenotypic variation ranging from 3.03 to 6.18 %. The dominant resistance gene, designated Pi49, was mapped on chromosome 11 with genetic distance of 1.01 and 1.89 cM from SSR markers K10 and K134, respectively. The physical distance between K10 and K134 is about 181 kb in the Nipponbare genome. The Pi49 gene accounted for the major phenotypic variation of disease severity in the growth chamber (where plants were inoculated with single blast isolates) and also accounted for most of the phenotypic variance of disease severity, lesion number, diseased leaf area, and lesion size in the blast nursery. Our study not only identified tightly linked markers for introgression of Pi49 into elite rice cultivars via marker-aided selection but also provides a starting point for map-based cloning of the new resistance gene.  相似文献   

16.
A total of 324 Japanese rice accessions, including landrace, improved, and weedy types were used to 1) investigate genetic variations in blast resistance to standard differential isolates, and 2) across the genome using polymorphism data on 64 SSR markers. From the polymorphism data, the accessions were classified into two clusters. Accessions from irrigated lowland areas were included mainly in cluster I, and upland and Indica types were mainly in cluster II. The accessions were classified into three resistance subgroups, A2, B1 and B2, based on the reaction patterns to blast isolates. The accessions in A2 were postulated to have at least two resistance genes Pish and Pik-s, whereas those in B1 had various combinations of the resistance genes Pish, Pia, Pii, Pi3, Pi5(t), and Pik alleles. The B2 accessions were resistant to almost all isolates, and many accessions of cluster II were included, and had Pish, Pia, Pii, Pi3, Pi5(t), certain Pik, Piz and Pita alleles, and unknown genes. The frequencies of accessions of B1 originating in Hokkaido, and those of B2 originating in the Kanto and Tohoku regions were remarkably higher than in the other regions.  相似文献   

17.
The amount of long chains (LC) of amylopectin in high-amylose rice is thought to be one of the important determinants of its quality when cooked. A wide range of differences in LC content have been reported in rice varieties, which can be clearly divided into four classes based on LC and apparent amylose content: namely, amylose and LC-free, low or medium-amylose and low-LC, high-amylose and medium-LC, high-amylose and high-LC. However, genetic factors controlling LC content have not been fully understood. Here, we performed quantitative trait loci (QTL) analysis of LC content using 157 recombinant inbred lines (RILs) derived from a cross of a low-LC cultivar, Hyogokitanishiki, and a high-LC line, Hokuriku 142. By analyzing randomly selected 15 RILs, it was shown that high LC content (≥11%) was associated with high setback viscosity (≥200 RVU), and that low LC (≤ 3%) was associated with low setback viscosity (≤ 130 RVU), as measured by a Rapid Visco Analyzer. With setback viscosity as an indicator for LC content, QTL analysis was conducted using 60 DNA markers including a CAPS marker that distinguished Wx a and Wx b alleles coding for granule-bound starch synthase I (GBSSI or Wx protein), the enzyme working for amylose biosynthesis. Only one QTL with a peak log of likelihood score at the wx locus was detected, and no line showing setback viscosity corresponding to the medium-LC class appeared. The fact that wx mutants of Hokuriku 142 lacked LC in their rice starch supports the view that the functional Wx allele is indispensable for LC synthesis in addition to amylose synthesis in rice endosperm. We suggest three possible reasons why no line with medium-LC content was observed. First, the locus (loci) responsible for generation of medium-LC may be located very close to the wx locus and not able to be dissected by the population and DNA markers we used. Second, there may be special QTLs for medium-LC cultivars that do not exist in low- or high-LC cultivars. Third, medium-LC cultivars may have an as-yet unidentified Wx allele with lower capability in LC synthesis compared to the Wx allele in high-LC cultivars.  相似文献   

18.
Hybrid rice technology offers a great promise to produce 15% to 20% more yield than pure line varieties. The success of hybrid rice hinges on developing superior parental lines. To improve the blast resistance of hybrid rice parental line RP5933-1-19-2R, crosses were made with donors of two major blast resistance genes namely, Pi54 (Tetep) and Pi9 (IR71033–121-15) and the resulting F1s were confirmed for their hybridity by using Pi54MAS and NMSMPi9-1 genic markers. The confirmed F1s were intercrossed to obtain ICF1s and selected positive plants by markers were backcrossed to the recurrent parent, as well as selfed for advancing further to BC1F3 and ICF4 generations. The segregating plants were phenotyped for blast resistance at Uniform Blast Nursery. The identified complete restorers namely, RP 6619-1, RP 6616-26, RP 6619-3 and RP 6619-11 with Pi9 and Pi54 genes would serve as donors for broad spectrum blast resistance. This could ultimately lead to the development of new rice hybrids with improved resistance to blast disease, which is crucial for sustainable rice production and food security.  相似文献   

19.
Z. Wang    Y. Jia    J. N. Rutger    Y. Xia 《Plant Breeding》2007,126(1):36-42
The Pi‐ta gene in rice confers resistance to strains of the blast pathogen Magnaporthe grisea (Herbert) Borr. (anamorph Pyricularia oryza Cav.) containing the corresponding avirulence gene AVR‐Pita in a gene‐for‐gene fashion. The Pi‐ta gene is a typical nucleotide‐binding site type resistance gene. Nucleotide sequences distinguishing the resistant Pi‐ta and susceptible pi‐ta alleles were previously identified and used for developing DNA markers for a resistant Pi‐ta haplotype and three susceptible pi‐ta haplotypes. In the present study, the existence of the Pi‐ta gene in 141 rice germplasm accessions was rapidly determined using these markers, and the results were confirmed by inoculating rice germplasm with an M. grisea strain containing AVR‐Pita. The Pi‐ta gene was found in accessions from several major rice producing countries, including China, Colombia, Japan, Vietnam, the Philippines, Iran and the United States. The usefulness of DNA markers for rapid determination of the genotype of rice germplasm was thus demonstrated. The Pi‐ta gene also was found in rice cultivar known to contain the Pi‐ta2 gene, although the allelic relationship of these genes remains to be determined. The presence of the Pi‐ta gene in landrace cultivars in several different geographical locations, the Philippines and Vietnam, other indica rice cultivars in China and Colombia suggest that the Pi‐ta gene may have spontaneously originated in indica rice cultivars. These results are useful for incorporating the Pi‐ta gene into advanced breeding lines by marker‐assisted selection for rice breeding programmes worldwide.  相似文献   

20.
水稻稻瘟病是由子囊菌(Magnaporthe oryzae)引起的水稻灾害性病害。培育抗病品种是防治稻瘟病最经济有效的措施之一。水稻Pi9抗稻瘟病基因来源于小粒野生稻并已被克隆和应用于转基因育种。为了提高无选择标记转基因植株的选择效率,将绿色荧光蛋白(GFP)用作可视遗传标记,对双菌株共转化系统进行改良:目的基因载体携带Pi9抗稻瘟病基因;标记基因载体用潮霉素磷酸转移酶(HPT)作为植物转化选择标记,用GFP作为负选择标记,筛除标记基因分离植株。两种载体的农杆菌转化株混合,分别与水稻品种‘浙恢414’、‘浙粳22’、‘浙11B’、‘日本晴’、‘空育131’和‘粤泰B’的愈伤组织共培养,然后从5%~38.3%的起始愈伤组织筛选获得了转化愈伤组织(HPT+GFP+)。对T0植株进行Pi9基因PCR检测,11.8%~77.8%的T0植株为共转化植株(HPT+GFP+Pi9+)。对共转化植株T1代进行绿色荧光检测,筛选阴性植株(GFP-),再通过PCR筛选Pi9+植株。根据13个T1群体的研究结果,61%的共转化植株在T1代分离出无选择标记转基因植株(HPT-GFP-Pi9+)。转Pi9的无选择标记植株和后代株系对水稻稻瘟病呈抗病反应。因此,本研究通过GFP标记提高了双菌株共转化系统的选择效率,转Pi9的无选择标记水稻株系为水稻抗稻瘟病育种提供了有用的遗传资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号