首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four spring wheat genotypes (Triticum aestivum L.) were grown without (N0 = 0 kg N ha?1) and under ample (N1 = 250 kg ha?1) nitrogen (N) fertilizer in field experiments in two seasons. The aim was to assess genotypic variation in N use efficiency (NUE) components and N-related indices during grain filling thus to identify superior wheat genotypes. Leaf chlorophyll (SPAD) readings at crucial growth stages were employed to help differentiate genotypes. Interrelations between yield and N-related indices with SPAD, where also assessed to explain possible pathways of improving NUE early in the growing season. Results showed that genotypic effects on NUE were mostly evident in 2000, a year with drier preanthesis and wetter postanthesis than the normal periods. ‘Toronit’ almost always had the highest biomass yield (BY) and grain yield (GY). Except in 1999 under N0, ‘L94491? showed the highest % grain N concentration (GNC). Genotypes affected SPAD at almost all stages and N fertilization delayed leaf senescence for all genotypes and growth seasons. Correlations between SPAD at different growth stages and GY, N biomass yield at maturity (NBYM) and GNC were significant (P≤ 0.001), positive and strong/very strong (>r = 0.7). N translocation efficiency (NTE) was inversely related to PANU (~r = ? 0.77, P≤ 0.001), suggesting that N after anthesis is being preferentially transported to the ears to meet the N demand of the growing grains. It is concluded that there is still a large potential for increased NUE by improved N recirculation, use of fast and inexpensive crop N monitoring tools and high yielding, N uptake efficient genotypes.

Abbreviations: NUE, Nitrogen use efficiency; SPAD, Minolta SPAD-502 chlorophyll meter, NHI, nitrogen harvest index; HI, Harvest index; NTE, N translocation efficiency from vegetative plant parts to grain; DMTE, dry matter translocation efficiency; CPAY, contribution of pre-anthesis assimilates to yield; PANU, Post-anthesis N uptake, d.a.s., days after sowing, N0, zero (0) kg ha?1 applied N fertilizer, N1, 250 kg ha?1 applied N fertilizer.  相似文献   

2.
A two-year field experiment (2001 and 2003) was carried out in a Mediterranean environment to study the effects of municipal solid waste (MSW) compost application compared with mineral nitrogen (N) fertilization on the agronomic performance and N utilization of a tomato crop, in rotation with durum wheat. The research was conducted in the south of Italy where five N treatments and two soil tillage depths (40-45 cm and 10-15 cm) were compared. The N treatments were: MSW compost at 140 kg ha?1 (Ncom); mineral N fertilizer at 140 kg ha?1 (Nmin); MSW compost combined with mineral N fertilizer (Nmix) (70 kg ha?1 as organic N plus 70 kg ha?1 as mineral N); mineral N fertilizer at 70 kg ha?1 combined with two applications of foliar fertilizer (Nfito) (3 kg ha?1 as hydrolyzed proteins), and an untreated control (Contr). During cropping cycles, growth parameters and plant N status (SPAD readings and petiole nitrate content) were determined; at harvest the marketable, overripe, green fruit, total yield, yield components, quality performance, total and fruit N uptake, and N efficiency were recorded. In addition, at the beginning and at the end of the two-year experiment, soil chemical characteristics and mineral N was measured, allowing for the calculation of the mineral N deficit in the soil. The results of this research indicate that the application of MSW compost to tomato plants can serve as a N source in Mediterranean conditions, especially when MSW compost is combined with mineral N fertilizer and deeper soil tillage is applied. In fact, deeper soil tillage increased total yield 7.0 t ha?1 compared to surface tillage, whereas soil amended with MSW compost increased total yield compared to the untreated control by approximately 6.4% when used alone and 11.1% when combined with mineral N fertilizer. Nitrogen utilization parameters and Harvest Index varied significantly across years and N treatments. Petiole nitrate content and SPAD readings did not vary between Nmin and Nmix treatments, but they were significantly different from the untreated control. This indicates that plant N status was an effective tool to monitor N supply. After the two-year experiment, the Nmix treatment was statistically not significant in total yield (86.1 and 88.2 t ha?1, respectively), marketable yield (66.9 and 67.7 t ha?1) and quality compared to the Nmin treatment. Furthermore, the Nmix treatment ensured the least N deficit in the soil, indicating that MSW applications were effectively used as alternative organic supplements. Finally, the results indicated a positive effect of MSW application on organic carbon content in the soil and did not show any significant increase of the heavy metals at the end of the two-year experiment.  相似文献   

3.
Nitrogen (N) is one of the most important impact factors on development and growth of wheat. In this study the effects of nitrogen use efficiency on quantity and quality of grains were studied by agronomic management of N fertilizers on spring wheat (Triticum aestivum L.) grown under field conditions for two years. The experiments were performed at 16 combinations of N application amount and time, including four levels of N at 0, 60, 120 and 180 kg N ha?1 that were used as pre-plant fertilizers, sub-treated with four levels of the same N amount used as top-dress fertilizers. As a result, with an increase in total N fertilizers, grain yield increased in a cubic equitation, but partial factor productivity (PFPN, kg grain yield per kg N applied) decreased exponentially. With total fertilizers, N content and accumulation in vegetative tissues and grains increased linearly, but N uptake efficiency (UtEN, kg nutrient taken up per kg N applied) decreased exponentially. When N was over-applied (>360 kg N ha?1 in this study), grain yield clearly declined, due to decrease in productivity from per unit N. The high N level (240~300 kg N ha?1), the reasonable distribution between pre-plant and top dress from the same amount N fertilizer not only increased grain yield but also enhanced N use efficiency.  相似文献   

4.
The effects of irrigation regimes (full irrigation and water-withholding at anthesis) and postanthesis nitrogen (N) supplies (LN, 0; MN 20; and HN, 40 kg N ha?1) on grain yield and its components in winter wheat were studied, with attention to biomass gain by assimilation and its loss by respiration. Fully irrigated wheat responded to N fertilization with increased grain number (GN) and decreased grain weight (GW), whereas drought-stressed wheat responded with greater GN without significant changes in GW. Apparent whole-plant respiration (RA) was not influenced by increased postanthesis N fertilizer. Thus, in drought-stressed wheat, the total biomass and stem reserves at maturity were increased by increasing N supply. These results suggest that high N supply at anthesis satisfied the grains’ increased demand for N by increasing postfloral assimilation, and the surplus assimilates not only compensated for the low-N-induced biomass loss by respiration but also may have increased the stem reserves.  相似文献   

5.
A field experiment was conducted on an Alfisol (kandic paleustalf) in Abeokuta, Southwestern Nigeria, for two seasons to assess the influence of inorganic and organic fertilizers on nitrogen (N), phosphorus (P), potassium (K), nutrient uptake and maize yield. The treatments consisted of three rates of organic fertilizer 0, 5 and 10 t ha?1 in the form of poultry manure and NPK fertilizer (20:10:10) applied at 0 and 120 kg ha?1. Maize (Zea mays) was used as the test crop. The results showed that the combined application of 10 t ha?1 poultry manure and 120 kg ha?1 NPK fertilizer enhanced the uptake of N, P and K better than other treatment combinations. Application of 10 t ha?1 poultry manure alone gave the highest grain yield, which was 67.02% higher than the control in the first season. Complementary application of 5 t ha?1 poultry manure with 120 kg ha?1 NPK 20–10-10 was recommended for grain yield.  相似文献   

6.
ABSTRACT

Field experiments were conducted in the major rice growing area of Chile to evaluate the effects of nitrogen (N) fertilization and site on grain yield and some yield components, dry matter production, N uptake, and N use efficiency in rice cultivar ‘Diamante’. Two sites (indicated as sites 1 and 2) and six N rates (0, 50, 100, 150, 200, and 300 kg N ha?1) were compared. Nitrogen fertilization increased yield, panicle density, spikelet sterility, dry matter production, and N uptake at maturity. 90% of maximum yield was obtained with 200 kg N ha?1 in site 1 (12,810 kg ha?1) and with 100 kg N ha?1 in site 2 (8,000 kg ha?1). These differences were explained by lower panicle density, and the resulting lower dry matter production and N uptake in site 2. Nitrogen use efficiency for biomass and grain production, and grain yield per unit of grain N decreased with N fertilization. While, agronomic N use efficiency and N harvest index were not affected. All N use efficiency indices were significantly higher in site 1, except grain yield per unit of grain N. The observed variation in N use efficiency indices between sites would reflect site-specific differences in temperature and solar radiation, which in turn, determined yield potentials of each site. On the basis of these results, cultivar ‘Diamante’ would correspond to a high-N use efficiency genotype for grain yield.  相似文献   

7.
A long-term field experiment was conducted for 8 years on a Vertisol in central India to assess quantitatively the direct and residual N effects of soybean inoculation with Bradyrhizobium and wheat inoculation with Azotobacter in a soybean–wheat rotation. After cultivation of soybean each year, its aerial residues were removed before growing wheat in the same plots using four N levels (120, 90, 60 and 30 kg ha?1) and Azotobacter inoculation. Inoculation of soybean increased grain yield by 10.1% (180 kg ha?1), but the increase in wheat yields with inoculation was only marginal (5.6%; 278 kg ha?1). There was always a positive balance of soil N after soybean harvest; an average of +28 kg N ha?1 yr?1 in control (nodulated by native rhizobia) plots compared with +41 kg N ha?1 yr?1 in Rhizobium-inoculated plots. Residual and direct effects of Rhizobium and Azotobacter inoculants caused a fertilizer N credit of 30 kg ha?1 in wheat. Application of fertilizers or microbial inoculation favoured the proliferation of rhizobia in crop rhizosphere due to better plant growth. Additional N uptake by inoculation was 14.9 kg N ha?1 by soybean and 20.9 kg N ha?1 by wheat crop, and a gain of +38.0 kg N ha?1 yr?1 to the 0–15 cm soil layer was measured after harvest of wheat. So, total N contribution to crops and soil due to the inoculants was 73.8 kg N ha?1 yr?1 after one soybean–wheat rotation. There was a total N benefit of 13.8 kg N ha?1 yr?1 to the soil due to regular long-term use of microbial inoculants in soybean–wheat rotation.  相似文献   

8.
Long term effects of lantana (Lantana camera L.) residue and fertilizer application were studied on nitrogen (N) fractions in a Typic Hapludalf under rice-wheat cropping at Palampur, India (32°6’N, 76°3’E). After 12 crop cycles, lantana and fertilizer application showed an additive effect on the buildup of different N fractions. Hydrolyzable-N constituted 86% of total organic-N and 84% of total-N. All fractions of N except unidentified-N, non-hydrolyzable-N, and total-N were strongly interdependent and had a positive influence on grain yield and N uptake in rice and wheat crops. Serine+threonine-N was the most important fraction contributing towards grain yield and N uptake in rice and wheat. Fertilizers at 66% of recommendation plus lantana at 10 t ha?1 maintained higher available-N than that under 100% fertilizers alone; the N content was same as 12 years before. Inclusion of lantana indicated net saving of 33% fertilizers plus higher yields and sustained soil health.  相似文献   

9.
Spring-sown crops are expected to have a higher risk of drought during summer in the next decades in Central Europe due to expected climate change. Therefore, a two-year experiment was conducted under Pannonian growing conditions in Eastern Austria to investigate the effect of autumn- and spring-sowing of facultative wheat. Autumn-sowing of facultative wheat enhanced crop development, soil coverage, crop stand height, crop growth rate, and nitrogen (N) utilization efficiency during the vegetation period compared to spring-sowing; duration of growth stages was prolonged and crops were earlier ripe. In contrast, spring-sowing resulted in higher relative growth rates, higher N concentrations of aboveground dry matter, higher relative N uptake rates, and more mineral N in the soil. At harvest, grain yield and yield components ears m?2 and thousand kernel weight (TKW) were higher in autumn-sown than in spring-sown wheat, resulting thereby in an increased seed yield. Spring-sown wheat had higher N concentrations in grain and in straw. Anyhow, N yield was slightly higher with autumn-sowing due to the higher grain and straw yields. Grain and straw yield, plant stand height, ears m?2, and TKW were impaired in the second experimental year by a severe drought for both sowing dates as well as N concentrations and N yields of grain and straw, partial factor N use efficiency and N utilization efficiency. But the yield components harvest index, grains m?2, and grains ear?1 were strongly impaired with spring-sowing under drought conditions. Thus, autumn-sowing of wheat resulted in higher yield stability across both years, based on these yield components highlighting possible benefits of autumn-sowing with expected summer drought under climate change.  相似文献   

10.
From 2002 to date, a long-term field experiment has been conducted at Lake Carl Blackwell, Oklahoma, with different rates and times of nitrogen (N) fertilizer application to determine their effect on grain yield, protein and N uptake of winter wheat. Trend analysis for N rates (0, 50, 100, 150 and 200 kg N ha?1) and orthogonal contrasts for different application times (pre-plant, top-dressed in February and March) were performed. With increasing fertilizer N, wheat grain yield and protein content increased from 2110 kg ha?1 to 6783 kg ha?1 and from 8.96 to 17.19%, respectively. For grain yield, protein, and N use efficiency, split applications of N fertilizer were much more efficient than applying all N pre-plant. Large differences in grain yields were noted for different years at the same N rate (range exceeded 5.0 Mg ha?1) and that illustrated the need for making within-year-specific N rate recommendations.  相似文献   

11.
To study the effects of organic and inorganic nitrogen (N) on yield and nodulation of chickpea (Cicer arietinum L.) cv. ILC 482, a spilt-plot experiment based on randomized complete block design with four replications was conducted in 2008 at the experimental farm of the Agriculture Faculty, University of Mohaghegh, Ardabili. Experimental factors were inorganic N fertilizer at four levels (0, 50, 75, and 100 kg ha?1) in the main plots that applied in the urea form, and two levels of inoculation with Rhizobium bacteria (with and without inoculation) as subplots. Nitrogen application and Rh. inoculation continued to have positive effects on yield and its attributes. The greatest plant height, number of primary and secondary branches, number of pods per plant, number of filled and unfilled pods per plant, number of grains per plant, grain yield, and biological yield were obtained from the greatest level of N fertilizer (100 kg urea ha?1) and Rh. inoculation. Application of 75 and 100 kg ha?1 urea showed no significant difference in these traits. Furthermore, the greatest rate of N usage (100 kg urea ha?1) adversely inhibited nodulation of chickpea. Number and dry weight of nodules per plant decreased significantly with increasing N application rate. The lowest values of these traits recorded in application of 100 kg ha?1 urea. Results indicated that application of suitable amounts of N fertilizer (i.e., between 50 and 75 kg urea ha?1) as starter can be beneficial to improve nodulation, growth, and final yield of inoculated chickpea plants.  相似文献   

12.
ABSTRACT

The study was aimed to determine the appropriate nitrogen (N) rate to combine with liming for enhanced maize yield and nitrogen use efficiency (NUE). Two maize varieties [Ikom White (IKW) and Obatanpa-98 (Oba-98)], two lime rates (0 kg ha?1 and 500 kg ha?1) and three N rates (0, 90 and 180 kg ha?1) were used. The treatments were laid as a split-split plot in a randomized complete block design with three replications. The growth attributes, photosynthetically active radiation (PAR), harvest index, dry matter, and grain yield increased (P ≤ 0.05) with increases in N rates, especially in plots amended with lime. Oba-98 was better yielding (2.12 versus (vs) 1.88 t ha?1) and absorbed more (P ≤ 0.05) radiation (442.06 vs 409.54 μmol m?2s?1) than IKW. The efficiency indices and partial factor productivity were best optimized at the 90 kg ha?1 N rate with Oba-98 having higher values than IKW. Therefore, liming (500 kg ha?1) plus N at 180 kg ha?1produced the best yield of the hybrid maize, Oba-98.  相似文献   

13.
A field experiment was carried out to study the effect of different rates of potassium (K) fertilizer [0, 50, 100, and 150 potassium oxide (K2O) ha–1] in the presence of increased supply of nitrogen (N) (120, 180, and 240 kg N ha–1) on cotton (Gossypium hirsutum L.) yield and the N and K use efficiencies using the 15N isotopic dilution technique. Potassium fertilizer increased cotton yield, which was significant and more pronounced with the application of N in the high level (N3). The greatest cotton yield (6442 kg ha–1) was obtained in N2K3 treatment with an increase of 14% over the control. In addition, K fertilizer significantly increased N uptake efficiency in the N2 and N3 treatments. The greatest N uptake efficiency (98%) was in N2K3 treatment. The greatest K uptake efficiency (42%) was occurred in N3K1 treatment. In conclusion, the use of K fertilizer could be useful when growing cotton in soils of moderate to high N content to improve N uptake efficiency and consequently increase cotton yield.  相似文献   

14.
Nitrogen (N) fertilization management directly affects yield and grain protein content of soft red winter wheat, so there is a need to estimate the optimum N fertilizer dose needed to obtain the greatest yield and the desired protein content under a humid Mediterranean climate. The objective of this work was to select the best response models of wheat yield and protein content to applied N fertilizer. To fulfil this objective, 13 experiments were conducted in the years 2001, 2002, 2003, and 2004 in northern Spain where 0, 100, 140, 180, and 220 kg N ha–1 were applied. The quadratic plateau model best described yield response to N fertilizer, with 182 kg N ha–1 producing the maximum yield. The quadratic model was chosen for modeling protein response to N fertilization, and 176 kg N ha–1 was the rate required for achieving protein contents greater than 125 g kg–1.  相似文献   

15.
Excessive nitrogen (N) fertilizer with improper split-application in small-scale farming is widespread for reducing N use efficiency and polluting the environment. The objective of this study was to develop a strategy for providing winter wheat with twice-topdressing N by quickly measuring the soil and plant N status. During the period 2009–2011, a field experiment was conducted for winter wheat cultivar Zhongmai-175 in the North China Plain. The mineral N (Nmin) pool at a soil depth of 0–90 cm and topdressing N twice, as total N supply, was gradually increased from 0 to 420 kg N ha–1 to mimic the farmers´ practices. Measurements with the Soil Plant Analysis Development (SPAD) meter were taken on the uppermost fully expanded leaf, and the SPAD index was expressed relative to SPAD readings of sufficiently fertilized plants. Grain yield exhibited linear-plus-plateau responses to total N supply with a significant difference between years, the r2 ranged from 0.73 to 0.94. With a basal N application of 30 kg ha–1, the soil Nmin at 0–90 cm supplemented by twice-topdressing N (1:1 ratio) at Zadoks growth stage (ZGS) 22–23 in early spring and ZGS 47–52 was required at 150–165 kg N ha–1 to achieve a maximum grain yield of 3.9–5.3 t ha–1. The SPAD index exhibited a strong exponential response to N supply irrespective of plant growth stage and year (r2 = 0.95–0.97); the value of 0.94 was critical in denoting N deficiency from sufficiency status. The N topdressing at ZGS 47–52 could be precisely modified/estimated by the equation y = 161.7–218x5.16, where x is the SPAD index. Since SPAD readings varied significantly from year to year, our study suggests that it might be difficult to precisely manage field N for winter wheat.  相似文献   

16.
Abstract

Pearl millet is a potential dryland crop for Nebraska. Experiments were conducted in eastern Nebraska in 2000, 2001, and 2002, and in western Nebraska in 2000 and 2001. The objectives were to determine optimum nitrogen (N) rate, N uptake, and N use efficiency (NUE) for pearl millet. The hybrids “68×086R” and “293A×086R” and N rates of 0, 45, 90, and 135 kg N ha?1 were used. Hybrids had similar yield, N uptake and NUE responses. In western Nebraska in 2000, pearl millet yield response to N rate was linear, but the yield increase was only 354 kg ha?1 to application of 135 kg N ha?1. In eastern Nebraska, pearl millet response to N rate was quadratic with maximum grain yields of 4040 in 2001 and 4890 kg ha?1 in 2002 attained with 90 kg N ha?1. The optimum N rate for pearl millet was 90 kg N ha?1 for eastern Nebraska. For western Nebraska, drought may often limit pearl millet's response to N fertilizer.  相似文献   

17.
Herbage growth and nitrogen (N) use efficiency in grazed or mown grasslands are generally low, associated mostly with poor response to fertilizer N. The aim of the present investigation was to examine the short-term response of grass to fertilizer N with respect to herbage yield and nitrogen use efficiency (NUE) in order to provide a better basis for improving the efficient use of fertilizer N in grassland ecosystems. Both NO3 ? and NH4 + sources of N were applied to an established grass sward with three moisture levels, i.e., natural conditions (63% water-filled pore space, WFPS), near field capacity level (71% WFPS), and slightly wetter than field capacity (84% WFPS). Herbage yield, i.e., dry matter (DM), N uptake, N recovery efficiency, yield efficiency, and physiological efficiency were determined over a 7–28 d period. Addition of N fertilizers significantly increased the herbage yield and N uptake of grass sward over that of the control. In the plots where NO3 ??N was added as the N source, DM yield was between 1760–1870 kg ha?1, N recovery efficiency was between 24%–43%, and yield and physiological efficiency were in the range of 2.1–3.2 and 6.4–8.8 kg DM kg? 1 N, respectively. In NH4 +?N added plots, the DM yield was between 3190–3700 kg ha? 1, N recovery efficiency was between 39%–48% while yield and physiological efficiency were in the range of 3.5–5.6 and 9.0–11.6 kg DM kg? 1 N, respectively. Results indicated that total DM yield, N uptake, and NUE depend on the source of N and the level of moisture in the field. Assimilation of N is also affected by the stage of plant development after N fertilization. About 50%–54% of applied N was recovered in the initial 14 and 21 d after fertilizer application and thereafter translocation of N slowed. A fall in herbage production and minimal response to N fertilizer has been observed at 84% WFPS, while the maximum herbage yield and N recovery efficiency was recorded in soil near or below field capacity. The grass sward with added NH4 +?N produced a larger yield and had higher NUE relative to the sward with NO3 ??N. Results confirm that applied N was not utilized efficiently by grass sward and a decrease in N uptake and its utilization seem to be the key factors responsible for the poor herbage productivity often observed in pastoral agriculture. These results suggest that both moisture and N source have a substantial effect on herbage yield and N utilization by plants and therefore should be considered for efficient management of N fertilization and recommendations for grass sward.  相似文献   

18.

Background

Wastewater from sewage treatment plants contains high levels of nutrients, which can be used for plant nutrition. Classical wastewater treatment plants use complex microbial consortia of autotrophic and heterotrophic microorganisms for biological wastewater treatment. Certain autotrophic microalgae (e.g., species of the genera Chlorella, Scenedesmus, and Pediastrum) accumulate nutrients from wastewater very effectively.

Aims

We investigated the potential of microalgae biomass obtained from a prototype wastewater treatment plant as a source of nutrients for crops, focusing on nitrogen.

Methods

We provided wheat plants with different levels of algae biomass equivalent to 60, 120, and 180 kg N per hectare or with mineral fertilizer (N, P, and K) equivalent to the amounts contained in the algal biomass. Physiological and phenotypic traits were measured during growth, including vegetation indices, photosynthetic performance, growth, and nitrogen use efficiency (NUE). In addition, the adundances of Bacteria, Archaea and fungi and genes of ammonium oxidizing Bacteria and Archaea were determined in the rhizosphere of differently fertilized plants.

Results

Microalgal application at fertilizer levels of 120 and 180 kg N ha–1 showed significantly improved physiological performance, growth, yield and nutrient uptake compared to the unfertilized control. Nevertheless, their yields and NUE were lower than with the application of equal amounts of mineral fertilization, while the adundance of rhizosphere microbes and ammonia-oxidizing microorganisms were not significantly affected.

Conclusions

Microalgae from wastewater treatments form a suitable source of organic fertilizer for wheat plants with only moderate reductions in N use efficiency compared to mineral fertilizer.  相似文献   

19.
Yield, dry matter production, nitrogen (N) uptake and nitrogen use efficiency (NUE) of Bangladesh Rice Research Institute (BRRI) dhan29 were investigated during two consecutive dry (Boro) seasons of 2009–10 and 2010–11. The experiments were set up in a randomized complete block design with three replication having six nitrogen (N) levels of 0, 40, 80 120, 160 and 200 kg ha?1. Nitrogen fertilization increased yield characters, dry matter production and N uptake. The economic optimum rate of N was 166 and 155 kg ha–1 in first and second year, respectively, with corresponding yield of 7.1 and 6.5 t ha?1. NUEs were higher in the first year, decreased with increasing N rates in most cases. Gross return over fertilizer reached the highest Tk 692 in 2009–10 and Tk 489 in 2010–11 with 160 kg N ha–1. The results suggest that BRRI dhan29 should receive an average of 160 kg N ha?1 for economic optimum yield.  相似文献   

20.
Excess nitrogen(N) fertiliser use in agriculture is associated with water pollution and greenhouse gas emissions.While practices and programs to reduce N fertiliser application continue to be developed,inefficient fertiliser use persists.Practices that reduce mineral N fertiliser application are needed in a sustainable agricultural ecosystem to control leaching and gaseous losses for environmental management.This study evaluated whether fully or partially replacing mineral N fertiliser with zoo compost(Perth Zoo) could be a good mitigation strategy to reduce mineral N fertiliser application without affecting wheat yield and nutrition.To achieve this,a glasshouse experiment was conducted to assess the complementary effect of zoo compost and mineral N fertiliser on wheat yield and nutrition in a sandy soil of southwestern Australia.Additionally,a chlorophyll meter was used to determine whether there was a correlation between chlorophyll content and soil mineral N content,grain N uptake,and grain protein content at the tillering(42 d after sowing(DAS)) and heading(63 DAS) growth stages.The standard practice for N application for this soil type in this area,100 kg ha-1,was used with a soil bulk density of 1.3 g cm-3 to calculate the amount of mineral N(urea,46% N) and Perth Zoo compost(ZC)(0.69% N) for each treatment.Treatments comprised a control(no nutrients added,T1),mineral N only(100 kg N ha-1,T2),ZC only(100 kg N ha-1,T7),and combinations of mineral N and ZC at different rates(mineral N at 100 kg N ha-1+ ZC at 25 kg N ha-1(T3),mineral N at 75 kg N ha-1+ ZC at 25 kg N ha-1(T4),mineral N at 75 kg N ha-1+ ZC at 50 kg N ha-1(T5),and mineral N at 50 kg N ha-1+ ZC at 50 kg N ha-1(T6)).The T6 treatment significantly increased grain yield(by 26%) relative to the T2 treatment.However,the T7 treatment did not affect grain yield when compared to the T2 treatment.All treatments with mineral N and ZC in combination significantly improved the 1 000-grain weight compared to the T2 treatment.Chlorophyll content was better correlated with soil mineral N content(r = 0.61),grain N uptake(r = 0.62),and grain protein content(r = 0.80) at heading(63 DAS) than at tillering(42 DAS).While ZC alone could not serve as an alternative to mineral N fertiliser,its complementary use could reduce the mineral N fertiliser requirement by up to 50% for wheat without compromising grain yield,which needs to be verified in the field.Chlorophyll content could be used to predict soil mineral N at the heading stage,and further studies are warranted to verify its accuracy in the field.Overall,the application of ZC as part of integrated nutrient management improved crop yield with reduced N fertiliser application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号