首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The objective of this study was to elucidate the effects of phosphorus (P) starvation on the internal P status expressed as P fractions (acid soluble P, sugarP, inorganic P, nucleotide P, and insolubleP) in different plant organs (leaves, roots and nodules), at different plant growth rates and dinitrogen(N2) fixation rate of soybean plants. The symptoms of P starvation differed during early 10 days and late 28 days of starvation. There were close relationships between nodulation and N2 fixation rate, and parameters of growth rate and internal P status. Although growth rate and N2 fixation of P starved plants were reduced their nodules showed ability to accumulate more soluble P in comparison with the leaves. The decreased sugar-P and inorganic P accounted for accumulation of more soluble sugars and starch in the stressed leaves. In contrast, stressed nodules accumulated higher quantities of sugar P, inorganic P, and nucleotide P and had reduced quantities of starch and sucrose. The increased accumulation of phosphorylated sugars in the nodules was regarded as a manifestation of the mechanism of stress tolerance of soybean nodules to P limited nutrition.  相似文献   

2.
A method is described for the extraction and analysis of various nitrogen‐, phosphorus‐ and carbon‐containing fractions from plant material. Lipids were extracted with chloroform/methanol and chloroform/methanol/water. Soluble nitrogen (nitrate, ammonia, and amino acid), phosphorus (inorganic and sugar phosphate) and carbon (sugar and tannin) fractions were extracted with cold trichloracetic acid. Hot soluble nitrogen and phosphorus (nucleic acid) and carbon (starch and tannin) fractions were extracted with hot trichloracetic acid. Protein remained in the residue. A detailed automated scheme is described for the analysis of each of the above fractions. Also included are methods for analyzing triglyceride, hydrolyzable ester phosphate and phytic acid.  相似文献   

3.
The impact of phosphorus (P) deficiency on response of symbiotic N2 fixation and carbohydrate accumulation in soybean (Glycine max [L.] Merr.) to atmospheric CO2 enrichment was examined. Plants inoculated with Bradyrhizobium japonicum MN 110 were grown in growth chambers with controlled atmospheres of 400 and 800 μL CO2 L‐1 and supplied either 1.0 mM‐P (P‐sufficient) or 0.05 mM‐P (P‐deficient) nitrogen (N)‐free nutrient solution. When plants were supplied with sufficient P, CO2 enrichment significantly increased whole plant dry mass (83%), nodule mass (67%), total nitrogenase activity (58%), and N (35%) and P (47%) accumulation at 35 days after transplanting (DAT). Under sufficient P supply, CO2 enrichment significantly increased starch concentrations in nodules compared to the normal atmospheric CO2 treatment. Under normal CO2 levels (400 μL L‐1) nonstructural carbohydrate concentration (starch plus soluble sugar) was significantly higher in leaves of P‐deficient plants than in leaves of P‐sufficient plants in which nonstructural carbohydrate concentration exhibited a strong diurnal pattern. Under deficient P supply whole plant dry mass, symbiotic N2‐fixation parameters, and N and P accumulation were not enhanced by atmospheric CO2 enrichment. Phosphorus deficiency decreased nonstructural carbohydrate accumulation in nodules at the end of a 10‐day period in which functional activity was developing by 86% relative to P‐sufficient controls. While P deficiency elicited significant increases in the nonstructural carbohydrate concentration in leaves, it caused significant decreases in the nonstructural carbohydrate concentration in nodules over the diurnal cycle from 30 to 31 DAT. Collectively, these results indicate that the lack of a symbiotic N2‐fixation response to atmospheric CO2 enrichment by P‐deficient plants may be related to the decreased carbohydrate status of nodules.  相似文献   

4.
To understand the mechanisms behind the beneficial combinations of the existence and formation processes of tripartite symbiosis of arbuscular mycorrhizal fungi (AMF) and nitrogen (N)-fixing rhizobia in phosphorus (P) deficiency. The effects of different inoculations of Bradyrhizobium japonicum (BJ) and Glomus mosseae (GM) on plant growth, P uptake, and soluble sugar concentration of soybeans in a P-deficient environment were investigated utilizing split-root systems supplemented with either KH2PO4 (0.01 mM, I-P) or Phytin (200 mg P kg?1, O-P) for 56 days. Six treatments were applied: (1) mono-inoculation of BJ in organic P compartment, O-BJ; (2) mono-inoculation of BJ in inorganic P compartment, I-BJ; (3) mono-inoculation of BJ in organic P compartment and mono-inoculation of GM in inorganic P compartment, O-BJ/I-GM; (4) mono-inoculation of BJ in inorganic P compartment and mono-inoculation of GM in organic P compartment, O-GM/I-BJ; (5) dual inoculation of BJ and GM in organic P compartment, O-BJ/GM; and (6) dual inoculation of BJ and GM in inorganic P compartment, I-BJ/GM. Compared with sole inoculation of BJ, dual inoculation increased the plant and nodule biomass, which were higher in I-BJ/GM and O-BJ/I-GM treatments compared to O-GM/I-BJ and O-BJ/GM treatments. Roots inoculated with GM in I-P grew better regardless of whether BJ was inoculated or not. GM inoculation in I-P also increased the number of leaves and the rate of photosynthesis. Nodule P concentration following dual inoculation in I-P was increased 2.1-fold compared to that in sole inoculation with BJ. Shoot soluble sugar concentration with dual inoculation in O-P was less than that in the other three treatments. Inoculated with GM in I-P increased the root soluble sugar concentration compared with the non-GM plants or GM inoculation in O-P. The present findings may explain a regulatory system for the nutrition of beneficial microbial interactions by the nodule or by AM fungal hyphae at selecting the best performing tripartite symbiotic partners in P deficiency.  相似文献   

5.
Aluminum (Al) and nutrients are key factors to influence tea (Camellia sinensis L.) productivity and quality, while how they interplay in tea plantations under the pressure of global change and increasing fertilization is little studied. In this study, we selected the tea plantations along an age-chronosequence to study Al fractions using a sequential extraction procedure, and nutrient concentrations in topsoil and subsoil and various plant organs. Our results indicated that Al levels and nutrient concentrations in soils and plants generally increased with planting year (< 0.05), and soil Al bioavailability was positively correlated with Al concentrations in most plant organs. Significant negative relations among pH and most extractable Al fractions in both soil layers suggested that decreased pH would directly alter soil-plant Al cycling due to exogenous nitrogen (N) fertilizer and atmospheric acid deposition. Topsoil total phosphorus (P) was positively correlated with most Al fractions, and root P was positively correlated with root Al concentration, both of which indicate that P and Al were synchronously absorbed by roots in acid tea soils. In addition, topsoil organic carbon was positively correlated with both active and inert Al fractions, indicating that above-ground organic litters would be the main source of elevated Al levels in older tea plantations. Clearly, Al enrichment in tea leaves with increasing planting year needs to be considered under management practices with heavy N and P fertilizers and increasing atmospheric acid deposition in subtropical China.  相似文献   

6.
套种是杉木人工林经营的重要措施,磷是南方森林生态系统中主要限制性养分元素之一,但套种模式对土壤磷素的影响尚不明确。以亚热带杉木人工林表层(0-10 cm)土壤为对象,研究套种林(杉阔套种幼林、杉阔套种成熟林)和杉木幼林土壤理化性质和土壤各形态磷含量差异,分析套种对杉木人工林土壤磷含量的影响。结果表明:(1)不同套种林显著改变土壤总磷、土壤总无机磷、土壤总有机磷、土壤微生物生物量磷(MBP)和土壤酸性磷酸酶活性(APA),大小顺序均为杉阔套种成熟林>杉阔套种幼林>杉木幼林。(2)土壤各磷组分中活性磷含量较低,其中NaHCO3-Po在活性组分中占主导;土壤NaOH-Po是中等活性磷的主要组分,杉阔套种成熟林尤为显著;闭蓄态磷(Residual-P)在总磷含量中最高。(3)与杉木幼林相比,杉阔套种成熟林显著增加了树脂提取态磷(Resin-Pi)、碳酸氢钠提取态有机和无机磷(NaHCO3-Pi、NaHCO3-Po)、氢氧化钠提取态有机和无机磷(NaOH-Pi、NaOH-Po)、氢氧化钠残留提取态有机磷(NaOHu.s-Po)、盐酸提取态磷(HCl-Pi)和闭蓄态磷(Residual-P)含量;土壤总无机磷、NaHCO3-Po、HCl-Pi、NaHCO3-Pi、NaOHu.s-Pi和Residual-P对杉阔套种幼林的响应不敏感。(4)除含水率外不同林龄下杉阔套种林土壤磷形态与土壤理化性质(土壤总碳氮、土壤可溶性有机氮、土壤微生物生物量磷、酸性磷酸酶)呈正相关性(P<0.05)。冗余分析表明,土壤磷组分的变化主要受MBP调控,且MBP与有机磷组分(NaOHu.s-Po、NaOH-Po)和HCI-Pi呈显著正相关。总之,套种林的土壤磷素有效性高于杉木幼林,土壤养分状况更佳。  相似文献   

7.
Abstract

Only a small portion of soil phosphorus (P) is available to plants on a short-term basis, and therefore, P taken up by crops in one growing season is small compared to total P (Pt) content of the soil. A group of soil microorganisms capable of transforming insoluble P into soluble and plant accessible forms. The objective of this study was to evaluate the changes in soil P-pools and P uptake by wheat crops as influenced by inoculation with Bacillus thuringiensis in two soils (Andisol and Ultisol), the experiment was conducted in pots under greenhouse conditions using a completely randomized design. Wheat plants were inoculated and re-inoculated at 20 and 46?days after sowing, respectively, with B. thuringiensis; and, plant sampling were performed after 46, 66 and 87 and soil at 87?days based on the Zadoks growth scale, and the soil was submitted by Hedley’s P fractions. The inoculation with B. thuringiensis affected significantly some P organic P (Po) and inorganic P (Pi) fractions in both soils (Andisol and Ultisol), improved P uptake by wheat crop in (Ultisol) and decreased significantly in (Andisol). The positive effect was more consistent in Ultisol than in Andisol, this strain can be solubilized P fraction extracted with conc. HCl-Po and HCl 1?mol.  相似文献   

8.
In this paper the evolution of total phosphorus, as well as its more interesting fractions (inorganic‐P, organic‐P, lipidic‐P, P‐RNA, P‐DNA and proteic‐P) are studied over an one year period, in Verna lemon tree leaves, not only greenones, but also on others with slight manganese deficiency symptoms, as well as with medium and strong manganese chlorosis. The results show that manganese notably influences the concentration of the before mentioned phosphorus compounds. So the total phosphorus levels, soluble acid phosphorus and inorganic phosphorus decrease according to the intensity of the chlorosis. The yearly fluctuations of the both lipidic and RNA phosphorus, fractions act in the same way. Nevertheless, the influence of manganese on the P‐DNA and proteic‐P is not clear.  相似文献   

9.
Abstract

Calcium was extracted from leaves sequentially with water, 0.5M sodium nitrate, 2M acetic acid and 2M hydrochloric acid. Water and hydrochloric acid removed well defined fractions; water soluble calcium was mostly present in complexed form; hydrochloric acid removed only calcium oxalate. The results show that some oxalic acid may be produced by acid hydrolysis of plant constitutents during extraction with hydrochloric acid.

Drying of leaves prior to analysis altered the distribution of calcium; water soluble calcium decreased while acetic and hydrochloric acid soluble calcium increased.  相似文献   

10.
低分子量有机酸对土壤磷活化影响的研究   总被引:14,自引:3,他引:11  
研究两种低分子量有机酸(柠檬酸和苹果酸)对土壤磷活化影响,并用修正的Hedley法测定土壤磷活化前后磷组分的变化。结果表明,低分子量有机酸能持续活化土壤磷,活化强度随低分子量有机酸浓度的增大而增强,并且柠檬酸活化土壤磷的能力强于苹果酸。低分子量有机酸能促进作物有效态无机磷组分(H2O-P和NaHCO3-Pi)的释放;同时还促进有机磷组分(NaHCO3-Po和NaOH-Po)的矿化。在低分子量有机酸浓度达到0.5 mmol/L以上时,其对土壤磷组分的活化量的顺序为:NaOH-Pi HCl-P NaHCO3-Pi H2O-P,即铁铝结合态磷 钙结合态磷 作物有效态磷。低分子量有机酸活化土壤磷的过程中伴有大量铁、铝释放,且铁或铝的释放量与磷活化量之间显著正相关(P0.05)。说明铁、铝结合态磷是低分子量有机酸活化土壤磷的主要磷源,并且其活化机制可能与铁、铝结合态磷的螯合溶解有关。  相似文献   

11.
甘蓝型油菜幼苗体内磷组分差异与磷高效关系的研究   总被引:2,自引:1,他引:1  
利用盆栽土培和营养液培养的方法,研究了甘蓝型油菜磷高效品种97081和磷低效品种97009在正常磷和低磷胁迫下幼苗植株生长、磷的吸收累积、植物磷组分以及酸性磷酸酶活性的差异。结果表明,缺磷条件下,97081品种的干物质重和磷累积量分别比97009高85.7%和50.0%,并且单位磷含量可以生产较多的干物质,具有较强的磷的吸收和利用效率。两品种中不可溶性有机磷、可溶性有机磷和无机磷含量都随着营养液磷水平的增加而提高。低磷胁迫时,根部不可溶性有机磷含量97009显著下降。两品种可溶性有机磷占总磷的比例均表现为下部叶>上部叶;97081根和下部叶可溶性有机磷含量及其比例均高于97009。97081根部无机磷含量高于97009,但其所占全磷比例却较低。缺磷处理,上部叶酸性磷酸酶(APase)活性两品种无显著差异;但根中和下部叶APase活性97081显著高于97009。这与甘蓝型油菜高效品种具有较强的磷吸收和再利用能力密切相关。  相似文献   

12.
It is desirable to know the distribution of phosphorus (P) fractions in soil so that plants may use P efficiently. Here we report the dynamics of inorganic and organic P in P-deficient black and rice soil cropped by soybean, white lupin, and maize supplied with nitrogen (N) inputs by N fixation and urea fertilizer. Inorganic P fractions of the three cropped soils could be ranked as O-P (organic phosphorus) > Al-P (aluminum phosphorus) > Fe-P (iron phosphorus) > Ca10-P (calcium-10 phosphorus) > Ca8-P (calcium-8 phosphorus) > Ca2-P (calcium-2 phosphorus), irrespective of soil type. The potential of various inorganic P fractions to plant nutrition differed between soybean and white lupin. The percentage of total P present as inorganic P was affected by crop, soil type, and N source. In black soil, the change of organic P fraction induced by N fixation was larger than by urea application. The moderately labile organic P (MLOP) concentration was not affected significantly by soil type and crop species, and it was probably the main P source to the inorganic P fraction because the correlation between the two pools was high (r = 0.945; P < 0.05). Crop species differed in their uptake of inorganic and organic P from soil. Though P fraction concentrations varied between black soil and rice soil, their response to crop species and N source was similar. The amounts of P removed from soil were affected by N source. The right choice of crop species and the application a suitable N source may increase crop yield and P uptake by plant in P-deficient soils.  相似文献   

13.
Abstract

Bray 1 phosphorus (B1P) and sequential phosphorus (P) fractions were determined on soils treated with triple superphosphate (TSP), Gafsa (GPR), and Christmas Island phosphate rocks (CIPR), respectively, with and without manure. The fractions extracted in decreasing lability were iron oxide–impregnated paper strip P (Pi‐strip P), inorganic (Pi), and organic (Po) bicarbonate (NaHCO3‐Pi and ‐Po), hydroxide [sodium hydroxide (NaOH)‐Pi and ‐Po], hydrochloric acid (HCl) P, and residual (residue P). The magnitude of B1P was in the order TSP>GPR=CIPR. Average B1P from PRs was two‐fold the amount in TSP, whereas that of the fractions was NaOH‐P>Residue P<sodium bicarbonate (NaHCO3) P<Pi‐strip P <HCl. Bray 1 extracted mainly the most labile fractions (Pi‐strip P and NaHCO3‐Pi), and plant P uptake was correlated mainly to NaOH‐Po and NaHCO3‐Pi. Magnitude of various fractions differed between TSP and PRs. Both B1P and the fractions were equally correlated to P uptake (R2=0.38**). Nevertheless, sequential fractionation appears to be a powerful tool to identify the P status and availability in soil.  相似文献   

14.
Abstract

Soils under no‐tillage gradually increase in organic matter and phosphorus (P) content from the top layer. Because of lack of knowledge about the organic phosphorus fraction contribution to plant nutrition, this research was conducted to estimate the availability of phosphorus fractions to plants. Soil samples of a very clayey Rhodic Hapludox that received 0, 156 and 312 kg P ha?1 were submitted to 15 successive crops in pots without replacing P extracted by plants. 31P nuclear magnetic resonance analysis was performed to detect P fractions before cultivation and after the sixth, ninth and fifteenth crops. Inorganic phosphorus was the unique P fraction acting as P source to plants in soils with previous P addition. Contribution of organic P was observed only when inorganic P content was extremely low, with plants showing severe P stress. Contribution of organic P was not enough to supply the required P for normal plant growth.  相似文献   

15.
通过对小麦/玉米轮作不同施磷水平7年14季定位试验土壤养分状况的分析与评价,探讨石灰性潮土有效磷耗竭和积累状况下土壤全磷、无机磷分级形态的变化规律,并运用通径分析和逐步回归分析,研究Olsen法、Mehlich3法、树脂交换法测定的土壤有效磷与各无机磷形态的关系。结果表明:(1)与初始土壤相比,N0P0K0、N2P0K2处理全磷总量分别降低了15.2%,29.7%,无机磷总量降低了13.5%,11.8%,N2P2K2、N2P3K2处理全磷总量分别增加了8.2%,27.2%,无机磷总量增加了11.1%,27.8%。供试土壤无机磷含量以Ca_(10)-P、Ca_8-P为主,施用磷肥可提高Ca_2-P、Ca_8-P、Al-P、Fe-P占无机磷总量的相对比例。(2)磷耗竭状态下,植物利用的无机磷来源于缓效磷源(Ca_8-P、Al-P、Fe-P;75%)、无效磷源Ca_(10)-P(11.5%~14.0%)、速效磷源Ca_2-P(7.5%~8.9%);无机磷盈余状态下,积累的无机磷主要转化为Ca_8-P(50%~70%)、Al/Fe-P(10%~23%)、O-P(8%)、Ca_2-P(0.2%~1.8%)。(3)Ca_2-P、AlP对3种方法测得的有效磷均具有正向作用且贡献率较大。Olsen法测定的无机磷主要是Ca_2-P、Ca_8-P,Mehlich3法主要是Ca_2-P、Ca_8-P、Al-P,阴离子交换树脂法主要是Ca_2-P、Fe-P。(4)Olsen法、Mehlich3法、树脂交换法均适于评价土壤有效磷水平,Olsen法最优。  相似文献   

16.
Phosphorus (P) is a major nutrient factor influencing nitrogen (N) accumulation and partitioning of photosynthates in plants, especially the symbiotic N2‐fixation in legumes. This study was conducted to investigate how P application (0, 20, 40, and 60 kg P2O5/ha) affects symbiotic N2‐fixation of three cultivars (C 235, Pusa 408, and Pusa 417) of chickpea (Cicer arietinum L.). Application of P in general significantly increased leaf area, shoot dry weight, and the rate of acetylene (C2H2) reduction. Phosphorus concentration of shoots and roots, soluble sugar content of nodules, and shoot N accumulation were also significantly increased, especially by P at the 40 kg P2O5/ha rate. The P concentration in nodules was, however, not affected by different levels of P. The Pusa 417 cultivar responded better than the others to the P treatments. Phosphorus‐deficient plants accumulated sugar in their leaves. The interaction effect was found significant on leaf area, shoot dry weight, nodule number, and shoot N accumulation. Pusa 417 gave greatest response to 40 kg P2O5/ha but Pusa 408 and C 235 interacted best with the 20 kg P2O5/ha rate only. The increased nodulation and symbiotic N2‐fixation on P application seem to be the result of morphologically advanced shoots which are making more photosynthates for transport to nodules and not the direct effect of P on the nodules.  相似文献   

17.
Summary Five selected vesicular-arbuscular mycorrhizal (VAM) fungi and the native population of a cambisol were tested in sterilized soil conditions, with Trifolium pratense as host plant. Indigenous fungi were the most effective in enhancing plant growth and P uptake, which were correlated with a higher root colonization. Selected fungi did not spread further in the root after 4 months from sowing, occupying less than 10% at the end of the experiment; inoculation with Glomus fasciculatum E3 yielded a higher dry-matter production than any other VAM species, but did not significantly increase shoot P concentration above that of the non-mycorrhizal control. Interactions between indigenous and introduced VAM fungi were studied in unsterilized soil. Results from fresh and dry weights of shoots and the percentage of fungal infection showed that the native endophytes competed more efficiently in colonizing the root. Inoculation with selected VAM species did not improve plant growth. Sterilization altered the inorganic P fractions of the soil, particularly those extracted with NH4F and NaOH. Sterilized soil contained less inorganic P than unsterilized soil, but more soluble P. By the end of the experiment in sterilized soil, P extracted with NH4Cl, NH4F and NaOH and total inorganic P were significantly different among inoculation treatments, suggesting that VAM fungi may differ in their ability to take up P.  相似文献   

18.
In the Mesopotamia region (Argentina), rice is cropped on a wide range of soil types, and the response of rice to fertilizer application has been inconsistent even in soils with very low levels of available phosphorus. Phosphorus transformations in flooded soils depend on soil characteristics that may affect phosphorus availability. This study was conducted to determine which soil characteristics were related to the changes in P fractions during soil flooding. Soils were chosen from ten sites within the Mesopotamia region that are included in five different soil orders: Oxisols, Ultisols, Alfisols, Mollisols, and Vertisols. Soil phosphorus (P) was fractionated by a modified Hedley method before and after a 45 d anaerobic‐incubation period. Changes in the inorganic P extracted with resin depended on soil pH and were related to the exchangeable‐Fe concentration of soils (extracted with EDTA). Inorganic P extracted with alkaline extractants (NaHCO3 and NaOH) increased due to soil flooding. This increase was related to the organic‐C (OC) percentage of soils (r2 = 0.62, p < 0.01), and ranged from 13 to 55 mg kg–1. Even though previous studies showed that P associated with poorly crystalline Fe played an important role in the P nutrition of flooded rice, in this study, there was no relationship between ammonium oxalate–extractable Fe and P changes in soils due to flooding. Our results suggest that in the Mesopotamia region, changes in P fractions due to soil flooding are related to soil OC, soil pH, and soluble and weakly adsorbed Fe.  相似文献   

19.
Abstract

Sustainable food production includes mitigating environmental pollution and avoiding unnecessary use of non-renewable mineral phosphate resources. Efficient phosphorus (P) utilization from organic wastes is crucial for alternative P sources to be adopted as fertilizers. There must be predictable plant responses in terms of P uptake and plant growth. An 18-week pot experiment was conducted to assess corn (Zea mays L.) plant growth, P uptake, soil test P and P fractionation in response to application of organic P fertilizer versus inorganic P fertilizer in five soils. Fertilizers were applied at a single P rate using: mono-ammonium phosphate, anaerobically digested dairy manure, composted chicken manure, vegetable compost and a no-P control. Five soils used varied in soil texture and pH. Corn biomass and tissue P concentrations were different among P fertilizers in two soils (Warden and Quincy), with greater shoot biomass for composted chicken manure and higher tissue P concentration for MAP. Plant dry biomass ranged from highest to lowest with fertilizer treatment as follows: composted chicken manure?>?AD dairy?=?MAP?=?no-P control?=?vegetable compost. Soil test P was higher in soils with any P fertilizer treatment versus the no-P control. The loosely bound and soluble P (2.7?mg P kg?1) accounted for the smallest pool of inorganic P fractions, followed by iron bound P (13.7?mg P kg?1), aluminum bound P (43.4?mg P kg?1) and reductant soluble P (67.9?mg P kg?1) while calcium bound P (584.6?mg P kg?1) represented the largest pool of inorganic P.  相似文献   

20.
Salinity is one of the most important agricultural problems in Iran. The effect of different levels of salinity and phosphorus on shoot length, root and shoot fresh and dry weight, nutrient elements (sodium (Na+), potassium (K+), phosphorus (P) and chloride (Cl?), proline and soluble sugar contents of barley were investigated. Two cultivars of barley, Hordeum murinum (wild resistant germplasm) and Hordeum vulgar, variety Afzal were treated in vegetative stage under hydroponics condition in a factorial arrangement based on completely randomized block (CRB) design with four levels of salinity [0, 100, 200 and 300 mM sodium chloride (NaCl)] and three levels of phosphorus (15, 30 and 55 μm L?1) with three replications. By increasing salinity, all the measured parameters, except sodium (Na+) content were reduced. Furthermore, with increased in phosphorus levels from 15 to 55 μm, Na+ content of the plant shoots decreased, but length, fresh and dry weights of roots and shoots and K+, P, Cl?, proline, and soluble sugars content of the shoots increased. The results indicated that accumulation of mineral ions for osmotic adjustment and restriction of Na+ accumulation in shoots were involved in phosphorus enhancement of the salt tolerance of barley. Thus, it seems that in saline soils, where there is no possibility for soil leaching and amending, application of phosphorus fertilizers can lead to a satisfactory growth and production in barely yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号