首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 124 毫秒
1.
缺磷对不同耐低磷玉米基因型酸性磷酸酶活性的影响   总被引:5,自引:1,他引:4  
【目的】酸性磷酸酶活性与土壤及植株体内有机磷的分解和再利用有着密切的关系。本研究以不同耐低磷玉米自交系为材料,研究低磷胁迫下玉米叶片、根组织内以及根系分泌酸性磷酸酶活性的变化及基因型差异,探讨酸性磷酸酶与玉米耐低磷之间的关系,以期更深入地了解玉米耐低磷的生理机制。【方法】以5个典型耐低磷自交系99180T、99239T、99186T、99327T、99184T和2个磷敏感自交系99152S、99270S为试验材料,采用营养液培养方法,设正常磷和低磷两种处理,分别于缺磷处理3、8和12 d时调查取样,测定地上部干重、根干重、叶片中无机磷(Pi)含量、根和地上部磷累积量、根系分泌APase活性以及叶片中APase活性,并于缺磷处理12 d测定根系内APase活性。【结果】1)缺磷使玉米地上部干重下降,根干重、根冠比增加,随着缺磷处理(3 d→8 d→12 d)时间的延长,根干重、根冠比增加幅度增大,且耐低磷自交系根干重增加幅度普遍大于敏感自交系。2)低磷条件下,玉米自交系磷吸收、利用效率存在基因型差异,耐低磷自交系99239T、99180T和99327T磷吸收效率较高,99186T和99184T磷利用效率高,敏感自交系99152S、99270S磷吸收和利用效率均较低。3)低磷处理使玉米自交系叶片无机磷(Pi)含量显著下降,耐低磷自交系99184T、99327T和99239T下降幅度较小,相对叶片无机磷含量较高。4)缺磷诱导玉米根系分泌的APase活性升高。耐低磷自交系99184T和99186T根系分泌APase活性升高幅度较大,其余3个耐低磷自交系未表现出明显优势。缺磷处理3 d、8 d,玉米根系分泌APase活性与磷累积量显著正相关,而12 d时相关性不显著;根系分泌APase活性与磷利用效率在缺磷处理12d时达显著正相关。说明玉米根系分泌APase活性与磷吸收、利用效率相关关系不稳定。5)缺磷处理12 d,各玉米自交系根组织内APase活性与根系分泌APase活性变化情况较一致,两者相关系数r=0.755(P0.05)。6)缺磷条件下各玉米自交系叶片组织内APase活性均有升高趋势,并表现出明显的基因型差异。缺磷处理8 d,耐低磷自交系99184T和99239T叶片组织内APase活性升高幅度最大,其次是99327T和99186T,99180T、99270S和99152S升高幅度较小;缺磷处理12 d,各玉米自交系叶片APase活性仍继续增加,99239T、99184T、99327T和99186T的相对APase活性均较高,99270S和99152S的相对APase活性较低。相关性分析表明,缺磷条件下玉米自交系叶片中相对APase活性与叶片中相对无机磷(Pi)含量显著正相关,与磷吸收、利用效率不显著相关。【结论】低磷诱导玉米叶片、根组织和根系分泌APase活性升高,根组织和根系分泌APase活性的大小与玉米耐低磷能力不完全相关,叶片APase活性与玉米耐低磷能力有较好的一致性。  相似文献   

2.
硼对不同硼效率甘蓝型油菜品种细胞壁组成的影响   总被引:8,自引:4,他引:8  
采用营养液培养技术 ,研究B对不同B效率油菜品种细胞壁组成的影响。结果表明 ,根系细胞壁提取率及细胞壁纤维素含量高于叶片 ,果胶含量低于叶片 ,半纤维素含量和叶片差异不大。缺B使细胞壁提取率升高 ,但对根系和叶片细胞壁组成的影响不显著。不同B效率油菜品种细胞壁组成在根系和下部叶中差异不大 ,上部叶片高效品种螯合剂可溶性果胶含量显著高于低效品种 ,碱溶性果胶含量显著低于低效品种 ;半纤维素和纤维素含量及果胶总量差异不大  相似文献   

3.
甘蓝型油菜不同磷效率品种苗期根系生长及磷营养的差异   总被引:17,自引:4,他引:17  
对甘蓝型油菜磷高效品种 970 81和磷低效品种 97029苗期根系生长状况和体内无机磷含量及酸性磷酸酯酶活性进行了比较。结果表明 ,磷高效品种的主根长 ,根体积、根 /冠比及根系活力受缺磷影响均比低效品种降低9 3、2 1.9、10 .9、7.8个百分点 ,表现出根系良好的适应性。在缺磷条件下 ,2个品种各部位无机磷含量都有所降低 ,而酸性磷酸酯酶活性则增加。其中磷低效品种 970 2 9各部位无机磷含量降低幅度较大 ,酶活性增长较快 ,表明其根系吸收能力较差 ,体内有机磷分解的程度高 ,苗期即需通过再利用来维持其基本生长 ,使后期的生长失去保障。磷高效品种 970 81各部位无机磷所受影响较小 ,酶活性增长较少 ,根系衰老较慢 ,再利用程度小 ,后期生长潜力大。  相似文献   

4.
对甘蓝型油菜磷高效品种B56和磷低效品种B10苗期根系生长状况、根系磷吸收动力学参数和根系分泌酸性磷酸酶特性进行了比较研究。结果表明,在两种供磷条件下,B56的吸磷量均显著高于B10,磷高效品种与磷低效品种相比,B56具有较大的根干重、根长、根表面积和侧根数量。缺磷胁迫条件下,B56的根系磷吸收动力学参数Km显著低于B10;而在正常供磷条件下,两个品种的最大吸收速率Im ax和Km没有显著差异。缺磷条件下,B56的根系分泌酸性磷酸酶活性显著高于B10。  相似文献   

5.
低磷胁迫对豇豆幼苗叶片光合特性及根系生理特性的影响   总被引:8,自引:2,他引:6  
利用营养液培养方法研究了豇豆幼苗对磷胁迫的生理响应。结果表明,磷胁迫下豇豆根系最大根长增加43%,侧根数目增加33%,根系体积增加;但是缺磷时叶片面积变小,且发育延迟。缺磷时豇豆幼苗根系活力和根系表面酸性磷酸酶活性分别是全磷培养植株的2.3和1.7倍;与供磷植株相比,缺磷植株光合速率和蒸腾速率均下降30%;气孔器变小,气孔密度减少(减少20%)。磷胁迫下豇豆干物质累积量显著降低,缺磷主要影响了地上部分干物质累积,而根系干物质累积几乎不变,因此根冠比增大。磷胁迫对地上的影响大于对根系的影响。  相似文献   

6.
不同磷供应水平下小麦根系形态及根际过程的变化特征   总被引:16,自引:3,他引:13  
以石麦15和衡观35两个品种小麦为试验材料,应用根袋栽培方式,研究了不同施磷量对小麦根系形态和根际特征的影响。结果表明,与施磷量P2O5 0.1 g/kg相比,高量供磷(P2O5 0.3 g/kg)条件下石麦15地上部生物量和磷累积量增加幅度大于衡观35;但不施磷处理衡观35地上部生物量降低幅度小于石麦15,磷含量和累积量高于石麦15,衡观35耐低磷能力较强。土壤供磷不足时,衡观35总根长中直径0.16 mm细根所占比例高于石麦15,根系平均直径较小;而高磷供应下,石麦15根系中直径0.16 mm细根长度较长,在总根长中所占比例较高。总根长和直径0.16 mm的细根长度与植株地上部磷累积量之间呈显著正相关关系。总根长越长尤其是细根越多,有利于促进植株对磷的吸收。与非根际土壤相比,高磷供应下根际土壤有机磷含量增加,微生物量磷含量降低;而供磷不足时根际土壤碱性磷酸酶活性较高,有机磷含量较低。与施磷量P2O5 0.1 g/kg相比,高量供磷下根际土壤pH值升高、碱性磷酸酶活性下降,不施磷处理根际土壤pH值降低。本研究表明,供磷不足时,小麦根系形态和根际过程均发生适应性变化,而高量供磷条件下,小麦植株根系形态的改变因品种而异。  相似文献   

7.
【目的】植株对介质中磷素的吸收及磷素在体内器官组织间的转运,是通过位于细胞质膜上的磷转运蛋白(PT)介导完成的。高亲和PT在介导植物对低磷逆境下的磷素吸收中发挥重要作用。本研究以小麦中国春遗传背景的整套B染色体双端体为材料,对小麦高亲和PT基因TaPht1; 4的染色体定位特征及其与低磷下小麦品种磷效率的联系进行系统研究,旨在为今后小麦品种磷效率分子鉴定和磷高效遗传改良提供依据。【方法】采用水培法培养中国春(CS)及其遗传背景B染色体组双端体幼苗。三叶期时收获各供试材料根系,提取各材料基因组DNA,通过PCR特异扩增TaPht1; 4,鉴定TaPht1; 4在染色体上定位。通过对各供试材料三叶期幼苗进行24 h低磷胁迫获取丰缺磷处理根叶样本,采用半定量RT-PCR及实时定量PCR分析TaPht1; 4在丰缺磷下的表达。采用上述幼苗培养、 丰缺磷处理和基因表达分析技术,研究不同磷吸收效率小麦品种磷效率参数和TaPht1; 4表达特征。【结果】 1)与CS及其他双端体材料能特异扩增目标基因不同,在3BS中未扩增到目标基因TaPht1; 4; 采用半定量RT-PCR和qPCR对丰、 缺磷下CS和各双端体根、 叶中TaPht1; 4的表达研究表明,丰磷下各供试材料根、 叶中均检测不到TaPht1; 4 表达,缺磷下各供试材料叶片中也均未检测到TaPht1; 4表达,但在根中除3BS未检测到TaPht1; 4 表达外,CS和其他双端体均具有较高的TaPht1; 4表达水平。表明TaPht1; 4定位在3B染色体长臂,呈低磷诱导和根系特异表达特征。2)丰磷下,3BS单株干重与CS没有差异; 缺磷下,与CS相比,3BS单株干重显著降低。表明缺少TaPht1; 4及所在3B染色体长臂后,植株干物质生产能力受到较大影响,这可能与因缺乏该染色体臂丧失TaPht1; 4造成低磷下植株的磷素吸收能力降低密切相关。3)对丰、 缺磷下不同磷吸收效率6个小麦品种TaPht1; 4 的表达水平以及单株干重、 全磷含量、 磷累积量和磷效率研究表明,缺磷下各小麦品种表现为随品种磷吸收效率提高,TaPht1; 4表达水平也随之增高。表明TaPht1; 4 表达水平与低磷下小麦品种磷素吸收能力和干物质积累具有紧密联系。【结论】小麦高亲和PT基因TaPht1; 4 定位在3B长臂。低磷条件下,3BS的单株干重和磷累积量较CS显著降低。丰、 缺磷下,不同磷吸收效率小麦品种TaPht1; 4 表达水平与植株干重和单株磷累积量密切相关。TaPht1; 4 能显著增强小麦在低磷下磷素吸收能力,可作为小麦品种耐低磷能力的参考分子评价指标。  相似文献   

8.
磷对不同玉米品种生长、体内磷循环和分配的影响   总被引:5,自引:2,他引:3  
以杂交玉米蠡玉16和冀单28为供试作物,采用供高磷(250 mol/L)和低磷(5 mol/L)营养液的石英砂培养方法,研究2个玉米品种的各器官干重和磷积累与分配、体内磷在木质部和韧皮部中的循环、流动及磷的吸收和利用效率。结果表明,与供高磷处理相比,低磷处理的2个玉米品种各营养器官的干重、磷含量和木质部中运输的磷量显著降低; 而磷在体内韧皮部的再循环显著增加,并且玉米各部位叶片活化出的磷主要是通过韧皮部循环至根中后,再经过木质部向上部新生叶运输的; 体内光合产物与磷向上部叶的运输是不同步的过程。低磷时,与冀单28相比,蠡玉16的根冠比高010,整株干重和磷含量增加269%和120%,磷吸收和利用效率提高121%和133%,木质部总磷向上部叶运输的比例高306%。说明低磷条件下,磷高效玉米品种生物量大是由于具有较大的根冠比,木质部中更大比例的磷被分配到上部新生叶以及其具有较高的磷吸收和利用效率。  相似文献   

9.
水分和磷对苗期玉米根系形态和磷吸收的耦合效应   总被引:6,自引:0,他引:6  
水分亏缺和土壤缺磷已经成为玉米(Zea mays L.)生产的主要限制性因素,但水分和磷如何调节玉米根系形态和磷吸收尚不完全清楚。本研究采用盆栽土培试验,设置4个水分梯度[田间持水量的35%(W1)、55%(W2)、75%(W3)和100%(W4)]和2个磷处理[高磷:205 mg(P)·kg~(-1);低磷:11 mg(P)·kg~(-1)],探究水分和磷对苗期玉米根系生长和磷吸收的耦合效应。结果表明:(1)不管土壤磷供应如何,玉米苗干重、根干重、总根长和根表面积随水分供应强度的增加呈现先增加后降低的趋势,土壤有效磷含量也表现出相似的变化趋势,根质量比和平均根直径随水分供应强度的增加呈现下降的趋势,植株磷含量和磷累积量随水分供应强度的增加呈现稳定增加的趋势;(2)水分亏缺(W1)和过量供应(W4)均不利于玉米根系生长和干物质累积,水分亏缺(W1)抑制玉米对土壤磷素的获取,水分过量供应(W4)引起土壤磷素的奢侈吸收(W4),轻度的水分胁迫(W2)能够促进玉米根系的生长和干物质累积,减少对土壤磷的奢侈吸收,充足的水分供应(W3)能够促进玉米根系的生长、干物质累积和土壤磷素的吸收;(3)磷供应显著增加了玉米苗干重、根干重(W4除外)、总根长、根表面积、植株磷含量(W4除外)和磷累积量,但降低了玉米的根质量比。(4)两因素方差分析结果表明,水分对苗干重、根干重、根质量比、总根长、根表面积、平均根直径、植株磷含量、植株磷累积量和土壤有效磷含量的相对贡献分别为45.94%、36.71%、67.95%、59.63%、58.34%、81.86%、24.75%、35.66%和3.00%,磷对这些参数的相对贡献分别为34.78%、21.19%、14.84%、9.22%、9.21%、1.56%、35.54%、49.75%和94.40%,可见水分是控制玉米根系形态和干物质累积的关键因子,磷是控制玉米地上磷吸收和土壤有效磷含量的关键因子。总体来说,低磷条件下玉米根系对土壤磷的获取偏向于以根形态为主导的适应策略,高磷条件下玉米根系对土壤磷的获取偏向于以根生理吸收为主导的适应策略。水分和磷之间较好的耦合能够促进玉米根系生长、干物质累积,减少对土壤磷素的奢侈吸收。  相似文献   

10.
【目的】植株对介质中磷素的吸收及磷素在体内器官组织间的转运,是通过位于细胞质膜上的磷转运蛋白(PT)介导完成的。高亲和PT在介导植物对低磷逆境下的磷素吸收中发挥重要作用。本研究以小麦中国春遗传背景的整套B染色体双端体为材料,对小麦高亲和PT基因TaPht1;4的染色体定位特征及其与低磷下小麦品种磷效率的联系进行系统研究,旨在为今后小麦品种磷效率分子鉴定和磷高效遗传改良提供依据。【方法】采用水培法培养中国春(CS)及其遗传背景B染色体组双端体幼苗。三叶期时收获各供试材料根系,提取各材料基因组DNA,通过PCR特异扩增TaPht1;4,鉴定TaPht1;4在染色体上定位。通过对各供试材料三叶期幼苗进行24 h低磷胁迫获取丰缺磷处理根叶样本,采用半定量RT-PCR及实时定量PCR分析TaPht1;4在丰缺磷下的表达。采用上述幼苗培养、丰缺磷处理和基因表达分析技术,研究不同磷吸收效率小麦品种磷效率参数和TaPht1;4表达特征。【结果】1)与CS及其他双端体材料能特异扩增目标基因不同,在3BS中未扩增到目标基因TaPht1;4;采用半定量RT-PCR和qPCR对丰、缺磷下CS和各双端体根、叶中TaPht1;4的表达研究表明,丰磷下各供试材料根、叶中均检测不到TaPht1;4表达,缺磷下各供试材料叶片中也均未检测到TaPht1;4表达,但在根中除3BS未检测到TaPht1;4表达外,CS和其他双端体均具有较高的TaPht1;4表达水平。表明TaPht1;4定位在3B染色体长臂,呈低磷诱导和根系特异表达特征。2)丰磷下,3BS单株干重与CS没有差异;缺磷下,与CS相比,3BS单株干重显著降低。表明缺少TaPht1;4及所在3B染色体长臂后,植株干物质生产能力受到较大影响,这可能与因缺乏该染色体臂丧失TaPht1;4造成低磷下植株的磷素吸收能力降低密切相关。3)对丰、缺磷下不同磷吸收效率6个小麦品种TaPht1;4的表达水平以及单株干重、全磷含量、磷累积量和磷效率研究表明,缺磷下各小麦品种表现为随品种磷吸收效率提高,TaPht1;4表达水平也随之增高。表明TaPht1;4表达水平与低磷下小麦品种磷素吸收能力和干物质积累具有紧密联系。【结论】小麦高亲和PT基因TaPht1;4定位在3B长臂。低磷条件下,3BS的单株干重和磷累积量较CS显著降低。丰、缺磷下,不同磷吸收效率小麦品种TaPht1;4表达水平与植株干重和单株磷累积量密切相关。TaPht1;4能显著增强小麦在低磷下磷素吸收能力,可作为小麦品种耐低磷能力的参考分子评价指标。  相似文献   

11.
Application of phosphorus (P) fertilizer is important in crop production because of the low bioavailability of phosphorus to plants in both acidic and calcareous soils. Although rapeseed (Brassica napus) is generally sensitive to P deficiency, different cultivars differ widely in this respect. Differences in P uptake and utilization between two rapeseed cultivars, one P-efficient (‘97081’) and one P-inefficient (‘97009’), were evaluated in solution culture by studying the changes in root morphology and parameters of P uptake kinetics in response to low-P stress. The P-efficient cultivar had lower Km and Cmin values and higher Vmax and developed longer and denser lateral root hair with greater number of root tips and branches under low-P stress, which resulted in a better developed root system and more efficient uptake of P. That, in turn, led to higher concentration and accumulation of P in the plants, culminating in higher biomass production. However, P utilization efficiency (biomass production per unit P accumulated in plant) of the P-efficient ‘97081’ was lower than that of ‘97009’ when P was deficient. These results suggest that P efficiency in rapeseed is due to a better developed root system as well as efficient uptake of P.  相似文献   

12.
Secretion of acid phosphatase (APase) from the roots to take up phosphorus (P) is a well-known strategy of plants under P-deficient conditions. White lupin, which shows vigorous growth in low-P soils, is noted for its ability to secrete APase under P-deficient conditions. The APase secreted by white lupin roots is stable in soil solution and shows low substrate specificity, suggesting that genetic modification of plants using the APase gene LASAP2 might improve their ability to use organic P. The objective of the present study was to evaluate the potential of LASAP2 transgenic plants to increase organic P utilization. Dry matter production and P accumulation were higher in LASAP2 transgenic tobacco plants grown in gel media containing soluble phytate as the sole P source than in wild-type tobacco plants. Phosphorus uptake by the transgenic plants also increased in soil culture conditions. LASAP2 was apparently more effective in the liberation of organic P, including phytate, in the soil than the native tobacco APase. Thus, the enzymatic stability of LASAP2 in the soil appears to be an important factor for P acquisition.  相似文献   

13.
Abstract

Plants grown in highly weathered or highly alkaline calcareous soils often experience phosphorus (P) stress but never a P‐free environment. Thus, applications of mineral P fertilizers are often required to achieve maximum yield, but recovery of applied P fertilizers is notoriously low. Phosphorus deprivation elicits a complex array of morphological, physiological, and biochemical adaptations among plant species and genotypes to enhance P acquisition and utilization efficiency. Ten Brassica cultivars were grown hydroponically to investigate their relative efficiency to utilize deficiently (20‐µM) and adequately (200‐µM) supplied P, using Johnson's modified solution. Cultivars differed significantly (P<0.001) in biomass accumulation. Orthophosphate concentration and uptake in shoot and root, absolute and relative growth rate, and P‐utilization efficiency (PUE) were also significantly different among various Brassica cultivars. Root‐shoot ratio and specific absorption rate were substantially increased in plants subjected to low P supply. Shoot and root dry‐matter yield as well as total biomass production correlated significantly (P<0.01) with their total P uptake and PUE. Cultivars, which were efficient in P utilization, were also efficient accumulators of biomass under adequate as well as deficient levels of P supply. As part of the study, kinetic parameters of P uptake were evaluated for six contrasting Brassica cultivars in PUE, grown in nutrient solution. The kinetic parameters related to P influx were maximal transport rate (Vmax), the Michaelis–Menten constant (Km), and the external concentration when net uptake is zero (Cmin). Lower Km and Cmin values were indicative of P‐uptake ability of the cultivars, evidencing their adaptability to P‐stress conditions. In another experiment, six cultivars were exposed to no P nutrition for 27 days after initial feeding on optimum nutrition for 14 days. All the cultivars retranslocated P from aboveground parts to their roots during growth in P‐free conditions, the magnitude of which was variable in different cultivars. Phosphorus concentration at 41 days after transplanting was higher in developing leaves than developed leaves. Translocation of absorbed P from metabolically inactive sites to active sites in plants growing under P‐stress conditions may have helped the tolerant cultivars to establish a better rooting system, which provided basis for tolerance against P‐deficiency stress and increased PUE.  相似文献   

14.
We evaluated the ability of Brassica napus L. (oilseed rape), Helianthus annus L. (sunflower), and Glycine max L. (soybean) plants grown inoculated with or without bacteria to utilize organic P sources. Plants were supplied with inorganic (dibasic sodium phosphate) and organic P sources (phytate and glucose phosphate) at three concentrations and grown for 40 d under sterile conditions. Three inoculation treatments were compared: control (non‐inoculated plants), inoculation with Bacillus amyloliquefaciens BNM340, and inoculation with Pseudomonas fluorescens BNM296 (two bacteria with proven phytase activity). Oilseed rape, sunflower and soybean could utilize organic P sources. For example, when phytate (0.5 mM) P was used as the external P source, the increase factors over the no‐P treatments were 4.5, 1.4, and 1.4 for oilseed rape, sunflower, and soybean P uptake, respectively. When glucose 1‐phosphate disodium salt (G1P, 0.5 mM) was the P source, the increase factors were 8.8, 1.7, and 1.9 respectively. Positive responses to the organic P sources were found for the biomass accumulation of oilseed rape and soybean but not for sunflower. The inoculation with bacteria did not exert a promoting effect on P uptake. We demonstrate that the three species can effectively use organic P sources. The existence of crop plants that are more efficient in the utilization of different soil P sources would be particularly beneficial to improve P recycling and use of P fertilizers in agriculture.  相似文献   

15.
ABSTRACT

In order to compare plants’ response to phosphorus (P) application through roots and leaves, oilseed rape (Brassica napus L. cv. Hayola) plants were cultivated until vegetative or reproductive stages and were pretreated with an adequate (+P) or low (?P) supply of P. Thereafter, these plants were treated with 0.3 mM P as sodium dihydrogen phosphate (NaH2PO4) either through roots (root application, RA) or leaves (leaf application, LA). Shoot biomass was observed to be suppressed under ?P conditions at both stages, whereas root growth was comparatively improved in ?P plants at the vegetative stage but not at the reproductive stage. Both RA and LA were able to compensate for the growth of vegetative shoot and roots at both stages; however, LA reduced P and dry matter partitioning into the fruits. At the vegetative stage, recovery of applied P was similar between RA and LA treatments, and was extensive in ?P plants compared with the +P ones. At the reproductive stage, in contrast, significantly lower recovery of P was observed likely due to the lower capacity of leaves for P absorption and/or their lower re-translocation ability through the phloem. Data of P utilization efficiency showed that ?P plants, at both vegetative and reproductive stages, efficiently use leaf-applied P for biomass production when compared with the +P plants. Activity of acid phosphatase was sharply inhibited by RA in ?P plants, whereas it was preferably increased by LA in both +P and ?P plants. Results indicated that under P-deficiency conditions, plants had higher ability to utilize foliar-applied P, and in contrast to RA, LA may enable plants for a continuous higher capacity of P uptake from P-deficient soil; however, RA was superior to LA in terms of fruit growth.  相似文献   

16.
A hydroponic trial was conducted to assess interaction of molybdenum (Mo) and phosphorus (P) on uptake and translocation of P and Mo by Brassica napus. Molybdenum was applied at four rates (0, 0.01, 0.1 and 1 mg L?1) and P at three rates (1, 30, and 90 mg L?1) in nutrient solution. The results indicated that P increased shoot growth and 0.01 mg L?1 Mo improved the growth of shoots and roots. Molybdenum increased shoot P uptake and root P concentration and uptake when higher P was provided, and had a stimulating effect on P translocation from shoots to roots. P increased shoot Mo concentration and uptake, decreased those in roots, and enhanced Mo transport from roots to shoots. These results implied that both Mo and P had beneficial effects on Mo and P absorption and translocation and co-application of them were necessary to promote growth and utilization of Mo and P for Brassica napus.  相似文献   

17.
ABSTRACT

Plant species and genotypes within one species may significantly differ in phosphorus (P) uptake and utilization when they suffer from P starvation. The objective of this research was to screen P-efficient germplasm of oilseed rape (Brassica napus L.) and analyze the possible mechanism responsible for P efficiency by two-steps screening experiments and validation of P efficiency. Phosphorus efficiency coefficient at seedling stage, namely, ratio of shoot dry weight under low P to that under adequate P (PECS) of 194 oilseed rape cultivars varied from 0.050 to 0.62 and was significantly related with shoot dry weight under low P level (r = 0.859??, P < 0.01). Oilseed rape cultivar ‘Eyou Changjia’ presented the highest P efficiency coefficient in each growth stage and had the highest seed yield at low P, whereas oilseed rape cultivar ‘B104-2’ was the most sensitive to low P stress among the 12 candidate cultivars obtained from the two-steps screening experiments. Under low P condition in validation experiments of soil and solution cultures, ‘Eyou Changjia’ could produce much more dry matter and acquire more P than ‘B104-2.’ Moreover, P efficient coefficient obtained from the pot experiment was comparable to those from the field experiment. This might be attributed to high P uptake efficiency for ‘Eyou Changjia’ when it suffered from low-P stress. Comparison of results from the hydroponics with those from the pot and field experiments led to the conclusion that the P uptake efficiency in the hydroponics is highly related to that in soil culture conditions. These results show that there are large genotypic differences in response to phosphorus deficiency in oilseed rape germplasm (Brassica napus L.) and ‘Eyou Changjia’ is P-efficient and ‘B104-2’ is P-inefficient. By comparing these results further, the mechanism responsible for P efficiency was suggested to be mainly due to high P uptake efficiency by forming larger root system, and improving the ability of mobilizing and acquiring soil P in P-efficient oilseed rape under the condition of P starvation.  相似文献   

18.
Abstract

Path analysis is a statistical technique that partitions correlations into direct and indirect effects and distinguishes between correlation and causation, whereas correlation in general measures the extent and direction (positive or negative) of a relationship occurring between two or more variables. The estimates of correlation and path coefficients can help us to understand the role and relative contribution of various plant traits in establishing growth behavior of crop cultivars under given environmental conditions. Dependence of shoot dry‐matter (SDM) production of six hydroponically grown Brassica cultivars on various growth parameters and characteristics of P metabolism was investigated using the modified Johnson's nutrient solution to maintain deficient (10 µM) and adequate (200 µM) P levels. Root dry‐matter (RDM), total dry‐matter, P content in shoot, and P‐utilization efficiency (PUE) had significant and positive effects on production of SDM in a P‐deficient environment. Root–shoot ratio (RSR), however, negatively affected SDM of cultivars exposed to P‐deficient conditions and did not show any impact on SDM production in either of the two treatments. In a pot study, six Brassica cultivars were grown in a sandy loam soil that was deficient in NaHCO3‐extractable P (3.9 mg P kg?1 soil) for 49 days. Significant positive correlations were observed between SDM and some other plant traits such as RDM, leaf area per plant, P uptake, and PUE, at both genotypic and phenotypic levels. The correlations of SDM with RSR, however, were not observed, implying that relative partitioning of biomass into roots or shoots had little role to play in SDM production by Brassica cultivars under P‐deficiency stress. Path analysis revealed that favorable impact of RDM and leaf area on SDM production was indirect through positive effect of these parameters on P uptake and PUE. Thus, under P‐deficiency stress, better P acquisition and efficient P utilization by the cultivars for biomass synthesis collectively formed the basis of higher SDM production by the cultivars, evidencing that P uptake and utilization efficiency are two important plant traits for selecting P‐deficiency‐stress‐tolerant Brassica cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号