首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 312 毫秒
1.
 用小麦条锈菌生理小种对中梁93447与感病品种铭贤169的杂交后代F1、F2和F3代进行苗期温室抗条锈性遗传分析,结果表明中梁93447对CYR30的抗病性由1对显性基因控制。用中梁93447×铭贤169 F2代分离群体建立抗、感DNA池,在F2代群体中通过SSR标记技术寻找与抗病基因连锁的分子标记,发现7个位于5BS上的标记Xwmc813、Xwmc740、Xgwm159、Xbarc4、Xwmc616、Xwmc363Xbarc89与目的基因连锁,遗传距离分别为17、12.9、8.3、4.5、3.7、9.1和20.8cM。系谱分析及分子标记分析表明,该基因可能来自中间偃麦草,暂命名为YrZL93447。与已定位于5B染色体上的抗条锈病基因的比较研究表明,YrZL93447可能是1个新的抗条锈病基因。用SSR引物BARC4WMC616检测43个黄淮麦区主栽品种,其中7%的黄淮麦区主栽品种具有与YrZL93447基因相同的标记位点。  相似文献   

2.
 天选43是由8845-01-01-1-1和抗源材料贵农22杂交选育而成的普通小麦品种,对我国目前所有条锈菌生理小种均表现良好抗性。为明确其抗条锈性遗传基础,本研究选用当前条锈菌流行小种CYR32和CYR33,对天选43与感病品种铭贤169杂交F1、F2和F3代群体进行遗传分析,同时应用460对SSR引物对接种CYR32的天选43/铭贤169 F2代150个单株群体进行抗病基因定位。结果表明,天选43对CYR32抗性由1对显性基因控制,而对CYR33抗性由1对隐性基因控制。筛选到10个与抗CYR32基因连锁的SSR标记Xwmc134、Xgwm413、Xbarc187、Xwmc406、Xcfd65、Xgwm18、Xbarc181、Xbarc137、Xwmc419和Xgwm230,两侧距离目的基因最近的标记为Xgwm18和Xgwm413,遗传距离分别为0.8 cM和3.4 cM,并初步将其抗病基因定位于小麦染色体1BS上,暂命名为YrTx43。基因来源、抗病遗传分析、分子标记检测及染色体位点分析表明,YrTx43很可能是与Yr24、Yr26具有等位性的抗条锈基因。  相似文献   

3.
 用7个我国当前流行的条锈菌生理小种对V9128-3的抗条锈性进行了评价,表明本易位系对我国优势流行小种具有良好的抗病性。以Su-4对V9128-3与铭贤169配置的F1、BC1F1、F2及F3代群体进行了遗传分析,并对其中1个F2群体进行了SSR标记,再用BC1F1群体的部分单株和F3家系进行连锁标记的初步验证。遗传分析表明了V9128-3对Su-4的抗病性由1对显性核基因独立控制,从219对SSR引物中筛选到2个位于2AL上的该基因YrHV(暂命名)两侧的标记Xgwm356和Xwmc658,遗传距离分别为8.5和5.6cM,所用部分BC1F1单株和F3家系验证了该2个标记与YrHV连锁性。将此标记可用于小麦抗条锈病分子标记辅助育种。  相似文献   

4.
西瓜抗小西葫芦黄花叶病毒基因的连锁分子标记研究   总被引:10,自引:0,他引:10  
 小西葫芦黄花叶病毒中国株系(Zucchini yellow mosaic virus Chinese strain,ZYMV-CH)是危害我国西瓜的主要病毒。本实验以抗病毒病西瓜野生种质P.I.595203与感病的普通西瓜自交系98R为亲本,采用单粒传方式得到109个E代株系,分别对亲本、F1及109个F3代株系群体进行了苗期抗ZYMV-CH接种鉴定,通过F3代群体的抗感分离情况,推测得到F2代各单株的基因型,采用集团分离分析法(bulked segregant analysis,BSA)在F2代建立抗感基因池,以亲本、F1和抗感基因池为模板,对640条RAPD引物进行PCR扩增筛选,其中引物AK13在亲本、F1和抗感基因池之间扩增出一条多态性片段(644bp),在F2代群体上验证该多态性条带与ZYMV-CH的抗性基因呈现连锁关系,遗传连锁距离为8cM,定名为AK13-644,该连锁标记在ZYMV-CH抗性转育后代自交系上得到了验证。最终将此RAPD标记成功转化成SCAR标记SCAK13-644,该标记可以作为西瓜抗病毒病辅助选择的分子标记。  相似文献   

5.
 M852-1是由柔软滨麦草和普通小麦7182经杂交和回交培育的易位系。苗期抗病性鉴定结果表明,M852-1对CYR29、CYR31、CYR32、CYR33、Su11-4、Su11-7和V26等7个中国小麦条锈菌主要生理小种或新的致病类型均表现免疫至高抗,是一个较好的抗条锈资源材料。用条锈菌流行小种CYR33对M852-1与铭贤169杂交F1、F2、F3和BC1代进行抗性鉴定与遗传分析,发现M852-1对CYR33的抗条锈性由1对隐性基因控制,暂定名为YrElm。以F2代分离群体构建作图群体,利用集群分离分析法,筛选到与YrElm连锁的5个SSR标记:Xcfd35、Xgwm161、Xwmc630、Xgwm533和Xcfd34,并将YrElm定位于小麦染色体3DS上。YrElm两侧最近2个SSR标记Xcfd35与Xgwm161的遗传距离分别为6.5 cM和4.2 cM。抗锈性鉴定、系谱分析以及分子标记检测结果表明,该抗病基因来源于柔软滨麦草。综合基因来源、分子检测及染色体位点等方面的分析,认为YrElm可能是一个新的抗条锈病基因。用该基因两侧最近两个标记Xcfd35和Xgwm161 检测68个甘肃和黄淮麦区小麦品种(系),10个(14.7%)品种能扩增出与M852-1相同的条带。进一步进行抗病性及系谱分析表明,这10个品种均不含YrElm。本研究结果为利用YrElm进行分子标记辅助育种和进一步的精细定位奠定了基础。  相似文献   

6.
小麦新品系抗白粉病基因分析   总被引:1,自引:1,他引:0  
 本文对6个小麦新品系所含的抗白粉病基因进行了遗传分析。将感病品种Liaochun10分别与SM 20121、SM 203390、SM 20125、SM 200332、SM 20126、SM 20005杂交和自交,并将这6个品系互配成半双列杂交组合。用小麦白粉菌15号小种的单孢堆菌系对各杂交组合的亲本、F1、F2代群体及F3代家系进行了苗期抗病性鉴定。遗传分析表明,供试的6个品系对小麦白粉菌15号小种的抗性均由1对显性基因控制。等位性分析推断:SM 20121、SM 203390、SM 20125和SM 200332含有抗白粉病基因Pm12;SM 20126含有抗白粉病基因Pm21;SM 20005含有抗白粉病基因Pm16。建议将这6个品系作为优良抗病亲本利用。  相似文献   

7.
 M852-1是经杂交和回交培育的普通小麦-柔软滨麦草易位系,苗期对我国小麦条锈菌流行小种均表现良好抗性。为明确其抗条锈性遗传规律,本研究选用条锈菌流行小种(类型)CYR29、CYR32、CYR33和Su11-7的单孢菌系对其与铭贤169杂交F1、F2、F3及BC1代群体进行遗传分析, 同时应用420对SSR引物对接种CYR32的M852-1/铭贤169 F2代144个单株作图群体进行抗病基因定位。结果表明,M852-1对供试小种均表现免疫或近免疫,对CYR29的抗锈性由1对显性基因控制,对CYR32、CYR33和Su11-7的抗锈性均由1对隐性基因控制。筛选到3个与抗CYR32基因连锁的SSR标记Xbarc124、Xbarc200和Xgwm429,遗传距离分别为6.3、5.6 和 9.7 cM。根据SSR标记锚定性将该基因定位于小麦2BS染色体,暂命名为YrM852。基因来源、分子标记检测及染色体位点分析表明,YrM852很可能是1个不同于目前已知抗条锈病基因的新基因。  相似文献   

8.
 N. Strampelli是由意大利引入我国的小麦持久抗病性品种,对我国目前多数的条锈菌流行小种均有良好的抗性。为了明确其抗条锈病基因的遗传机制,利用小麦条锈病小种CYR30、CYR31、Su-4和Su-14对N. Strampelli与中国春杂交后代进行遗传分析,结果表明N. Strampelli对CYR30、CYR31的抗病性均由1对显性基因和1对隐性基因互补控制,对Su-14、Su-4的抗病性各由1对隐性基因控制,将其中控制Su-14抗病性的隐性基因暂时命名为YrNS-1。利用分离群体分析法(BSA)对接种Su-14的正交F2代群体进行SSR分子标记,在1BL上找到4个与YrNS-1紧密连锁的微卫星标记Xwmc719、Xgwm124、Xwmc44Xcfa2147,遗传距离分别为3.2、4.6、5.7和10.3cM。与已知位于1BL染色体上的抗条锈基因比较分析表明,YrNS-1可能是1个新的抗条锈病基因。  相似文献   

9.
 小麦品系ICA56对条锈菌优势生理小种CYR30、CYR31和CYR32均表现免疫反应;遗传分析表明,ICA56携带一个显性抗条锈病基因。基因等位性测定显示,ICA56所含抗条锈病基因不同于已知抗锈基因Yr5、Yr10、Yr15和Yr26,暂将该基因定名为YrICA56。利用川麦28/ICA56的F2群体及抗感亲本筛选到5对SSR引物WMC503、Xgwm261、Xgwm296、WMC112Xgwm210YrICA56连锁,遗传距离分别为16.6、10.4、7.0、4.5和14.1cM。根据Mapmaker3.0确定标记、YrICA56和着丝点在染色体上的顺序为:-WMC503-Xgwm261-Xgwm296-YrICA56-WMC112-Xgwm210-着丝点-。根据作图结果,将YrICA56定位在2DS。目前定位在2DS上的抗条锈病基因有Yr16YrKatYr16为成株期抗性,YrKat属温敏抗性,而YrICA56在苗期和成株期对条锈病均表现免疫,由此推测YrICA56是一个新的抗条锈病基因。  相似文献   

10.
应用DNA标记定位水稻的抗稻瘟病基因   总被引:30,自引:1,他引:30  
 从水稻分子遗传图谱选取177个RFLP标记,比较以红脚占为抗源,感病品种IR24为轮回亲本所构建的近等基因对K80R和K79S之间的多态性表现。发现了一些可能与稻瘟病抗性基因连锁的阳性标记。在(K80R×K79S)的F2群体中,经稻瘟病菌ZB1小种接种,110株为抗病,33株为感病,用总共10个阳性标记与F2群体中每个单株的DNA杂交,发现抗病基因与第12染色体上的标记RG81、RG869和RZ397共分离;检测F3株系的抗病性分离情况,确定F2植株的抗病性基因型,计算出抗病基因与分子标记的遗传距离,将该基因定位在第12连锁群上。应用近等基因池DNA和随机引物,经PCR扩增和共分离分析,建立了二个RAPD片段与抗病基因紧密连锁。  相似文献   

11.
分子标记辅助选择小麦抗白粉病兼抗赤霉病聚合体   总被引:1,自引:0,他引:1  
 Sumai 3, a wheat variety resistant to Fusarium head blight(FHB), was crossed with Neimai 9, a commercial wheat cultivar with the resistance to powdery mildew.The SCAR(sequence characterized amplified region) markers of powdery mildew resistance gene Pm21 and four SSR(simple sequence repeats)markers flanking the major FHB resistance QTL(Qfhs.ndsu-3BS) in Sumai 3 were used to detect the resistance loci by marker assisted selection(MAS) in the plants of the F2 population.Identification of resistance to both powdery mildew and FHB in field showed that 12 plants resistant to both diseases were obtained.In addition, the agronomic traits of these plants were better than those of Sumai 3, and are perhaps the excellent parental materials for wheat breeding.  相似文献   

12.
 对从普通小麦与中间偃麦草杂交后代中选育的一个抗白粉病新品系(AF-1)进行了形态学、细胞学和原位杂交(GISH)鉴定。结果表明:AF-1具有与小麦亲本相似的农艺性状,根尖细胞染色体数目为2n=42,花粉母细胞减数分裂中期(PMCMI)染色体构型为2n=21Ⅱ,且未见其他结构变异,细胞学上十分稳定。GISH结果表明,AF-1为中间偃麦草与普通小麦的一个小片段易位系,易位点位于一对染色体臂的中部偏着丝粒的位置。结合抗病调查结果,推断该片段上携带了一个来自偃麦草的抗白粉病基因。该片段可能是在杂种早期世代通过部分同源染色体配对或者单价染色体错分裂而形成的。  相似文献   

13.
本研究对红秃头和霸王鞭两个小麦农家种抗白粉病基因推导显示,红秃头和霸王鞭均具有较宽的抗性谱,是良好的抗源品种,并可能携带新的抗病基因。抗白粉病遗传分析表明,红秃头对E09的抗性由1对显性基因控制,对E26和E30-2的抗性分别由1对隐性基因控制,其至少携带一显一隐2对抗白粉病基因;霸王鞭对E09的抗性由2对显性基因重叠或者独立控制,对E26的抗性由2对显性基因互补作用控制,对E30-2的抗性由1对显性基因控制,其至少携带2对显性基因。利用基因芯片结合集群分离分析法(Bulk Segregant Analysis,BSA)进行染色体定位推测出,红秃头的抗白粉病基因可能位于染色体7B和6B上,霸王鞭的抗白粉病基因可能位于染色体4A和7B上。  相似文献   

14.
<正>小麦白粉病是小麦生产上的重要病害,在我国各主要麦区均有发生。上世纪70年代后期以来,随着小麦矮秆品种的推广、水肥条件的改善和小麦白粉病单一抗源的利用,再加上小麦白粉菌生理小种高度变异等因素的影响,导致小麦白粉病的发病面积和危害程度维持在一个较高的水平。国际上普遍采用的是基于小麦  相似文献   

15.
普通小麦“兰考90(6)”品系对白粉病抗性的遗传研究   总被引:7,自引:0,他引:7  
 普通小麦(Triticum aestivum L.)"兰考90(6)"系列品系是以六倍体小黑麦(X Triticosecale Wittmack;AABBRR)为白粉病抗源培育的新的小麦-黑麦1BL/1RS异易位系。这些品系高抗白粉病。小麦白粉病抗性基因推导试验证明,"豫麦66"携带的抗病基因与大多数已经报道的小麦抗白粉病基因不同。用白粉菌[Blumeria graminis (DC.) E. O. Speer f. sp. tritici]单孢堆分离物进行的遗传分析表明,"兰考90(6)"品系携带一个小种专化的隐性抗白粉病基因。对"中国春"和"兰考90(6)21-12"杂交F2分离群体进行1RS染色体检测,结果证明该抗白粉病基因不在1RS染色体臂上。本研究为有效利用"兰考90(6)"系列品系中的抗白粉病基因提供了科学依据。  相似文献   

16.
中国小麦贵州98-18中抗叶锈基因的分子定位   总被引:2,自引:0,他引:2  
小麦(Triticum aestivum)品系贵州98-18对中国目前大多数叶锈菌(Puccinia triticina)生理小种表现抗性。基因推导表明,贵州98-18可能携带新的抗叶锈基因。为了有效利用这一抗源,将贵州98-18和感病小麦品种郑州5389杂交,获得F1、F2代群体,用我国叶锈菌优势小种THTT对双亲及其杂交后代进行接种鉴定。结果表明,贵州98-18对THTT的抗性由1对显性基因控制,暂命名为LrG98。采用SSR技术对贵州98-18携带的抗病基因进行分子标记,共筛选了1 274对SSR或STS引物,位于1BL染色体上的4对引物可在抗/感池和双亲中扩增出多态性DNA片段。遗传连锁分析结果表明,该抗病基因位于小麦1BL染色体上,与Xbarc582-1B和Lr26的STS标记ω-secali(Glu-B3)的遗传距离最近,均为3.8 cM。该基因与目前所有已知的抗叶锈基因不同,可能是1个新的抗病基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号