首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对在深层开挖条件下进行自平衡法试桩时,通过采取有效措施消除开挖段的侧摩阻力影响后,由于深层覆土开挖卸荷导致工程桩桩周土体围压减小,从而导致荷载箱上段桩抗拔承载力降低这一问题,通过借鉴目前在抗拔桩方面已有的相关分析方法、负摩阻力、基底附加应力以及相关土力学基础理论,提出了基于Mindlin解的简化分析方法以及负摩阻力-附加应力法两种简化分析方法,并以北京某地铁车站中间柱下桩为例,分别估算深层开挖土体卸荷引起的上段桩承载力的损失值。两种方法所得出的估算值存在较大差异,对其原因进行了初步分析。两种简化分析方法的合理性及准确性还有待于进一步完善和实践验证。  相似文献   

2.
The prefabricated pile,driven in soft clay,can squeeze the soil laterally in a certain scope around the pile,and the void ratio is reduced significantly;consequently,the shear bearing capacity is raised.But the soil parameter,which is used to estimate the capacity of pile,is reduced according to the soil state before the pile was driven.Then,a certain difference appears when the pile is working.The calculation result usually is partial to conservative.This paper analyzes the squeezing mechanism of the pile using the theory of cylindrical cavities expansion.And a formula,which is used to estimate the increment of shear bearing capacity of soil around the pile when excess pore water pressure from pile driving distributes completely,is presented based on the unique relation between the shear bearing capacity and the density of the soil.This formula can be used to estimate the final ultimate-bearing capacity of the pile.The calculated results by the proposed formula are in good agreement with those of the site measurement.  相似文献   

3.
Influence of Pile Driving on Soil Resistance in Clay   总被引:1,自引:0,他引:1  
With the increase of platform size, pipe piles with super large diameter and deep penetration are increasingly used in practice. In order to make accurate prediction of pile drivability, it is essential to evaluate the change of the soil properties under pile driving exactly, and it is the premise to predict the pile bearing capacity after pile driving. In order to learn more about the change of clay properties during pile driving, analysis on the pile driving record of 36 piles in Bohai area is conducted. According to the analysis, the soil resistance in the clay layers decreases as the depth increases, and it is very different from that in the sand layer. The FEM method is used to discuss the mechanism of this decrease. The back analysis is carried out to get more information. The results show that the clay properties are affected by the dynamic effect. The undrained shear strength of clay approximately decreases with the increase of thickness of the layer linearly. At the same time, a prediction is conducted based on results, and the result is closer to the pile driving record than that calculated by method normally used today.  相似文献   

4.
Bearing capacity behavior of roll forming filling screw pile (screw pile for short) is investigated through numerical calculation and static load test. The influence of pile-type parameters, such as width of thread tooth and thread pitch, on the ultimate bearing capacity of crew pile is studied; furthermore, the bearing capacity behavior of screw pile and that of pile with the same diameter are compared and analyzed through static load test. The results show that the ultimate bearing capacity of screw pile is a bit higher than that of pile with the same outside diameter; width of thread tooth has a distinct effect on ultimate bearing capacity which increases with the increment of width of thread tooth. When the screw pile is tested under light load, the resistance on pile side is distributed along screw pile, and tip resistance is small, but the resistance rises considerably with load increasing. Besides, the design formula of bearing capacity of screw pile is proposed.  相似文献   

5.
The CFG pile is used to consolidate the foundation in one passenger dedicated line. The field experiments including low strain dynamic testing, bearing capability of single pile and the composite foundation are done, and the bearing capability of composite foundation is calculated, too. The results show that the first and second class piles account for 93.9% and 6.1% respectively, and the bearing capability eigenvalues of single pile and composite foundation are larger than the designed values. The 3D FEM model is established to simulate the stresses of CFG pile top and inter-pile soil changing with load level, and the stress ratio between CFG pile and inter-pile soil is analyzed, too. The following results are got from the calculation results of FEM: 1) the stresses of CFG pile top and inter-pile soil increase with load level, but the increasing rate of the former is larger than the latter; 2) the stress ratio between CFG pile and inter-pile soil increases quickly when the load level is low, and it tends to convergent gradually with load increasing.  相似文献   

6.
在一维波动模型的基础上得到了简谐SH波作用下桩周土和桩芯土的位移。在三维轴对称的情况下,运用势函数和分离变量法求解了简谐水平集中荷载和SH波引起的管桩桩周土和桩芯土的振动问题,得到了桩周土和桩芯土的径向位移和环向位移。考虑管桩土动力相互作用和管桩土的连续性边界条件对简谐水平集中荷载和SH波作用下管桩的振动进行了研究,得到了管桩桩顶的动力放大因子。通过数值算例分析可知,简谐SH波作用下管桩存在共振现象;管桩管壁过薄宜导致桩基失稳;相同外径情况下采用管桩要比实芯桩的抗震性能更好。  相似文献   

7.
在综合分析现有水平荷载作用下桩基分析方法的基础上,建立了考虑桩侧土体受力状态的斜坡刚性桩力学模型;根据极限平衡原理,建立横向荷载作用下斜坡刚性桩弯矩和应力平衡方程;引入考虑斜坡影响的p-y曲线方法,提出了综合考虑桩侧土体极限承载力与水平抗力系数沿深度呈线性增加的侧向极限承载力与土体抗力承载力系数计算方法,同时,将该方法应用于计算实例,通过与已有有限元和理论计算方法对比分析,计算结果验证了本文方法的合理性与可行性;并利用该方法,分析了斜坡坡角、桩土接触面系数以及地基水平抗力系数对斜坡刚性桩承载特性的影响因素。分析表明:斜坡的坡角、桩土接触面系数对侧向荷载作用下斜坡刚性桩的荷载位移曲线影响明显,而桩侧土的抗力系数对侧向荷载作用下斜坡刚性桩的荷载位移曲线影响不明显。  相似文献   

8.
Finite element software was used to simulate the internal force and deformation of high-rise pile cap-soil-structure under the wave and earthquake action. Meanwhile, wave force was calculated by using Morison equation, and the mechanical behavior of structure was simulated by inputing horizontal El-Centro wave. Then, the initial state and the state of the largest positive and negative acceleration were selected to study the structure according to the time history curve, and the displacement, bending moment, shear and axial force changes of pile foundation under wave and earthquake action were discussed, which was compared and analyzed with the structural response under the action of earthquakes solely. The result shows that the moment of front row of piles is biggest, and the force of pile bolck is the most dangerous; the axial force of the corner piles is the largest, and one of the center piles is the smallest under the action of wave and earthquake. When the wave forces and seismic forces are in the same direction, the displacement, moment, and shear force of pile bolck will be increased, on the contrary, the displacement, moment, and shear force of pile bolck will be decreased.  相似文献   

9.
Considering the three-dimensional inhomogeneity of soil surrounding the pile, the response of non-uniform viscoelastic pile under axial dynamic loading is studied. Firstly, combining the boundary condition, the complex stiffness of axial different soil layers are obtained by the complex stiffness transfer model of radial multi-zone plane strain. Then, the analytical solution of dynamic response at pile top in frequency domain is proposed by solving the dynamic equation of non-uniform viscoelastic pile section one by one from the bottom up to the top, and the relevant semi-analytical solution response in time domain is adopted by the convolution theorem and the Inverse Fourier Transform. At last, the effect of parameters of pile and soil are investigated to get the nature of the dynamic response of pile top in frequency domain and time domain.  相似文献   

10.
Soil arching effect is important for stabilizing the soil behind anti sliding pile. The creep of soil mass will inevitably lead to the formation of soil arching, which has time effect. In this analysis, an indoor thrust pile model test is proposed. The characteristics of stress distribution in the soil and the time effect of soil arching behind anti sliding pile are analyzed. The experimental data acquired by the soil pressure cells arranged along the normal direction of the thrust show that soil arching effect is enhanced with the increase of thrust.The thickness of soil arch increases with time.And the data obtained by soil pressure cells arranged along the direction of the thrust show that the horizontal soil arching effect increases and then gradually extends.The scope of stress dispersion has very large growth along the normal direction as time goes on.  相似文献   

11.
Compared with column bored pile,the bored pile with branches and plates is a new type of piles with higher bearing capacity and lower settlement.Field comparative tests related to ultimate bearing capacity of both the bored piles with branches and plates and column bored piles at the same site in Huzhou city of province Zhejiang in China were studied through self-balanced method under static pressure.The results testify that,compared with column bored pile under the same geological conditions,the bored pile with branches and plates can obtain better economic benefit such as: increasing ultimate compressive bearing capacity and ultimate extraction bearing capacity used per cubic meter concrete over 75.3%and 118.9%respectively,while dropping consumption of reinforced concrete upwards of 41.9%and 44.1% respectively,reducing settlement and pile length under the same loading.The tests will present an objective reference to the new type of piles in both theoretic study and application to analogous engineering.  相似文献   

12.
Through analyzing the calculation of vertical bearing capacity of rock-socketed pile given in technical code for building pile foundations, some unreasonable issues in the code were found. At the same time, based on the contacting ways between the pile and the rock and the behaviors of force transfer acted step by step, the unreasonable issues have been proved and the issues to be improved were pointed out in this paper.  相似文献   

13.
In order to get the wave loads on pile groups with slab merged in water, an engineering approach was proposed. Three coefficients in terms of slab effect were discussed and a time -domain analysis of wave forces acting on piles was conducted. Wave diffraction from a slab was obtained by the potential theory and eigenfunction expansion method, while wave loads on piles were evaluated by Morison formula. The wave force on pile obtained by the proposed method and the numerical simulation are in good agreement, which shows a good reliability of the proposed method. The result shows that, owing to the size of slabs, there exist some differences in the changing rule of slab effect varying with the submerged depth. The resultant force decreases with the rise of incident wave number, and the changing trend of its acting point appears an inflection point at some wave number. The minimum force acting on piles lies in the meeting-wave side of the slab, while the maximum one arises at the back side or in the scope of 30 degrees between the axis of slab, which is perpendicular to the incident wave, and the back side. The presence of slab causes the deflexion and phase difference of inline force. Meanwhile, the grouping piles coefficient can be taken as 0.7.  相似文献   

14.
Based on the interaction of single pile, cap and soil, the load transfer matrixes of single pile and soil were proposed to establish an equivalent shear displacement method of single capped pile in layered soil. With the compatibility of displacement at the interface between the pile and the soil, equilibrium equations of pile and soil could be derived. With the increase of the total load on the pile cap, the lateral friction at the interface of the pile and the soil becomes so large that the occurrence of the sliding takes place. While there is little sliding at the interface between the soil under cap and the soil outside of the cap because of the less lateral friction, which gives rives to less settlement of the soil outside of the cap. Eventually, the results of the finite element method, existing theoretical method and the model tests were compared with those from the analytical method and were found to be in good agreement. The increase of the ratio of length to diameter does not infinitely enlarge the overall stiffness of the single capped pile, because the pile cap would afford part of the loading all the time.  相似文献   

15.
五星形桩是一种横截面异形桩,是在圆桩的基础上向内切割5个圆弧,形成截面类似五星形的异形桩。按其截面性质分为周长最大化五星形桩F1、周长面积比最大化五星形桩F2两种桩型,为掌握五星形桩的水平承载性能进行了与圆桩的对比模型试验研究。试验用土为干砂,砂雨法土样制作,模型桩为预制钢筋混凝土桩,相似比为1∶8。模型试验桩包括:五星形桩F1、五星形桩F2、与五星形桩F2截面周长相同的圆桩C1、与五星形桩F2截面面积相同的圆桩C2。由于五星形桩水平承载性能具有方向性,试验采用理论计算中水平承载力最大的方向施加水平荷载,试验结果表明:F1C1F2的水平极限承载力相当,但F2的截面面积最小,仅为C1的0.44倍;与C2相比,F2的水平极限承载力是其1.63倍,可见,合理截面形式的五星形桩可以提供更大的水平承载能力;五星形桩与圆桩弯矩分布规律基本一致,都在4倍直径左右(五星形桩为外接圆直径)达到最大,但五星形桩截面面积小,抗弯刚度不足,容易折断,总体水平承载性能不及截面周长相同的圆形桩,但优于截面面积相同的圆形桩。  相似文献   

16.
To investigate the effect of consolidation soft soil, three groups of model tests were designed. The first group was PVC pile-net composite foundation, the second was pile-cap-net composite foundation, and the third was PVC and sand pile composite foundation. Butter was coated and plastic membrane was covered on inner side wall of model cast to reduce border effect. The gauges were glued with epoxy on the surface of the model with PVC piles and geogrids to measure the stress of PVC piles and geogrids. Soil pressure cells were installed in the middle of piles and the top of the sand piles, and dial indicators were installed in the middle of road and road shoulder to measure deformations. It is that shown: 1) as for the distribution of the road settlement and the differential settlement, the settlements of the third group are the largest and those of the second group are the least; 2) in terms of the stress ratio of PVC pile and soil, the values of the first group and the third group are similar, while the value of the second group is much larger; 3) the change of geogrid strain is disorderly. There are periodic peaks in the strain of geogrid of pile top and periodic troughs in the soil between the piles. The geogrid strain of the second group measured in the corresponding spot is much larger than those of the other two groups. The results of three groups of tests illustrate that if the condition is permitted, it would be the best to adopt the scheme of pile-cap-net composite foundation, which has better reinforcement effect for soft soil.  相似文献   

17.
Based on the data from in-situ 102 rock-socketed test piles in Chongqing in recent 10 years and utilizing the limit state equation of the dimensionless random variables,the reliability analysis of the bearing capacity of rock-socketed single pile is made and the scope of the target reliability of rock-socketed piles in Chongqing is calculated with both JC method and Monte-Carlo method respectively.Furthermore,the target index of reliability is suggested.Finally,the concept of reliability coefficient(to replace the load partial factor and the resistance partial factor) is given and the bearing capacity of the single pile is determined by utilizing optimization method.Besides,the practical limit state design equation using reliability coefficient is put forward for its advantage of incarnating the simple and practical principle and being easy mastered and understood by the designers.  相似文献   

18.
In order to investigate the dynamic behavior of geogrid reinforced pile supported embankments (GRPS) under moving load, a three dimensional coupled mechanical and hydraulic model was built by FLAC 3D. The results from two cases including unreinforced and no pile embankments, and geogrid reinforced pile supported embankments were presented. The behaviors of vertical displacement, pile soil stress ratio, excess pore water pressure, and vertical acceleration under two cases were compared and discussed. Additionally, studies on the effect of speed and weight of the moving load were performed. It is indicated that the value of vertical displacement, pile soil stress ratio, excess pore water pressure, and vertical acceleration of GRPS decrease evidently compared with those of unreinforced and no pile embankment, which is caused by the soil arching effect and the reinforcement effect. It is also shown that the greater the axle load value is, the less the beneficial effect of GRPS on the vertical displacement. With the increase of the moving speed of the load, the vertical displacement increases.  相似文献   

19.
Some conclusions were drawn from two groups of in-site tests on concrete pile composite foundations. In the tests, it was found that the pressure under the rigid loading slab is different, in which the pressure under the center of the slab is the less and under the edge of the slab is the biggest. The pile-soil stress ratio is not a constant; it increases with the adding of the load. Most of the pile-soil ratio vary from 9 to 13 in these tests and the load that the piles share can be more than seventy percent of the whole load. It was proved that the bearing capacity of the concrete pile composite foundation is high with a little settlement, so it will be used more and more in the future.  相似文献   

20.
Cui Gang 《保鲜与加工》2013,(Z2):170-172
Because of high bearing capacity and small settlement of CFG pile, CFG pile have been used widely in foundation treatment of engineering construction, but it has applicant in high-speed railway roadbed only in the initial stage. In this paper, based on the project of Beishahe of Hada high-speed rail, simulated with the finite element model by ADINA by changing the parameters of CFG pile and roadbed height in the situation of permafrost and unpermafrost of foundation, obtained the relationship of parameters and foundation settlement, it has the directive significance for high-speed railway with CFG pile composite foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号