首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 875 毫秒
1.
水氮耦合对棉花干物质积累及产量的影响   总被引:1,自引:0,他引:1  
【目的】研究水氮耦合对棉花干物质积累及产量影响。【方法】大田试验采用裂区试验设计,设置灌溉量与施肥量2个调控因子,其中灌溉量为主区,施肥量为副区,均设置3个梯度,灌溉量依次为2 250(低灌量)、3 450(中灌量,传统经验灌溉量CK)、4 650 m3/hm2,(高灌溉量)分别以W1、W2和W3表示;施肥量(折合纯氮)依次为0(空白)、300(中等施氮量,传统经验施氮量CK)、600 kg/hm2(高施氮量,200%CK),分别以N1、N2和N3表示。【结果】灌溉量和施肥量对植株生长和产量构成有一定促进作用,提高灌溉量和施肥量均能显著提高株高、叶片数和结铃率。在对干物质积累方面提高灌溉量可显著提高干物质积累总量,而提高施肥量主要促进了干物质更早的向经济器官积累。通过提高灌溉量可增产23.2%~31.4%,通过增施氮肥可显著增产12.5%~17.6%。【结论】水氮耦合对棉花单铃重、籽棉产量和皮棉产量均有显著的调控作用。水氮优化策略能够提高资源利用效率,降低水肥投入,产量稳定。  相似文献   

2.
施氮量对棉花养分吸收利用及产量和品质的影响   总被引:1,自引:0,他引:1  
【目的】研究施氮量对棉花产量、养分吸收与分配、氮肥利用率及纤维品质的影响,为棉花生产合理施氮提供理论基础。【方法】以中棉所60号为材料,于2018和2019年连续2年大田试验。设置4个施氮水平(0、112.5、168.75、225 kg/hm2,分别以CK、N1、N2、N3表示),在吐絮期采集植株茎、叶、生殖器官,测定干物质质量和氮磷钾积累量,计算氮肥利用率和棉花产量等指标。【结果】施氮量在0~225 kg/hm2,棉花产量随施氮量的增加而增加;施用氮肥可提高棉花吐絮期氮、磷、钾吸收量,施氮水平在0~168.75 kg/hm2,棉花氮、磷、钾吸收量随施氮量的增加而增加,过量施用氮肥后棉花氮、磷、钾吸收量下降;氮肥利用率以112.5 kg/hm2施氮量最高;施氮量对棉花纤维品质指标影响差异不显著。【结论】综合产量、氮肥利用率、养分吸收、分配及利用和纤维品质等指标,黄河流域棉区推荐施氮量为112.5~168.75 kg/hm2。  相似文献   

3.
【目的】研究水氮运筹对化学封顶棉花二次生长形态及发生规律,优化水肥调控结合化学封顶技术,有效控制棉花二次生长,为塑造棉花株型、调控采收的吐絮时间奠定理论与技术基础。【方法】以新陆早57号为试验材料,采用裂区试验设计,主区为施氮(纯 N)量,设3个施氮(纯 N)水平:N1、N2、N3分别为150、300、450 kg/hm2,副区为灌溉量,设3个灌水水平:W1、W2、W3分别为3 000 、4 500、6 000 m3/hm2。分析水氮处理对化学封顶棉花二次生长前后农艺性状、干物质积累及产量和纤维品质的影响。【结果】灌水量增加延长棉花生育期,增加棉花植株株高、果枝数、二次生长率;施氮量(是)控制棉花干物质和产量形成因素。灌水处理为4 500和6 000 m3/hm2时,化学封顶棉花株高和果枝台数较高,易发生二次生长;施氮量在300 kg/hm2时,产量及其构成均高于其他。水氮处理组合以处理N2W2、N2W3表现较优,产量分别为6 349.21、6 203.54 kg/hm2。【结论】对化学打顶棉花,适当水氮运筹可控制棉花二次生长现象,且对棉花产量及品质无显著影响。  相似文献   

4.
目的】研究磁化次数及磁化灌溉量对棉花生长发育及其产量的影响,为新疆南疆地区发展节水型集约可持续农业提供理论和实践支撑。【方法】2017年定期观测棉花株高、叶面积等生长指标的,在T0(CK不磁化)、T1(一次磁化)、T2(二次磁化)处理中筛选出最优处理。2018年在二次磁化处理下设置不同灌溉定额(T1、T2、T3、T4、T5),综合对比棉花的各个生长发育指标及磁化灌溉水利用效率,筛选出最佳灌溉定额。【结果】T2(二次磁化)处理下的棉株表现均优于T1(一次磁化)、T0(CK 不磁化)处理的棉株,且产量达到最高,较对照增产22.3%;当二次磁化的灌溉定额达到3 360 m3/hm2时,棉花的农艺性状、产量性状均达到最大值,干物质积累量和灌溉水利用效率最高。【结论】当灌溉水经过二次磁化处理且灌溉定额达到3 360 m3/hm2时,棉株的农艺性状、产量性状、干物质积累量等均有较大幅度的提升,促使棉田获得高产,且达到节水灌溉。  相似文献   

5.
不同施氮量对棉花产量、养分吸收及氮素利用的影响   总被引:2,自引:0,他引:2  
【目的】覆膜滴灌条件下,研究不同施氮量对棉花产量、养分吸收和氮素利用的影响,为棉花生产合理施氮提供科学依据。【方法】试验于2017~2019年设在新疆阿瓦提县,共5个施氮水平(0、110、220、330、440 kg/hm2),于棉花吐絮期采集植株样品,测定棉花产量、生物量、养分吸收和氮素利用。【结果】当施氮量在0~220 kg/hm2时,棉花产量、生物量和产值随着施氮量的增加显著增加,棉花对氮、磷、钾的吸收也显著增加,当施氮量大于220 kg/hm2时影响不显著。棉花氮素偏生产力和农学效率随施氮量增加显著降低。当施氮量大于220 kg/hm2时,氮素表观利用率显著降低,氮素贡献率差异不显著。【结论】当施氮量在0~220 kg/hm2时,随着施氮量的增加,棉花产量、生物量、产值和氮、磷、钾养分的吸收显著增加,当施氮量大于220 kg/hm2时,氮素表观利用率显著降低。综合棉花产量、经济效益、养分吸收和氮素利用,供试棉田推荐施氮量为220 kg/hm2。当施氮量为220 kg/hm2时,形成100 kg籽棉,需吸收N 4.25 kg、P2O5 1.14 kg、K2O 3.61kg。  相似文献   

6.
不同灌溉方式和灌水量对棉花冠层叶铃配置的影响   总被引:2,自引:2,他引:0  
【目的】分析膜下滴灌和传统漫灌对棉花叶铃配置关系的影响,研究膜下滴灌棉花高产原理,寻求增产新途径。【方法】设置膜下滴灌和传统漫灌两种灌溉方式,并设两个灌水量:3 900和6 000 m3/hm2,共4个处理。测定棉花叶面积、光吸收率、干物质累积和棉花产量构成因子等指标,分析不同灌溉方式对棉花叶铃配置关系及产量的影响。【结果】盛铃后期,相比传统漫灌,膜下滴灌棉花叶面积指数高出30.66%,冠层上部叶面积指数维持在2~2.5,中下部在1~1.5,冠层各部位光吸收量均匀;同时不同冠层结铃比例适中,与各层光分布比例耦合良好,有利于光合产物生产。3 900 m3/hm2灌水量下,膜下滴灌棉花相对传统漫灌棉花增产25.07%;而6 000 m3/hm2灌水量下,膜下滴灌棉花相对传统漫灌棉花减产6.74%,过量灌水不利于膜下滴灌棉花产量形成。【结论】相比传统漫灌,膜下滴灌棉花叶铃配置更合理,光合生产力更强,有利于光合产物向生殖器官转运和产量形成  相似文献   

7.
【目的】研究种植模式与灌溉定额对机采长绒棉产量及纤维品质形成的影响,为促进机采长绒棉产量与品质协同提供理论依据。【方法】试验在田间微区控制条件下进行,采用裂区试验设计,选择同一最适密度,以机采种植模式为主区:1膜3行(S3)、1膜4行(S4)和1膜6行(S6);灌溉定额为副区:3 150 m3/hm2[W1,重度亏缺(田间持水量50%)]、4 050 m3/hm2[W2,轻度亏缺(田间持水量75%)]和4 980 m3/hm2 [W3,充分灌溉(田间持水量100%)],分析种植模式与灌溉定额对机采长绒棉干物质积累、产量构成及机采品质的影响。【结果】棉花干物质的积累符合Logistic生长函数模型。同一灌溉定额下,随平均行距的扩大可提早进入干物质快速积累时期,S3处理最大干物质积累速率平均分别比S...  相似文献   

8.
目的】研究新疆南疆棉区缩节胺(1,1-dimethyl-piperidinium chloride, DPC)化学封顶对棉花主要农艺性状及产量性状的影响,为新疆南疆棉花化学封顶技术提供理论支撑。【方法】于2019年在新疆南疆阿拉尔市16团开展田间试验,以人工打顶为对照,采用完全随机设计,研究不同DPC用量(0、90、180和270 g/hm2)对棉花株高、新生部分、产量及产量构成因素的影响。【结果】与人工打顶相比,DPC化学封顶处理的株高增加7.9~28.5 cm,新生主茎长度增加8.8~22.3 cm,新生果枝台数增加3.6~5.0台;高剂量DPC(270 g/hm2)处理可增加产量器官干物质积累量和积累速率。化学封顶不影响单铃重和衣分,高剂量DPC(270 g/hm2)处理与人工打顶的籽棉产量相当,降幅仅2.4%。【结论】新疆南疆棉区应用270 g/hm2的DPC进行化学封顶既可获得较好的封顶效果,也不会降低籽棉产量。  相似文献   

9.
控失尿素施用量及不同配比对棉花产量与氮肥利用的影响   总被引:5,自引:4,他引:1  
【目的】研究控失尿素、普通尿素不同配比对棉花生长发育、氮素吸收及产量的影响。【方法】田间小区试验,试验设8个处理,(1)CK:不施氮肥;(2)常规尿素:施N 225 kg/hm2;(3)等氮量控失尿素:施N 225 kg/hm2;(4)控失尿素减量20%:施N 180 kg/hm2;(5)控失尿素减量30%:施N 157.5 kg/hm2;(6)控失尿素与常规尿素7∶3配比:施N 225 kg/hm2;(7)控失尿素与常规尿素5∶5配比:施N 225 kg/hm2;(8)控失尿素与常规尿素3∶7配比:施N 225 kg/hm2,测定棉花干物质、氮素吸收量和产量,明确棉花干物质、氮素吸收、产量与控失尿素配施常规尿素的关系。【结果】与常规尿素相比,控失与常规尿素7∶3配比能显著增加棉花干物质量,提高棉花产量,增产14.34%;提高棉花氮肥利用率,氮肥利用率增加了10.2百分点;控失尿素减量20%处理与常规尿素处理的棉花干物质与产量大体相同,控失尿素减量30%处理显著低于常规尿素处理,产量降低了5.85%;控失尿素减量20%处理与常规尿素处理的棉花N素吸收量大体相同,但大幅度提高了氮肥利用率,利用率增加了11.26百分点。【结论】用控失尿素和控失尿素与常规尿素配施均提高棉花氮肥利用率,其中控失与常规尿素7∶3配比效果最好。  相似文献   

10.
施氮对膜下滴灌棉花生长发育及土壤硝态氮的影响   总被引:2,自引:1,他引:1  
【目的】 研究施氮量对膜下滴灌棉花生长发育及土壤硝态氮的影响,为膜下滴灌棉花的氮肥管理提供理论参考。【方法】 以新陆早52号为材料,设N0(不施氮)、N150(150 kg/hm2)、N250(250 kg/hm2)、N350(350 kg/hm2)、N450(450 kg/hm2)共5个处理,研究膜下滴灌棉花的氮肥运行规律及最佳氮肥施用量。【结果】 不同氮肥处理地上部生物累积量进符合Logistic 曲线模型Y=a/(1+b×exp(-k×t)),最大积累速率出现时间在71~77 d,进入快速积累期在56~60 d。2试验年各处理LAI表现为N450>N350>N250>N150 >N0,最大可达4.51~4.81。0~60 cm土层,硝态氮含量变化表现为随土层深入先增加后降低的趋势,在20~40 cm土层硝态氮含量最高,现蕾阶和铃期消耗土壤硝态氮较多。产量、肥利用率、氮肥贡献率2试验年N350最大,分别在为7 477.5和7 731.7 kg/hm2,40.32%、43.24%,56.09%、57.02%。【结论】 N350(350 kg/hm2)处理效果最佳,施氮量在327.70~340.67 kg/hm2的阈值范围内,有利于棉花形成高产和提高肥料利用率。  相似文献   

11.
[目的]研究揭膜种植方式下不同灌水量对棉花干物质积累、转运及产量的影响,为新疆滴灌棉花生育期揭膜后的水分管理提供理论依据.[方法]选择新陆早45号(水分胁迫迟钝型)和新陆早42号(水分胁迫敏感性)为供试材料,在出苗后40 d揭膜并设置3个水分处理,即4425 m3/hm2(W1)、5310 m3/hm2(W2)、663...  相似文献   

12.
灌溉频率对棉花干物质积累及水分利用效率的影响   总被引:1,自引:0,他引:1  
【目的】研究滴灌条件下不同灌溉频率对棉花生长及产量的影响。【方法】在大田灌溉定额(4 650 m3/hm2)下,设置5个灌水频率(3、6、9、12和15 d/次,其中6 d/次为CK),分析灌溉频率对棉花生长发育过程中干物质积累及分配、产量的影响。【结果】高灌溉频率(3 d/次)干物质积累量较大,同化物向生殖器官的分配率较高,开花结铃数也较高,有利于提高籽棉产量和水分利用效率。【结论】在4 650 m3/hm2常规灌溉定额下,3 d/次的高频灌溉能够提高棉花的干物质积累量,有利于籽棉产量和水分利用效率的提高。  相似文献   

13.
减施氮肥对北疆滴灌棉花干物质积累及产量的影响   总被引:3,自引:2,他引:1  
【目的】 减氮栽培条件下,北疆滴灌棉花干物质分配动态及产量形成的规律,寻求最佳施氮量。【方法】 供试棉花品种为鲁棉研24,设置4个不同施氮水平,分别为506(N1),402.5(N2),299(N3)和195.5 kg/hm2(N4),分析减施氮肥对北疆滴灌棉花干物质积累及产量的影响。【结果】 在N3处理下,干物质快速积累期时间持续最长,为42 d,分别比N1、N2和 N4处理多15、19和15 d。N3处理下,干物质积累最大速率Vm最小,分别比N1、N2和N4处理低13.3%、24.2%和10.74%;N3处理营养器官干物质积累最大速率Vm和生殖器官干物质积累速率Vm均达到最大,其中N3处理营养器官干物质积累最大积累速率Vm分别比N1、N2和N4处理高35.92%、3.48%和0.67%。N3处理生殖器官干物质最大积累速率Vm分别比N1、N2和N4高52%、22%和19%。N2处理下籽棉产量最高,达到5 938.34 kg/hm2,显著高于N1和N4处理,但与N3处理间差异不显著。【结论】 高氮促使干物质向营养器官分配,适量减氮则有利于干物质向生殖器官分配;高氮(N1)会造成棉花中后期营养生长旺盛,适量降低氮肥(N3)使用量不会显著降低棉花产量。北疆棉区滴灌棉花最适施纯氮量299~402.5 kg/hm2。  相似文献   

14.
【目的】通过对施肥量及灌水量调控,研究水肥最优组合,为地区冬小麦高产栽培、节水节肥措施提供理论依据。 【方法】试验采用两因素四水平的裂区试验设计,以新冬36号为试验材料,在大田滴灌条件下,设置0 kg/hm2(N0)、375 kg/hm2(N1)、450 kg/hm2(N2)、525 kg/hm2(N3)四个施肥量(纯量);四个灌水梯度为3 450 m3/hm2(W1)、4 200 m3/hm2(W2)、4 950 m3/hm2(W3)、5 700 m3/hm2(W4)。分析干物质、叶面积指数及产量等性状,研究水肥因子对小麦生长的影响。【结果】干物质积累量从拔节期至灌浆期呈快-慢的增长规律,Logistic方程对其进行拟合表明,各处理从拔节后6~10 d干物质开始快速积累,41~49 d后转为缓慢积累。N2W2进入快速积累时间最早,最大积累速率较高。叶面积指数(LAI)在孕穗期达到最大,后期逐渐减小,N2、N3处理在拔节至孕穗期快速增加,并随着灌水量的增加呈先增加后降低的趋势。穗粒数与水肥施用量呈正相关关系。最终产量表现为N2>N3>N1>N0,最高产量为N2W3处理的9 848.13 kg/hm2,与N2W2处理无显著差异。水肥交互作用对穗数及产量影响达到极显著水平(P<0.01),对穗粒数有显著影响(P<0.05),与千粒重无显著相关性。【结论】施肥量450 kg/hm2、灌水量为4 200 m3/hm2,即N2W2处理为兼顾高产节水、省肥最优组合。  相似文献   

15.
【目的】研究不同灌溉定额下氮肥施用时期对甜菜生理指标、灌溉水生产率、氮肥农学利用率及氮肥偏生产力的影响,为甜菜水肥高效利用提供理论依据。【方法】采用裂区试验设计,主区为2个灌溉定额,副区为5个氮肥施用时期(纯N总量一致120 kg/hm2)。【结果】同一氮肥施用时期,随着灌溉量的减少甜菜Pn、Er、茎叶干重、根干重、总干重、单根重、产量、产糖量(除N4处理)及氮肥偏生产力均呈下降趋势,甜菜含糖率、产量增产率、灌溉水生产力及氮肥农学利用效率均有提高;同一灌溉量,随着氮肥施用时期的后移各项测定指标先增后减,N4处理补偿指数最优,灌溉定额4 650比5 850 m3/hm2甜菜各项指标补偿指数提高-1.6%~27.5%。【结论】在北疆甜菜产区合理的水氮管理模式为:灌溉定额4 650 m3/hm2,氮肥基施1/2,7月中旬追施1/2。  相似文献   

16.
【目的】研究水氮耦合对棉田土壤水分时空分布及产量效应的影响。【方法】采用裂区试验设计,以灌溉量为主区,设2 250.0 m3/hm2(低灌溉量,W1)、3 450.0 m3/hm2(常规灌溉量,W2)和4 650.0 m3/hm2(高灌溉量,W3),3个灌溉量(W1、W2和W3)。设0 kg/hm2(空白)、300.0 kg/hm2(常规施肥量)和600.0 kg/hm2(高施氮量),3个纯氮投入量(N1、N2和N3),测定土壤水分、盐分含量,以及不同时期棉花植株干物质积累量及不同处理下最终产量,评估不同水氮施用处理下棉花植株生长发育及最终产量变化。【结果】在W3N2处理下土壤中的盐分和水分有着相对较好的吸收能力,相较于W1N1处理盐分消耗量高出64.2%,水分消耗量显著高92.4%;在W3N2水氮施用组合下,花期、铃期、吐絮期这3个时期不同处理下干物质积累量均有显著提高,相较于W1N1处理显著高39.0%。【结论】W3N3水氮施用组合下棉花植株单株铃数、单铃质量、籽棉产量等3项指标达到最高,比W1N1处理显著高30.0%。  相似文献   

17.
【目的】研究膜下滴灌水氮空间调控对机采棉群体塑造及产量的影响。【方法】以新陆中66号为供试品种,试验采用大田裂区试验设计,主区为膜内不同滴灌带条数,分别为2、3和5条(分别标记为G2、G3、G5);副区为不同施氮量,分布为0、238、317、396 kg/hm2(分别标记为N0、N1、N2、N3),研究棉花生育期内不同水氮处理对群体指标、叶面积指数、干物质积累、产量和氮肥农学效应的影响。【结果】施氮量对机采棉群体塑造影响极显著,滴灌带布置条数对茎粗和果枝始节高度有显著影响;增加布管数量和施氮量可增加机采棉的叶面积指数,并在生育中后期达到显著影响;机采棉地上部分干物质积累量、单株铃数、单铃重、衣分和籽棉产量均随着施氮量的增加而呈单峰趋势,在N2水平下有最大值;滴灌带条数和施氮量的交互作用对果枝始节果枝始节高度、吐絮初期干物质积累量和产量的影响显著。【结论】水氮空间调控会显著影响棉花群体塑造和产量。适合“10 cm-66 cm-10 cm-66 cm-10 cm”机采棉模式的水氮组合为G5N2;考虑种植成本,也可选用G3N2组合,但需要适当提高其灌水频率,并对应减少灌水定额。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号